The invention relates generally to wireless communications and, more particularly, to antenna transmissions.
A conventional cellular access point (or base station) that employs beamforming techniques typically includes a phased-array antenna structure that is used to transmit on the downlink in various directions. Besides the information that is transmitted directionally, the access point often needs to transmit some other information omni-directionally. Broadcast services and basic control information about the cell are examples of information that needs to be transmitted omni-directionally. Because each antenna element of the array is itself an omni-directional antenna, omni-directional transmission can be achieved by operating a selected antenna element of the array at a higher transmission power than the other antenna elements of the array. However, this approach presents complications. For example, as a practical matter, the antenna element that is used for omni-directional transmission will need to have associated therewith a power amplifier arrangement that can support a higher transmit power than the power amplifiers associated with those antenna elements that are not used for omni-directional transmission. This complicates factors such as the design and placement of the power amplifiers used in the access point.
It is therefore desirable to provide for omni-directional transmission from an array of antenna elements without the aforementioned difficulties.
According to various exemplary embodiments of the invention, both diversity arrays and phased arrays of antenna elements can be used to produce omni-directional transmissions. Communication signaling is produced based on a desired communication signal that is to be transmitted omni-directionally. In response to the communication signaling, the antenna elements cooperate to effect approximately omni-directional antenna transmission of the desired communication signal.
Exemplary embodiments of the invention provide for omni-directional transmissions from an apparatus that uses a phased-array of antenna elements, or from an apparatus that uses an array of diversity antenna elements. The total transmitted power can be shared equally among all the antenna elements, while still achieving the desired omni-directional transmission. There is no need for a separate high power amplifier dedicated to omni-directional transmissions.
Consider the case of a wireless communication apparatus that uses an array of diversity antenna elements, that is, an array wherein the antenna elements are located far enough apart from one another for their respective transmission channels to be uncorrelated with one another. Assume, for purposes of illustration only, an example with M diversity antenna elements that are all to be used for omni-directional transmission of a signal X(w) to various receiver devices (e.g., mobile stations) surrounding the array of antenna elements. That is, the antenna elements should be used to transmit the signal X(w) to each receiver in such a way that the resulting channel is similar to the channel that would be obtained if an omni-directional transmit antenna were used. More specifically, the channel seen by each receiver should have the same statistics, regardless of the angular positioning of the receiver relative to the array.
The channel from the m-th diversity antenna element to a given receiver is denoted by Gm(w), which is assumed for this example to be a complex Gaussian random variable with a mean of zero and a variance of one. In a diversity array, the channels from different antenna elements of the array are independent, that is,
In general, it can be assumed that KG(w1,w2)=0 if |w2−w1|>Δ, where Δ is the coherence bandwidth of Gi(w1). Suppose that a signal
is fed to each of the M diversity antenna elements. This is equivalently represented in the time domain as
If this signal is fed to each antenna element of the diversity array for transmission, then the signal R(w) received at the receiver will be
The effective channel Q(w) between X(w) and R(w) is given by the expression inside the large parentheses in Equation 3. Because Q(w) is the sum of M independent Gaussian random variables with mean zero and variance one, Q(w) is also Gaussian, with a mean of zeros and a variance of one.
The correlation function for channel Q(w) is:
Equation 7 indicates that the effective channel Q(w) has exactly the same statistics as any of the M individual channels Gm(w) originally assumed above. The power transmitted from any of the antenna elements is
of the total power transmitted from all of the antenna elements.
to produce an associated transmit signal, x_1(t), x_2(t), . . . x_M(t), that is transmitted by the corresponding antenna element. All of the transmit signals are thus
The apparatus of
Consider now the case of a wireless communication apparatus that uses a phased array of antenna elements wherein the antenna elements are physically separated from one another by only a small fraction of the wavelength at the transmission carrier frequency. This spacing facilitates beamforming and other transmission techniques that rely on suitably controlling the phases of the respective signals transmitted from the respective antenna elements. Assume, for purposes of illustration only, an example with M phased array antenna elements that are all to be used to achieve omni-directional transmission of a signal X(w) to various receiver devices (e.g., mobile stations) surrounding the array of antenna elements. That is, the antenna elements should be used to transmit the signal X(w) to each receiver in such a way that the resulting channel is similar to the channel that would be obtained if an omni-directional transmit antenna were used. More specifically, the channel seen by each receiver should have the same statistics, regardless of the angular positioning of the receiver relative to the array.
