Using context information to facilitate processing of commands in a virtual assistant

Information

  • Patent Grant
  • 9858925
  • Patent Number
    9,858,925
  • Date Filed
    Friday, September 30, 2011
    13 years ago
  • Date Issued
    Tuesday, January 2, 2018
    7 years ago
Abstract
A virtual assistant uses context information to supplement natural language or gestural input from a user. Context helps to clarify the user's intent and to reduce the number of candidate interpretations of the user's input, and reduces the need for the user to provide excessive clarification input. Context can include any available information that is usable by the assistant to supplement explicit user input to constrain an information-processing problem and/or to personalize results. Context can be used to constrain solutions during various phases of processing, including, for example, speech recognition, natural language processing, task flow processing, and dialog generation.
Description
FIELD OF THE INVENTION

The present invention relates to virtual assistants, and more specifically to mechanisms for improving interpretation and processing of commands provided to such an assistant.


BACKGROUND OF THE INVENTION

Today's electronic devices are able to access a large, growing, and diverse quantity of functions, services, and information, both via the Internet and from other sources. Functionality for such devices is increasing rapidly, as many consumer devices, smartphones, tablet computers, and the like, are able to run software applications to perform various tasks and provide different types of information. Often, each application, function, website, or feature has its own user interface and its own operational paradigms, many of which can be burdensome to learn or overwhelming for users. In addition, many users may have difficulty even discovering what functionality and/or information is available on their electronic devices or on various websites; thus, such users may become frustrated or overwhelmed, or may simply be unable to use the resources available to them in an effective manner.


In particular, novice users, or individuals who are impaired or disabled in some manner, and/or are elderly, busy, distracted, and/or operating a vehicle may have difficulty interfacing with their electronic devices effectively, and/or engaging online services effectively. Such users are particularly likely to have difficulty with the large number of diverse and inconsistent functions, applications, and websites that may be available for their use.


Accordingly, existing systems are often difficult to use and to navigate, and often present users with inconsistent and overwhelming interfaces that often prevent the users from making effective use of the technology.


An intelligent automated assistant, also referred to herein as a virtual assistant, can provide an improved interface between human and computer. Such an assistant, which may be implemented as described in related U.S. application Ser. No. 12/987,982 for “Intelligent Automated Assistant”, filed Jan. 10, 2011, the entire disclosure of which is incorporated herein by reference, allows users to interact with a device or system using natural language, in spoken and/or text forms. Such an assistant interprets user inputs, operationalizes the user's intent into tasks and parameters to those tasks, executes services to support those tasks, and produces output that is intelligible to the user.


A virtual assistant can draw on any of a number of sources of information to process user input, including for example knowledge bases, models, and/or data. In many cases, the user's input alone is not sufficient to clearly define the user's intent and task to be performed. This could be due to noise in the input stream, individual differences among users, and/or the inherent ambiguity of natural language. For example, the user of a text messaging application on a phone might invoke a virtual assistant and speak the command “call her”. While such a command is perfectly reasonable English, it is not a precise, executable statement, since there are many interpretations and possible solutions to this request. Thus, without further information, a virtual assistant may not be able to correctly interpret and process such input. Ambiguity of this type can lead to errors, incorrect actions being performed, and/or excessively burdening the user with requests to clarify input.


SUMMARY

According to various embodiments of the present invention, a virtual assistant uses context information (also referred to herein as “context”) to supplement natural language or gestural input from a user. This helps to clarify the user's intent and to reduce the number of candidate interpretations of the user's input, and reduces the need for the user to provide excessive clarification input. Context can include any available information that is usable by the assistant to supplement explicit user input to constrain an information-processing problem and/or to personalize results. For example, if input from the user includes a pronoun (such as “her” in the command “call her”) the virtual assistant can use context to infer the referent of the pronoun, for example to ascertain the identity of the person to be called and/or the telephone number to use. Other uses of context are described herein.


According to various embodiments of the present invention, any of a number of mechanisms can be implemented for acquiring and applying contextual information to perform computations in a virtual assistant implemented on an electronic device. In various embodiments, the virtual assistant is an intelligent automated assistant as described in U.S. application Ser. No. 12/987,982 for “Intelligent Automated Assistant”, filed Jan. 10, 2011, the entire disclosure of which is incorporated herein by reference. Such an assistant engages with the user in an integrated, conversational manner using natural language dialog, and invokes external services when appropriate to obtain information or perform various actions. According to the techniques described herein, contextual information is used in such an assistant, for example, to reduce ambiguity when performing information processing functions such as speech recognition, natural language processing, task flow processing, and dialog generation.


According to various embodiments of the present invention, a virtual assistant may be configured, designed, and/or operable to use context in performing various different types of operations, functionalities, and/or features, and/or to combine a plurality of features, operations, and applications of an electronic device on which it is installed. In some embodiments, a virtual assistant of the present invention can use context when performing any or all of: actively eliciting input from a user, interpreting user intent, disambiguating among competing interpretations, requesting and receiving clarifying information as needed, and/or performing (or initiating) actions based on the discerned intent.


Actions can be performed, for example, by activating and/or interfacing with any applications or services that may be available on an electronic device, as well as services that are available over an electronic network such as the Internet. In various embodiments, such activation of external services can be performed via application programming interfaces (APIs) or by any other suitable mechanism. In this manner, a virtual assistant implemented according to various embodiments of the present invention can unify, simplify, and improve the user's experience with respect to many different applications and functions of an electronic device, and with respect to services that may be available over the Internet. The user can thereby be relieved of the burden of learning what functionality may be available on the device and on web-connected services, how to interface with such services to get what he or she wants, and how to interpret the output received from such services; rather, the assistant of the present invention can act as a go-between between the user and such diverse services.


In addition, in various embodiments, the virtual assistant of the present invention provides a conversational interface that the user may find more intuitive and less burdensome than conventional graphical user interfaces. The user can engage in a form of conversational dialog with the assistant using any of a number of available input and output mechanisms, such as for example speech, graphical user interfaces (buttons and links), text entry, and the like. The system can be implemented using any of a number of different platforms, such as device APIs, the web, email, and the like, or any combination thereof. Requests for additional input can be presented to the user in the context of such a conversation. Short and long term memory can be engaged so that user input can be interpreted in proper context given previous events and communications within a given session, as well as historical and profile information about the user.


In addition, in various embodiments, context information derived from user interaction with a feature, operation, or application on a device can be used to streamline the operation of other features, operations, or applications on the device or on other devices. For example, the virtual assistant can use the context of a phone call (such as the person called) to streamline the initiation of a text message (for example to determine that the text message should be sent to the same person, without the user having to explicitly specify the recipient of the text message). The virtual assistant of the present invention can thereby interpret instructions such as “send him a text message”, wherein the “him” is interpreted according to context information derived from a current phone call, and/or from any feature, operation, or application on the device. In various embodiments, the virtual assistant takes into account various types of available context data to determine which address book contact to use, which contact data to use, which telephone number to use for the contact, and the like, so that the user need not re-specify such information manually.


Contextual information sources include, for example and without limitation: the current state of a device used as an interface to the assistant, such as the current time, location, application, or data object; personal data such as a user's address book, calendar, and application usage history; and the state of the dialog between the user and the virtual assistant, such as recently mentioned people and/or places.


Context can be applied to a variety of computations and inferences in the operation of the virtual assistant. For example, context can be used to reduce ambiguity or otherwise constrain the number of solutions as user input is processed. Context can thus be used to constrain the solutions during various phases of processing, including for example and without limitation:

    • Speech Recognition—receiving voice input and generating candidate interpretations in text, for example, “call her”, “collar”, and “call Herb”. Context can be used to constrain which words and phrases are considered by a speech recognition module, how they are ranked, and which are accepted as above a threshold for consideration. For example, the user's address book can add personal names to an otherwise language-general model of speech, so that these names can be recognized and given priority.
    • Natural Language Processing (NLP)—parsing text and associating the words with syntactic and semantic roles, for example, determining that the user input is about making a phone call to a person referred to by the pronoun “her”, and finding a specific data representation for this person. For example, the context of a text messaging application can help constrain the interpretation of “her” to mean “the person with whom I am conversing in text.”
    • Task Flow Processing—identifying a user task, task steps, and task parameters used to assist with the task, for example, which phone number to use for the person referred to as “her”. Again, the context of the text messaging application can constrain the interpretation of the phone number to indicate that the system should use the number currently or recently used for a text messaging conversation.
    • Dialog Generation—generating assistant responses as part of a conversation with the user about their task, for example, to paraphrase the user's intent with the response “OK, I'll call Rebecca on her mobile . . . .” The level of verbosity and informal tone are choices that can be guided by contextual information.


In various embodiments, the virtual assistant of the present invention can control various features and operations of an electronic device. For example, the virtual assistant can call services that interface with functionality and applications on a device via APIs or by other means, to perform functions and operations that might otherwise be initiated using a conventional user interface on the device. Such functions and operations may include, for example, setting an alarm, making a telephone call, sending a text message or email message, adding a calendar event, and the like. Such functions and operations may be performed as add-on functions in the context of a conversational dialog between a user and the assistant. Such functions and operations can be specified by the user in the context of such a dialog, or they may be automatically performed based on the context of the dialog. One skilled in the art will recognize that the assistant can thereby be used as a control mechanism for initiating and controlling various operations on the electronic device, which may be used as an alternative to conventional mechanisms such as buttons or graphical user interfaces. As described herein, contextual information can be used to inform and improve on such use of the virtual assistant as a control mechanism.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings illustrate several embodiments of the invention and, together with the description, serve to explain the principles of the invention according to the embodiments. One skilled in the art will recognize that the particular embodiments illustrated in the drawings are merely exemplary, and are not intended to limit the scope of the present invention.



FIG. 1 is a block diagram depicting a virtual assistant and some examples of sources of context that can influence its operation according to one embodiment.



FIG. 2 is a flow diagram depicting a method for using context at various stages of processing in a virtual assistant, according to one embodiment.



FIG. 3 is a flow diagram depicting a method for using context in speech elicitation and interpretation, according to one embodiment.



FIG. 4 is a flow diagram depicting a method for using context in natural language processing, according to one embodiment.



FIG. 5 is a flow diagram depicting a method for using context in task flow processing, according to one embodiment.



FIG. 6 is a block diagram depicting an example of sources of context distributed between a client and server, according to one embodiment.



FIGS. 7a through 7d are event diagrams depicting examples of mechanisms for obtaining and coordinating context information according to various embodiments.



FIGS. 8a through 8d depict examples of various representations of context information as can be used in connection with various embodiments of the present invention.



FIG. 9 depicts an example of a configuration table specifying communication and caching policies for various contextual information sources, according to one embodiment.



FIG. 10 is an event diagram depicting an example of accessing the context information sources configured in FIG. 9 during the processing of an interaction sequence, according to one embodiment.



FIGS. 11 through 13 are a series of screen shots depicting an example of the use of application context in a text messaging domain to derive a referent for a pronoun, according to one embodiment.



FIG. 14 is a screen shot illustrating a virtual assistant prompting for name disambiguation, according to one embodiment.



FIG. 15 is a screen shot illustrating a virtual assistant using dialog context to infer the location for a command, according to one embodiment.



FIG. 16 is a screen shot depicting an example of the use of a telephone favorites list as a source of context, according to one embodiment.



FIGS. 17 through 20 are a series of screen shots depicting an example of the use of current application context to interpret and operationalize a command, according to one embodiment.



FIG. 21 is a screen shot depicting an example of the use of current application context to interpret a command that invokes a different application.



FIGS. 22 through 24 are a series of screen shots depicting an example of the use of event context in the form of an incoming text message, according to one embodiment.



FIGS. 25A and 25B are a series of screen shots depicting an example of the use of prior dialog context, according to one embodiment.



FIGS. 26A and 26B are screen shots depicting an example of a user interface for selecting among candidate interpretations, according to one embodiment.



FIG. 27 is a block diagram depicting an example of one embodiment of a virtual assistant system.



FIG. 28 is a block diagram depicting a computing device suitable for implementing at least a portion of a virtual assistant according to at least one embodiment.



FIG. 29 is a block diagram depicting an architecture for implementing at least a portion of a virtual assistant on a standalone computing system, according to at least one embodiment.



FIG. 30 is a block diagram depicting an architecture for implementing at least a portion of a virtual assistant on a distributed computing network, according to at least one embodiment.



FIG. 31 is a block diagram depicting a system architecture illustrating several different types of clients and modes of operation.



FIG. 32 is a block diagram depicting a client and a server, which communicate with each other to implement the present invention according to one embodiment.





DETAILED DESCRIPTION OF THE EMBODIMENTS

According to various embodiments of the present invention, a variety of contextual information is acquired and applied to perform information processing functions in support of the operations of a virtual assistant. For purposes of the description, the term “virtual assistant” is equivalent to the term “intelligent automated assistant”, both referring to any information processing system that performs one or more of the functions of:

    • interpreting human language input, in spoken and/or text form;
    • operationalizing a representation of user intent into a form that can be executed, such as a representation of a task with steps and/or parameters;
    • executing task representations, by invoking programs, methods, services, APIs, or the like; and
    • generating output responses to the user in language and/or graphical form.


An example of such a virtual assistant is described in related U.S. Utility application Ser. No. 12/987,982 for “Intelligent Automated Assistant”, filed Jan. 10, 2011, the entire disclosure of which is incorporated herein by reference.


Various techniques will now be described in detail with reference to example embodiments as illustrated in the accompanying drawings. In the following description, numerous specific details are set forth in order to provide a thorough understanding of one or more aspects and/or features described or reference herein. It will be apparent, however, to one skilled in the art, that one or more aspects and/or features described or reference herein may be practiced without some or all of these specific details. In other instances, well known process steps and/or structures have not been described in detail in order to not obscure some of the aspects and/or features described or reference herein.


One or more different inventions may be described in the present application. Further, for one or more of the invention(s) described herein, numerous embodiments may be described in this patent application, and are presented for illustrative purposes only. The described embodiments are not intended to be limiting in any sense. One or more of the invention(s) may be widely applicable to numerous embodiments, as is readily apparent from the disclosure. These embodiments are described in sufficient detail to enable those skilled in the art to practice one or more of the invention(s), and it is to be understood that other embodiments may be utilized and that structural, logical, software, electrical and other changes may be made without departing from the scope of the one or more of the invention(s). Accordingly, those skilled in the art will recognize that the one or more of the invention(s) may be practiced with various modifications and alterations. Particular features of one or more of the invention(s) may be described with reference to one or more particular embodiments or figures that form a part of the present disclosure, and in which are shown, by way of illustration, specific embodiments of one or more of the invention(s). It should be understood, however, that such features are not limited to usage in the one or more particular embodiments or figures with reference to which they are described. The present disclosure is neither a literal description of all embodiments of one or more of the invention(s) nor a listing of features of one or more of the invention(s) that must be present in all embodiments.