As indicated above, the distance between antenna elements in a phased array apparatus is much smaller than the wavelength at the transmission carrier frequency. This means that the channels between each antenna element and the receiver only differ by a constant (frequency independent) multiplicative phase factor, i.e., the phase shift at the carrier frequency corresponding to the time it would take the radio waves to propagate the distance between two antenna elements. The channel Gm(w) between the m-th antenna element (for m=1, 2, . . . M) and the receiver can be expressed as:
where d is the spacing between the antenna elements (assumed to be much smaller than the wavelength at the carrier frequency), λ is the wavelength at the carrier frequency, and φ is the direction of the receiver relative to the normal to the array. Assume for this illustrative example that G0(w) is a complex Gaussian variable with a mean of zero and a variance of one.
Suppose that a signal
is fed to the i-th transmit antenna element (for i=1, 2, . . . M), where Hi(w) is a complex Gaussian random variable with a mean of zero and a variance of one. Assume also for this example that for i≠j, Hi(w) and Hj(w) are independent but identically distributed random processes, so that
E{Hi(w1)Hj*(w2)}=δi,jKH(w1,w2) (9)
The received signal R(w) at the receiver is
and note initially that the mean of α(w) is zero. The correlation of α(w) is:
The effective channel between X(w) and R(w) is Q(w)=G0(w)α(w). The correlation function for this effective channel Q(w) is:
where Δ is the coherence bandwidth of the original channel as defined by Equation 2 above, then the effective channel between X(w) and the receiver will have the same second-order statistics as an omni-directional channel G0(w), that is,
KQ(w1,w2)≈KG(w1,w2) (22)
Equation 22 implies that the channel between X(w) and the receiver is independent of the angular position of the receiver, and has exactly the same second-order statistics as G0(w). The power transmitted from any of the antenna elements is
of the total power transmitted from all of the antenna elements.
The random waveform generators, designated generally at 25, produce respective output signals
In some embodiments, for i≠j, Hi(w) and Hj(w) are independent but identically distributed random processes, each having a mean of zero and a variance of one. The signal multipliers combine the respective signals from the random waveform generators with the input signal X(w) to produce respective frequency domain signals designated generally at 26. The M antenna transmission paths respectively include frequency-to-time converters designated generally at 27. These converters use conventional techniques to convert the associated frequency domain signal at 26 into a corresponding transmit signal in the time domain. The resulting M time domain transmit signals, designated as x1(t), x2(t), . . . xM(t), are provided for transmission by the respectively corresponding antenna elements. The apparatus of
Various embodiments of the invention use various symbol modulation schemes. In some embodiments that use Orthogonal Frequency Division Multiplexing (OFDM), the symbol that is modulated onto sub-carrier frequency wk is multiplied by Hi(wk). This requires just one multiply per OFDM sub-carrier.
Regarding the aforementioned coherence bandwidth Δ, this parameter depends on the delay spread of the channel, which in turn depends on the operating environment of the transmit apparatus. Environments with longer delay spreads have shorter coherence bandwidths, and environments with shorter delay spreads have longer coherence bandwidths. For example, in outdoor environments, the coherence bandwidth can range from around 200 KHz to around 1 MHz.
Although exemplary embodiments of the invention have been described above in detail, this does not limit the scope of the invention, which can be practiced in a variety of embodiments.
Number | Name | Date | Kind |
---|---|---|---|
5481570 | Winters | Jan 1996 | A |
5543806 | Wilkinson | Aug 1996 | A |
5629707 | Heuvel et al. | May 1997 | A |
6006113 | Meredith | Dec 1999 | A |
6232921 | Aiken et al. | May 2001 | B1 |
6556845 | Ide et al. | Apr 2003 | B1 |
20040038702 | Okawa et al. | Feb 2004 | A1 |
20040185783 | Okawa et al. | Sep 2004 | A1 |
Number | Date | Country |
---|---|---|
2730033 | Sep 2005 | CN |
0917383 | May 1999 | EP |
Number | Date | Country | |
---|---|---|---|
20070135063 A1 | Jun 2007 | US |