Headings of sections provided in this patent application and the title of this patent application are for convenience only, and are not to be taken as limiting the disclosure in any way.


Devices that are in communication with each other need not be in continuous communication with each other, unless expressly specified otherwise. In addition, devices that are in communication with each other may communicate directly or indirectly through one or more intermediaries.


A description of an embodiment with several components in communication with each other does not imply that all such components are required. To the contrary, a variety of optional components are described to illustrate the wide variety of possible embodiments of one or more of the invention(s).


Further, although process steps, method steps, algorithms or the like may be described in a sequential order, such processes, methods and algorithms may be configured to work in any suitable order. In other words, any sequence or order of steps that may be described in this patent application does not, in and of itself, indicate a requirement that the steps be performed in that order. Further, some steps may be performed simultaneously despite being described or implied as occurring non-simultaneously (e.g., because one step is described after the other step). Moreover, the illustration of a process by its depiction in a drawing does not imply that the illustrated process is exclusive of other variations and modifications thereto, does not imply that the illustrated process or any of its steps are necessary to one or more of the invention(s), and does not imply that the illustrated process is preferred.


When a single device or article is described, it will be readily apparent that more than one device/article (whether or not they cooperate) may be used in place of a single device/article. Similarly, where more than one device or article is described (whether or not they cooperate), it will be readily apparent that a single device/article may be used in place of the more than one device or article.


The functionality and/or the features of a device may be alternatively embodied by one or more other devices that are not explicitly described as having such functionality/features. Thus, other embodiments of one or more of the invention(s) need not include the device itself.


Techniques and mechanisms described or reference herein will sometimes be described in singular form for clarity. However, it should be noted that particular embodiments include multiple iterations of a technique or multiple instantiations of a mechanism unless noted otherwise.


Although described within the context of technology for implementing an intelligent automated assistant, also known as a virtual assistant, it may be understood that the various aspects and techniques described herein may also be deployed and/or applied in other fields of technology involving human and/or computerized interaction with software.


Other aspects relating to virtual assistant technology (e.g., which may be utilized by, provided by, and/or implemented at one or more virtual assistant system embodiments described herein) are disclosed in one or more of the following, the entire disclosures of which are incorporated herein by reference:

    • U.S. application Ser. No. 12/987,982 for “Intelligent Automated Assistant”, filed Jan. 10, 2011;
    • U.S. Provisional Patent Application Ser. No. 61/295,774 for “Intelligent Automated Assistant”, filed Jan. 18, 2010;
    • U.S. patent application Ser. No. 11/518,292 for “Method And Apparatus for Building an Intelligent Automated Assistant”, filed Sep. 8, 2006; and
    • U.S. Provisional Patent Application Ser. No. 61/186,414 for “System and Method for Semantic Auto-Completion”, filed Jun. 12, 2009.


      Hardware Architecture


Generally, the virtual assistant techniques disclosed herein may be implemented on hardware or a combination of software and hardware. For example, they may be implemented in an operating system kernel, in a separate user process, in a library package bound into network applications, on a specially constructed machine, and/or on a network interface card. In a specific embodiment, the techniques disclosed herein may be implemented in software such as an operating system or in an application running on an operating system.


Software/hardware hybrid implementation(s) of at least some of the virtual assistant embodiment(s) disclosed herein may be implemented on a programmable machine selectively activated or reconfigured by a computer program stored in memory. Such network devices may have multiple network interfaces which may be configured or designed to utilize different types of network communication protocols. A general architecture for some of these machines may appear from the descriptions disclosed herein. According to specific embodiments, at least some of the features and/or functionalities of the various virtual assistant embodiments disclosed herein may be implemented on one or more general-purpose network host machines such as an end-user computer system, computer, network server or server system, mobile computing device (e.g., personal digital assistant, mobile phone, smartphone, laptop, tablet computer, or the like), consumer electronic device, music player, or any other suitable electronic device, router, switch, or the like, or any combination thereof. In at least some embodiments, at least some of the features and/or functionalities of the various virtual assistant embodiments disclosed herein may be implemented in one or more virtualized computing environments (e.g., network computing clouds, or the like).


Referring now to FIG. 28, there is shown a block diagram depicting a computing device 60 suitable for implementing at least a portion of the virtual assistant features and/or functionalities disclosed herein. Computing device 60 may be, for example, an end-user computer system, network server or server system, mobile computing device (e.g., personal digital assistant, mobile phone, smartphone, laptop, tablet computer, or the like), consumer electronic device, music player, or any other suitable electronic device, or any combination or portion thereof. Computing device 60 may be adapted to communicate with other computing devices, such as clients and/or servers, over a communications network such as the Internet, using known protocols for such communication, whether wireless or wired.


In one embodiment, computing device 60 includes central processing unit (CPU) 62, interfaces 68, and a bus 67 (such as a peripheral component interconnect (PCI) bus). When acting under the control of appropriate software or firmware, CPU 62 may be responsible for implementing specific functions associated with the functions of a specifically configured computing device or machine. For example, in at least one embodiment, a user's personal digital assistant (PDA) or smartphone may be configured or designed to function as a virtual assistant system utilizing CPU 62, memory 61, 65, and interface(s) 68. In at least one embodiment, the CPU 62 may be caused to perform one or more of the different types of virtual assistant functions and/or operations under the control of software modules/components, which for example, may include an operating system and any appropriate applications software, drivers, and the like.


CPU 62 may include one or more processor(s) 63 such as, for example, a processor from the Motorola or Intel family of microprocessors or the MIPS family of microprocessors. In some embodiments, processor(s) 63 may include specially designed hardware (e.g., application-specific integrated circuits (ASICs), electrically erasable programmable read-only memories (EEPROMs), field-programmable gate arrays (FPGAs), and the like) for controlling the operations of computing device 60. In a specific embodiment, a memory 61 (such as non-volatile random access memory (RAM) and/or read-only memory (ROM)) also forms part of CPU 62. However, there are many different ways in which memory may be coupled to the system. Memory block 61 may be used for a variety of purposes such as, for example, caching and/or storing data, programming instructions, and the like.


As used herein, the term “processor” is not limited merely to those integrated circuits referred to in the art as a processor, but broadly refers to a microcontroller, a microcomputer, a programmable logic controller, an application-specific integrated circuit, and any other programmable circuit.


In one embodiment, interfaces 68 are provided as interface cards (sometimes referred to as “line cards”). Generally, they control the sending and receiving of data packets over a computing network and sometimes support other peripherals used with computing device 60. Among the interfaces that may be provided are Ethernet interfaces, frame relay interfaces, cable interfaces, DSL interfaces, token ring interfaces, and the like. In addition, various types of interfaces may be provided such as, for example, universal serial bus (USB), Serial, Ethernet, Firewire, PCI, parallel, radio frequency (RF), Bluetooth™, near-field communications (e.g., using near-field magnetics), 802.11 (WiFi), frame relay, TCP/IP, ISDN, fast Ethernet interfaces, Gigabit Ethernet interfaces, asynchronous transfer mode (ATM) interfaces, high-speed serial interface (HSSI) interfaces, Point of Sale (POS) interfaces, fiber data distributed interfaces (FDDIs), and the like. Generally, such interfaces 68 may include ports appropriate for communication with the appropriate media. In some cases, they may also include an independent processor and, in some instances, volatile and/or non-volatile memory (e.g., RAM).


Although the system shown in FIG. 28 illustrates one specific architecture for a computing device 60 for implementing the techniques of the invention described herein, it is by no means the only device architecture on which at least a portion of the features and techniques described herein may be implemented. For example, architectures having one or any number of processors 63 can be used, and such processors 63 can be present in a single device or distributed among any number of devices. In one embodiment, a single processor 63 handles communications as well as routing computations. In various embodiments, different types of virtual assistant features and/or functionalities may be implemented in a virtual assistant system which includes a client device (such as a personal digital assistant or smartphone running client software) and server system(s) (such as a server system described in more detail below).


Regardless of network device configuration, the system of the present invention may employ one or more memories or memory modules (such as, for example, memory block 65) configured to store data, program instructions for the general-purpose network operations and/or other information relating to the functionality of the virtual assistant techniques described herein. The program instructions may control the operation of an operating system and/or one or more applications, for example. The memory or memories may also be configured to store data structures, keyword taxonomy information, advertisement information, user click and impression information, and/or other specific non-program information described herein.


Because such information and program instructions may be employed to implement the systems/methods described herein, at least some network device embodiments may include nontransitory machine-readable storage media, which, for example, may be configured or designed to store program instructions, state information, and the like for performing various operations described herein. Examples of such nontransitory machine-readable storage media include, but are not limited to, magnetic media such as hard disks, floppy disks, magnetic tape; optical media such as CD-ROM disks; magneto-optical media such as floptical disks, and hardware devices that are specially configured to store and perform program instructions, such as read-only memory devices (ROM), flash memory, memristor memory, random access memory (RAM), and the like. Examples of program instructions include both machine code, such as produced by a compiler, and files containing higher level code that may be executed by the computer using an interpreter.


In one embodiment, the system of the present invention is implemented on a standalone computing system. Referring now to FIG. 29, there is shown a block diagram depicting an architecture for implementing at least a portion of a virtual assistant on a standalone computing system, according to at least one embodiment. Computing device 60 includes processor(s) 63 which run software for implementing virtual assistant 1002. Input device 1206 can be of any type suitable for receiving user input, including for example a keyboard, touchscreen, microphone (for example, for voice input), mouse, touchpad, trackball, five-way switch, joystick, and/or any combination thereof. Output device 1207 can be a screen, speaker, printer, and/or any combination thereof. Memory 1210 can be random-access memory having a structure and architecture as are known in the art, for use by processor(s) 63 in the course of running software. Storage device 1208 can be any magnetic, optical, and/or electrical storage device for storage of data in digital form; examples include flash memory, magnetic hard drive, CD-ROM, and/or the like.


In another embodiment, the system of the present invention is implemented on a distributed computing network, such as one having any number of clients and/or servers. Referring now to FIG. 30, there is shown a block diagram depicting an architecture for implementing at least a portion of a virtual assistant on a distributed computing network, according to at least one embodiment.


In the arrangement shown in FIG. 30, any number of clients 1304 are provided; each client 1304 may run software for implementing client-side portions of the present invention. In addition, any number of servers 1340 can be provided for handling requests received from clients 1304. Clients 1304 and servers 1340 can communicate with one another via electronic network 1361, such as the Internet. Network 1361 may be implemented using any known network protocols, including for example wired and/or wireless protocols.


In addition, in one embodiment, servers 1340 can call external services 1360 when needed to obtain additional information or refer to store data concerning previous interactions with particular users. Communications with external services 1360 can take place, for example, via network 1361. In various embodiments, external services 1360 include web-enabled services and/or functionality related to or installed on the hardware device itself. For example, in an embodiment where assistant 1002 is implemented on a smartphone or other electronic device, assistant 1002 can obtain information stored in a calendar application (“app”), contacts, and/or other sources.


In various embodiments, assistant 1002 can control many features and operations of an electronic device on which it is installed. For example, assistant 1002 can call external services 1360 that interface with functionality and applications on a device via APIs or by other means, to perform functions and operations that might otherwise be initiated using a conventional user interface on the device. Such functions and operations may include, for example, setting an alarm, making a telephone call, sending a text message or email message, adding a calendar event, and the like. Such functions and operations may be performed as add-on functions in the context of a conversational dialog between a user and assistant 1002. Such functions and operations can be specified by the user in the context of such a dialog, or they may be automatically performed based on the context of the dialog. One skilled in the art will recognize that assistant 1002 can thereby be used as a control mechanism for initiating and controlling various operations on the electronic device, which may be used as an alternative to conventional mechanisms such as buttons or graphical user interfaces.


For example, the user may provide input to assistant 1002 such as “I need to wake tomorrow at 8 am”. Once assistant 1002 has determined the user's intent, using the techniques described herein, assistant 1002 can call external services 1340 to interface with an alarm clock function or application on the device. Assistant 1002 sets the alarm on behalf of the user. In this manner, the user can use assistant 1002 as a replacement for conventional mechanisms for setting the alarm or performing other functions on the device. If the user's requests are ambiguous or need further clarification, assistant 1002 can use the various techniques described herein, including active elicitation, paraphrasing, suggestions, and the like, and including obtaining context information, so that the correct services 1340 are called and the intended action taken. In one embodiment, assistant 1002 may prompt the user for confirmation and/or request additional context information from any suitable source before calling a service 1340 to perform a function. In one embodiment, a user can selectively disable assistant's 1002 ability to call particular services 1340, or can disable all such service-calling if desired.


The system of the present invention can be implemented with any of a number of different types of clients 1304 and modes of operation. Referring now to FIG. 31, there is shown a block diagram depicting a system architecture illustrating several different types of clients 1304 and modes of operation. One skilled in the art will recognize that the various types of clients 1304 and modes of operation shown in FIG. 31 are merely exemplary, and that the system of the present invention can be implemented using clients 1304 and/or modes of operation other than those depicted. Additionally, the system can include any or all of such clients 1304 and/or modes of operation, alone or in any combination. Depicted examples include:

    • Computer devices with input/output devices and/or sensors 1402. A client component may be deployed on any such computer device 1402. At least one embodiment may be implemented using a web browser 1304A or other software application for enabling communication with servers 1340 via network 1361. Input and output channels may of any type, including for example visual and/or auditory channels. For example, in one embodiment, the system of the invention can be implemented using voice-based communication methods, allowing for an embodiment of the assistant for the blind whose equivalent of a web browser is driven by speech and uses speech for output.
    • Mobile Devices with I/O and sensors 1406, for which the client may be implemented as an application on the mobile device 1304B. This includes, but is not limited to, mobile phones, smartphones, personal digital assistants, tablet devices, networked game consoles, and the like.
    • Consumer Appliances with I/O and sensors 1410, for which the client may be implemented as an embedded application on the appliance 1304C.
    • Automobiles and other vehicles with dashboard interfaces and sensors 1414, for which the client may be implemented as an embedded system application 1304D. This includes, but is not limited to, car navigation systems, voice control systems, in-car entertainment systems, and the like.
    • Networked computing devices such as routers 1418 or any other device that resides on or interfaces with a network, for which the client may be implemented as a device-resident application 1304E.
    • Email clients 1424, for which an embodiment of the assistant is connected via an Email Modality Server 1426. Email Modality server 1426 acts as a communication bridge, for example taking input from the user as email messages sent to the assistant and sending output from the assistant to the user as replies.
    • Instant messaging clients 1428, for which an embodiment of the assistant is connected via a Messaging Modality Server 1430. Messaging Modality server 1430 acts as a communication bridge, taking input from the user as messages sent to the assistant and sending output from the assistant to the user as messages in reply.
    • Voice telephones 1432, for which an embodiment of the assistant is connected via a Voice over Internet Protocol (VoIP) Modality Server 1430. VoIP Modality server 1430 acts as a communication bridge, taking input from the user as voice spoken to the assistant and sending output from the assistant to the user, for example as synthesized speech, in reply.


For messaging platforms including but not limited to email, instant messaging, discussion forums, group chat sessions, live help or customer support sessions and the like, assistant 1002 may act as a participant in the conversations. Assistant 1002 may monitor the conversation and reply to individuals or the group using one or more the techniques and methods described herein for one-to-one interactions.


In various embodiments, functionality for implementing the techniques of the present invention can be distributed among any number of client and/or server components. For example, various software modules can be implemented for performing various functions in connection with the present invention, and such modules can be variously implemented to run on server and/or client components. Further details for such an arrangement are provided in related U.S. application Ser. No. 12/987,982 for “Intelligent Automated Assistant”, filed Jan. 10, 2011, the entire disclosure of which is incorporated herein by reference.


In the example of FIG. 32, input elicitation functionality and output processing functionality are distributed among client 1304 and server 1340, with client part of input elicitation 2794a and client part of output processing 2792a located at client 1304, and server part of input elicitation 2794b and server part of output processing 2792b located at server 1340. The following components are located at server 1340:

    • complete vocabulary 2758b;
    • complete library of language pattern recognizers 2760b;
    • master version of short term personal memory 2752b;
    • master version of long term personal memory 2754b.


In one embodiment, client 1304 maintains subsets and/or portions of these components locally, to improve responsiveness and reduce dependence on network communications. Such subsets and/or portions can be maintained and updated according to well known cache management techniques. Such subsets and/or portions include, for example:

    • subset of vocabulary 2758a;
    • subset of library of language pattern recognizers 2760a;
    • cache of short term personal memory 2752a;
    • cache of long term personal memory 2754a.


Additional components may be implemented as part of server 1340, including for example:

    • language interpreter 2770;
    • dialog flow processor 2780;
    • output processor 2790;
    • domain entity databases 2772;
    • task flow models 2786;
    • services orchestration 2782;
    • service capability models 2788.


Each of these components will be described in more detail below. Server 1340 obtains additional information by interfacing with external services 1360 when needed.


Conceptual Architecture


Referring now to FIG. 27, there is shown a simplified block diagram of a specific example embodiment of a virtual assistant 1002. As described in greater detail in related U.S. utility applications referenced above, different embodiments of virtual assistant 1002 may be configured, designed, and/or operable to provide various different types of operations, functionalities, and/or features generally relating to virtual assistant technology. Further, as described in greater detail herein, many of the various operations, functionalities, and/or features of virtual assistant 1002 disclosed herein may enable or provide different types of advantages and/or benefits to different entities interacting with virtual assistant 1002. The embodiment shown in FIG. 27 may be implemented using any of the hardware architectures described above, or using a different type of hardware architecture.


For example, according to different embodiments, virtual assistant 1002 may be configured, designed, and/or operable to provide various different types of operations, functionalities, and/or features, such as, for example, one or more of the following (or combinations thereof):

    • automate the application of data and services available over the Internet to discover, find, choose among, purchase, reserve, or order products and services. In addition to automating the process of using these data and services, virtual assistant 1002 may also enable the combined use of several sources of data and services at once. For example, it may combine information about products from several review sites, check prices and availability from multiple distributors, and check their locations and time constraints, and help a user find a personalized solution to their problem.
    • automate the use of data and services available over the Internet to discover, investigate, select among, reserve, and otherwise learn about things to do (including but not limited to movies, events, performances, exhibits, shows and attractions); places to go (including but not limited to travel destinations, hotels and other places to stay, landmarks and other sites of interest, and the like); places to eat or drink (such as restaurants and bars), times and places to meet others, and any other source of entertainment or social interaction that may be found on the Internet.
    • enable the operation of applications and services via natural language dialog that are otherwise provided by dedicated applications with graphical user interfaces including search (including location-based search); navigation (maps and directions); database lookup (such as finding businesses or people by name or other properties); getting weather conditions and forecasts, checking the price of market items or status of financial transactions; monitoring traffic or the status of flights; accessing and updating calendars and schedules; managing reminders, alerts, tasks and projects; communicating over email or other messaging platforms; and operating devices locally or remotely (e.g., dialing telephones, controlling light and temperature, controlling home security devices, playing music or video, and the like). In one embodiment, virtual assistant 1002 can be used to initiate, operate, and control many functions and apps available on the device.
    • offer personal recommendations for activities, products, services, source of entertainment, time management, or any other kind of recommendation service that benefits from an interactive dialog in natural language and automated access to data and services.


According to different embodiments, at least a portion of the various types of functions, operations, actions, and/or other features provided by virtual assistant 1002 may be implemented at one or more client systems(s), at one or more server system(s), and/or combinations thereof.


According to different embodiments, at least a portion of the various types of functions, operations, actions, and/or other features provided by virtual assistant 1002 may use contextual information in interpreting and operationalizing user input, as described in more detail herein.


For example, in at least one embodiment, virtual assistant 1002 may be operable to utilize and/or generate various different types of data and/or other types of information when performing specific tasks and/or operations. This may include, for example, input data/information and/or output data/information. For example, in at least one embodiment, virtual assistant 1002 may be operable to access, process, and/or otherwise utilize information from one or more different types of sources, such as, for example, one or more local and/or remote memories, devices and/or systems. Additionally, in at least one embodiment, virtual assistant 1002 may be operable to generate one or more different types of output data/information, which, for example, may be stored in memory of one or more local and/or remote devices and/or systems.


Examples of different types of input data/information which may be accessed and/or utilized by virtual assistant 1002 may include, but are not limited to, one or more of the following (or combinations thereof):

    • Voice input: from mobile devices such as mobile telephones and tablets, computers with microphones, Bluetooth headsets, automobile voice control systems, over the telephone system, recordings on answering services, audio voicemail on integrated messaging services, consumer applications with voice input such as clock radios, telephone station, home entertainment control systems, and game consoles.
    • Text input from keyboards on computers or mobile devices, keypads on remote controls or other consumer electronics devices, email messages sent to the assistant, instant messages or similar short messages sent to the assistant, text received from players in multiuser game environments, and text streamed in message feeds.
    • Location information coming from sensors or location-based systems. Examples include Global Positioning System (GPS) and Assisted GPS (A-GPS) on mobile phones. In one embodiment, location information is combined with explicit user input. In one embodiment, the system of the present invention is able to detect when a user is at home, based on known address information and current location determination. In this manner, certain inferences may be made about the type of information the user might be interested in when at home as opposed to outside the home, as well as the type of services and actions that should be invoked on behalf of the user depending on whether or not he or she is at home.
    • Time information from clocks on client devices. This may include, for example, time from telephones or other client devices indicating the local time and time zone. In addition, time may be used in the context of user requests, such as for instance, to interpret phrases such as “in an hour” and “tonight”.
    • Compass, accelerometer, gyroscope, and/or travel velocity data, as well as other sensor data from mobile or handheld devices or embedded systems such as automobile control systems. This may also include device positioning data from remote controls to appliances and game consoles.
    • Clicking and menu selection and other events from a graphical user interface (GUI) on any device having a GUI. Further examples include touches to a touch screen.
    • Events from sensors and other data-driven triggers, such as alarm clocks, calendar alerts, price change triggers, location triggers, push notification onto a device from servers, and the like.


The input to the embodiments described herein also includes the context of the user interaction history, including dialog and request history.


As described in the related U.S. Utility Applications cross-referenced above, many different types of output data/information may be generated by virtual assistant 1002. These may include, but are not limited to, one or more of the following (or combinations thereof):

    • Text output sent directly to an output device and/or to the user interface of a device;
    • Text and graphics sent to a user over email;
    • Text and graphics send to a user over a messaging service;
    • Speech output, which may include one or more of the following (or combinations thereof):
      • Synthesized speech;
      • Sampled speech;
      • Recorded messages;
    • Graphical layout of information with photos, rich text, videos, sounds, and hyperlinks (for instance, the content rendered in a web browser);
    • Actuator output to control physical actions on a device, such as causing it to turn on or off, make a sound, change color, vibrate, control a light, or the like;
    • Invoking other applications on a device, such as calling a mapping application, voice dialing a telephone, sending an email or instant message, playing media, making entries in calendars, task managers, and note applications, and other applications;
    • Actuator output to control physical actions to devices attached or controlled by a device, such as operating a remote camera, controlling a wheelchair, playing music on remote speakers, playing videos on remote displays, and the like.


It may be appreciated that the virtual assistant 1002 of FIG. 27 is but one example from a wide range of virtual assistant system embodiments which may be implemented. Other embodiments of the virtual assistant system (not shown) may include additional, fewer and/or different components/features than those illustrated, for example, in the example virtual assistant system embodiment of FIG. 27.


Virtual assistant 1002 may include a plurality of different types of components, devices, modules, processes, systems, and the like, which, for example, may be implemented and/or instantiated via the use of hardware and/or combinations of hardware and software. For example, as illustrated in the example embodiment of FIG. 27, assistant 1002 may include one or more of the following types of systems, components, devices, processes, and the like (or combinations thereof):

    • One or more active ontologies 1050;
    • Active input elicitation component(s) 2794 (may include client part 2794a and server part 2794b);
    • Short term personal memory component(s) 2752 (may include master version 2752b and cache 2752a);
    • Long-term personal memory component(s) 2754 (may include master version 2754b and cache 2754a; may include, for example, personal databases 1058, application preferences and usage history 1072, and the like);
    • Domain models component(s) 2756;
    • Vocabulary component(s) 2758 (may include complete vocabulary 2758b and subset 2758a);
    • Language pattern recognizer(s) component(s) 2760 (may include full library 2760b and subset 2760a);
    • Language interpreter component(s) 2770;
    • Domain entity database(s) 2772;
    • Dialog flow processor component(s) 2780;
    • Services orchestration component(s) 2782;
    • Services component(s) 2784;
    • Task flow models component(s) 2786;
    • Dialog flow models component(s) 2787;
    • Service models component(s) 2788;
    • Output processor component(s) 2790.


In certain client/server-based embodiments, some or all of these components may be distributed between client 1304 and server 1340.


In one embodiment, virtual assistant 1002 receives user input 2704 via any suitable input modality, including for example touchscreen input, keyboard input, spoken input, and/or any combination thereof. In one embodiment, assistant 1002 also receives context information 1000, which may include event context 2706 and/or any of several other types of context as described in more detail herein.


Upon processing user input 2704 and context information 1000 according to the techniques described herein, virtual assistant 1002 generates output 2708 for presentation to the user. Output 2708 can be generated according to any suitable output modality, which may be informed by context 1000 as well as other factors, if appropriate. Examples of output modalities include visual output as presented on a screen, auditory output (which may include spoken output and/or beeps and other sounds), haptic output (such as vibration), and/or any combination thereof.


Additional details concerning the operation of the various components depicted in FIG. 27 are provided in related U.S. application Ser. No. 12/987,982 for “Intelligent Automated Assistant”, filed Jan. 10, 2011, the entire disclosure of which is incorporated herein by reference.


Context


As described above, in one embodiment virtual assistant 1002 acquires and applies a variety of contextual information to perform information processing functions. The following description sets forth:

    • A range of sources of context information for use by virtual assistant 1002;
    • Techniques for representing, organizing, and searching context information;
    • Methods by which context information can support the operation of several functions of virtual assistants; and
    • Methods for efficiently acquiring, accessing, and applying context information in a distributed system.


One skilled in the art will recognize that the following description of sources, techniques, and methods for using context information is merely exemplary, and that other sources, techniques, and methods can be used without departing from the essential characteristics of the present invention.


Sources of Context


Throughout phases of information processing performed by virtual assistant 1002, several different kinds of context can be used to reduce possible interpretations of user input. Examples include application context, personal data context, and previous dialog history. One skilled in the art will recognize that other sources of context may also be available.


Referring now to FIG. 1, there is shown a block diagram depicting virtual assistant 1002 and some examples of sources of context that can influence its operation according to one embodiment. Virtual assistant 1002 takes user input 2704, such as spoken or typed language, processes the input, and generates output 2708 to the user and/or performs 2710 actions on behalf of the user. It may be appreciated that virtual assistant 1002 as depicted in FIG. 1 is merely one example from a wide range of virtual assistant system embodiments which may be implemented. Other embodiments of virtual assistant systems (not shown) may include additional, fewer and/or different components/features than those illustrated, for example, in the example virtual assistant 1002 depicted in FIG. 1.


As described in more detail herein, virtual assistant 1002 can draw on any of a number of different sources of knowledge and data, such as dictionaries, domain models, and/or task models. From the perspective of the present invention, such sources, referred to as background sources, are internal to assistant 1002. In addition to user input 2704 and background sources, virtual assistant 1002 can also draw on information from several sources of context, including for example device sensor data 1056, application preferences and usage history 1072, dialog history and assistant memory 1052, personal databases 1058, personal acoustic context data 1080, current application context 1060, and event context 2706. These will be described in detail herein.


Application Context 1060


Application context 1060 refers to the application or similar software state in which the user is doing something. For example, the user could be using a text messaging application to chat with a particular person. Virtual assistant 1002 need not be specific to or part of the user interface of the text messaging application. Rather, virtual assistant 1002 can receive context from any number of applications, with each application contributing its context to inform virtual assistant 1002.


If the user is currently using an application when virtual assistant 1002 is invoked, the state of that application can provide useful context information. For example, if virtual assistant 1002 is invoked from within an email application, context information may include sender information, recipient information, date and/or time sent, subject, data extracted from email content, mailbox or folder name, and the like.


Referring now to FIGS. 11 through 13, there is shown a set of screen shots depicting examples of the use of application context in a text messaging domain to derive a referent for a pronoun, according to one embodiment. FIG. 11 depicts screen 1150 that may be displayed while the user is in a text messaging application. FIG. 12 depicts screen 1250 after virtual assistant 1002 has been activated in the context of the text messaging application. In this example, virtual assistant 1002 presents prompt 1251 to the user. In one embodiment, the user can provide spoken input by tapping on microphone icon 1252. In another embodiment, assistant 1002 is able to accept spoken input at any time, and does not require the user to tap on microphone icon 1252 before providing input; thus, icon 1252 can be a reminder that assistant 1002 is waiting for spoken input.


In FIG. 13, the user has engaged in a dialog with virtual assistant 1002, as shown on screen 1253. The user's speech input “call him” has been echoed back, and virtual assistant 1002 is responding that it will call a particular person at a particular phone number. To interpret the user's ambiguous input is, virtual assistant 1002 uses a combination of multiple sources of context to derive a referent for a pronoun, as described in more detail herein.


Referring now to FIGS. 17 to 20, there is shown another example of the use of current application context to interpret and operationalize a command, according to one embodiment.


In FIG. 17, the user is presented with his or her email inbox 1750, and selects a particular email message 1751 to view. FIG. 18 depicts email message 1751 after it has been selected for viewing; in this example, email message 1751 includes an image.


In FIG. 19, the user has activated virtual assistant 1002 while viewing email message 1751 from within the email application. In one embodiment, the display of email message 1751 moves upward on the screen to make room for prompt 150 from virtual assistant 1002. This display reinforces the notion that virtual assistant 1002 is offering assistance in the context of the currently viewed email message 1751. Accordingly, the user's input to virtual assistant 1002 will be interpreted in the current context wherein email message 1751 is being viewed.


In FIG. 20, the user has provided a command 2050: “Reply let's get this to marketing right away”. Context information, including information about email message 1751 and the email application in which it displayed, is used to interpret command 2050. This context can be used to determine the meaning of the words “reply” and “this” in command 2050, and to resolve how to set up an email composition transaction to a particular recipient on a particular message thread. In this case, virtual assistant 1002 is able to access context information to determine that “marketing” refers to a recipient named John Applecore and is able to determine an email address to use for the recipient. Accordingly, virtual assistant 1002 composes email 2052 for the user to approve and send. In this manner, virtual assistant 1002 is able to operationalize a task (composing an email message) based on user input together with context information describing the state of the current application.


Application context can also help identify the meaning of the user's intent across applications. Referring now to FIG. 21, there is shown an example in which the user has invoked virtual assistant 1002 in the context of viewing an email message (such as email message 1751), but the user's command 2150 says “Send him a text . . . ”. Command 2150 is interpreted by virtual assistant 1002 as indicating that a text message, rather than an email, should be sent. However, the use of the word “him” indicates that the same recipient (John Appleseed) is intended. Virtual assistant 1002 thus recognizes that the communication should go to this recipient but on a different channel (a text message to the person's phone number, obtained from contact information stored on the device). Accordingly, virtual assistant 1002 composes text message 2152 for the user to approve and send.


Examples of context information that can be obtained from application(s) include, without limitation:

    • identity of the application;
    • current object or objects being operated on in the application, such as current email message, current song or playlist or channel being played, current book or movie or photo, current calendar day/week/month, current reminder list, current phone call, current text messaging conversation, current map location, current web page or search query, current city or other location for location-sensitive applications, current social network profile, or any other application-specific notion of current objects;
    • names, places, dates, and other identifiable entities or values that can be extracted from the current objects.


      Personal Databases 1058


Another source of context data is the user's personal database(s) 1058 on a device such as a phone, such as for example an address book containing names and phone numbers. Referring now to FIG. 14, there is shown an example of a screen shot 1451 wherein virtual assistant 1002 is prompting for name disambiguation, according to one embodiment. Here, the user has said “Call Herb”; virtual assistant 1002 prompts for the user to choose among the matching contacts in the user's address book. Thus, the address book is used as a source of personal data context.


In one embodiment, personal information of the user is obtained from personal databases 1058 for use as context for interpreting and/or operationalizing the user's intent or other functions of virtual assistant 1002. For example, data in a user's contact database can be used to reduce ambiguity in interpreting a user's command when the user referred to someone by first name only. Examples of context information that can be obtained from personal databases 1058 include, without limitation:

    • the user's contact database (address book)—including information about names, phone numbers, physical addresses, network addresses, account identifiers, important dates—about people, companies, organizations, places, web sites, and other entities that the user might refer to;
    • the user's own names, preferred pronunciations, addresses, phone numbers, and the like;
    • the user's named relationships, such as mother, father, sister, boss, and the like.
    • the user's calendar data, including calendar events, names of special days, or any other named entries that the user might refer to;
    • the user's reminders or task list, including lists of things to do, remember, or get that the user might refer to;
    • names of songs, genres, playlists, and other data associated with the user's music library that the user might refer to;
    • people, places, categories, tags, labels, or other symbolic names on photos or videos or other media in the user's media library;
    • titles, authors, genres, or other symbolic names in books or other literature in the user's personal library.


      Dialog History 1052


Another source of context data is the user's dialog history 1052 with virtual assistant 1002. Such history may include, for example, references to domains, people, places, and so forth. Referring now to FIG. 15, there is shown an example in which virtual assistant 1002 uses dialog context to infer the location for a command, according to one embodiment. In screen 1551, the user first asks “What's the time in New York”; virtual assistant 1002 responds 1552 by providing the current time in New York City. The user then asks “What's the weather”. Virtual assistant 1002 uses the previous dialog history to infer that the location intended for the weather query is the last location mentioned in the dialog history. Therefore its response 1553 provides weather information for New York City.


As another example, if the user says “find camera shops near here” and then, after examining the results, says “how about in San Francisco?”, an assistant can use the dialog context to determine that “how about” means “do the same task (find camera stores)” and “in San Francisco” means “changing the locus of the search from here to San Francisco.” Virtual assistant 1002 can also use, as context, previous details of a dialog, such as previous output provided to the user. For example, if virtual assistant 1002 used a clever response intended as humor, such as “Sure thing, you're the boss”, it can remember that it has already said this and can avoid repeating the phrase within a dialog session.


Examples of context information from dialog history and virtual assistant memory include, without limitation:

    • people mentioned in a dialog;
    • places and locations mentioned in a dialog;
    • current time frame in focus;
    • current application domain in focus, such as email or calendar;
    • current task in focus, such as reading an email or creating a calendar entry;
    • current domain objects in focus, such as an email message that was just read or calendar entry that was just created;
    • current state of a dialog or transactional flow, such as whether a question is being asked and what possible answers are expected;
    • history of user requests, such as “good Italian restaurants”;
    • history of results of user requests, such as sets of restaurants returned;
    • history of phrases used by the assistant in dialog;
    • facts that were told to the assistant by the user, such as “my mother is Rebecca Richards” and “I liked that restaurant”.


Referring now to FIGS. 25A and 25B, there is shown a series of screen shots depicting an example of the use of prior dialog context, according to one embodiment. In FIG. 25A, the user has entered a request 2550 for any new e-mail from John. Virtual assistant 1002 responds by displaying an email message 2551 from John. In FIG. 25B, the user enters the command 2552 “Reply let's get this to marketing right away”. Virtual assistant 1002 interprets command 2552 using prior dialog context; specifically, the command is interpreted to refer to the email message 2551 displayed in FIG. 25.


Device Sensor Data 1056


In one embodiment, a physical device running virtual assistant 1002 may have one or more sensors. Such sensors can provide sources of contextual information. Example of such information include, without limitation:

    • the user's current location;
    • the local time at the user's current location;
    • the position, orientation, and motion of the device;
    • the current light level, temperature and other environmental measures;
    • the properties of the microphones and cameras in use;
    • the current networks being used, and signatures of connected networks, including Ethernet, Wi-Fi and Bluetooth. Signatures include MAC addresses of network access points, IP addresses assigned, device identifiers such as Bluetooth names, frequency channels and other properties of wireless networks.


Sensors can be of any type including for example: an accelerometer, compass, GPS unit, altitude detector, light sensor, thermometer, barometer, clock, network interface, battery test circuitry, and the like.


Application Preferences and Usage History 1072


In one embodiment, information describing the user's preferences and settings for various applications, as well as his or her usage history 1072, are used as context for interpreting and/or operationalizing the user's intent or other functions of virtual assistant 1002. Examples of such preferences and history 1072 include, without limitation:

    • shortcuts, favorites, bookmarks, friends lists, or any other collections of user data about people, companies, addresses, phone numbers, places, web sites, email messages, or any other references;
    • recent calls made on the device;
    • recent text message conversations, including the parties to the conversations;
    • recent requests for maps or directions;
    • recent web searches and URLs;
    • stocks listed in a stock application;
    • recent songs or video or other media played;
    • the names of alarms set on alerting applications;
    • the names of applications or other digital objects on the device;
    • the user's preferred language or the language in use at the user's location.


Referring now to FIG. 16, there is shown an example of the use of a telephone favorites list as a source of context, according to one embodiment. In screen 1650, a list of favorite contacts 1651 is shown. If the user provides input to “call John”, this list of favorite contacts 1651 can be used to determine that “John” refers to John Appleseed's mobile number, since that number appears in the list.


Event Context 2706


In one embodiment, virtual assistant 1002 is able to use context associated with asynchronous events that happen independently of the user's interaction with virtual assistant 1002. Referring now to FIGS. 22 to 24, there is shown an example illustrating activation of virtual assistant 1002 after an event occurs that can provide event context, or alert context, according to one embodiment. In this case, the event is an incoming text message 2250, as shown in FIG. 22. In FIG. 23, virtual assistant 1002 has been invoked, and text message 2250 is shown along with prompt 1251. In FIG. 24, the user has input the command “call him” 2450. Virtual assistant 1002 uses the event context to disambiguate the command by interpreting “him” to mean the person who sent the incoming text message 2250. Virtual assistant 1002 further uses the event context to determine which telephone number to use for the outbound call. Confirmation message 2451 is displayed to indicate that the call is being placed.


Examples of alert context information include, without limitation:

    • incoming text messages or pages;
    • incoming email messages;
    • incoming phone calls;
    • reminder notifications or task alerts;
    • calendar alerts;
    • alarm clock, timers, or other time-based alerts;
    • notifications of scores or other events from games;
    • notifications of financial events such as stock price alerts;
    • news flashes or other broadcast notifications;
    • push notifications from any application.


      Personal Acoustic Context Data 1080


When interpreting speech input, virtual assistant 1002 can also take into account the acoustic environments in which the speech is entered. For example, the noise profiles of a quiet office are different from those of automobiles or public places. If a speech recognition system can identify and store acoustic profile data, these data can also be provided as contextual information. When combined with other contextual information such as the properties of the microphones in use, the current location, and the current dialog state, acoustic context can aid in recognition and interpretation of input.


Representing and Accessing Context


As described above, virtual assistant 1002 can use context information from any of a number of different sources. Any of a number of different mechanisms can be used for representing context so that it can be made available to virtual assistant 1002. Referring now to FIGS. 8a through 8d, there are shown several examples of representations of context information as can be used in connection with various embodiments of the present invention.


Representing People, Places, Times, Domains, Tasks, and Objects



FIG. 8a depicts examples 801-809 of context variables that represent simple properties such as geo-coordinates of the user's current location. In one embodiment, current values can be maintained for a core set of context variables. For example, there can be a current user, a current location in focus, a current time frame in focus, a current application domain in focus, a current task in focus, and a current domain object in focus. A data structure such as shown in FIG. 8a can be used for such a representation.



FIG. 8b depicts example 850 of a more complex representation that may be used for storing context information for a contact. Also shown is an example 851 of a representation including data for a contact. In one embodiment, a contact (or person) can be represented as an object with properties for name, gender, address, phone number, and other properties that might be kept in a contacts database. Similar representations can be used for places, times, application domains, tasks, domain objects, and the like.


In one embodiment, sets of current values of a given type are represented. Such sets can refer to current people, current places, current times, and the like.


In one embodiment, context values are arranged in a history, so that at iteration N there is a frame of current context values, and also a frame of context values that were current at iteration N−1, going back to some limit on the length of history desired. FIG. 8c depicts an example of an array 811 including a history of context values. Specifically, each column of FIG. 8c represents a context variable, with rows corresponding to different times.


In one embodiment, sets of typed context variables are arranged in histories as shown in FIG. 8d. In the example, a set 861 of context variables referring to persons is shown, along with another set 871 of context variables referring to places. Thus, relevant context data for a particular time in history can be retrieved and applied.


One skilled in the art will recognize that the particular representations shown in FIGS. 8a through 8d are merely exemplary, and that many other mechanisms and/or data formats for representing context can be used. Examples include:

    • In one embodiment, the current user of the system can be represented in some special manner, so that virtual assistant 1002 knows how to address the user and refer to the user's home, work, mobile phone, and the like.
    • In one embodiment, relationships among people can be represented, allowing virtual assistant 1002 to understand references such as “my mother” or “my boss's house”.
    • Places can be represented as objects with properties such as names, street addresses, geo-coordinates, and the like.
    • Times can be represented as objects with properties including universal time, time zone offset, resolution (such as year, month, day, hour, minute, or second). Time objects can also represent symbolic times such as “today”, “this week”, “this [upcoming] weekend”, “next week”, “Annie's birthday”, and the like. Time objects can also represent durations or points of time.
    • Context can also be provided in terms of an application domain representing a service or application or domain of discourse, such as email, text messaging, phone, calendar, contacts, photos, videos, maps, weather, reminders, clock, web browser, Facebook, Pandora, and so forth. The current domain indicates which of these domains is in focus.
    • Context can also define one or more tasks, or operations to perform within a domain. For example, within the email domain there are tasks such as read email message, search email, compose new email, and the like.
    • Domain Objects are data objects associated with the various domains. For example, the email domain operates on email messages, the calendar domain operates on calendar events, and the like.


For purposes of the description provided herein, these representations of contextual information are referred to as context variables of a given type. For example, a representation of the current user is a context variable of type Person.


Representing Context Derivation


In one embodiment, the derivation of context variables is represented explicitly, so that it can be used in information processing. The derivation of context information is a characterization of the source and/or sets of inferences made to conclude or retrieve the information. For example, a Person context value 851 as depicted in FIG. 8b might have been derived from a Text Message Domain Object, which was acquired from Event Context 2706. This source of the context value 851 can be represented.


Representing a History of User Requests and/or Intent


In one embodiment, a history of the user's requests can be stored. In one embodiment, a history of the deep structure representation of the user's intent (as derived from natural language processing) can be stored as well. This allows virtual assistant 1002 to make sense of new inputs in the context of previously interpreted input. For example, if the user asks “what is the weather in New York?”, language interpreter 2770 might interpret the question as referring to the location of New York. If the user then says “what is it for this weekend?” virtual assistant 1002 can refer to this previous interpretation to determine that “what is it” should be interpreted to mean “what is the weather”.


Representing a History of Results


In one embodiment, a history of the results of user's requests can be stored, in the form of domain objects. For example, the user request “find me some good Italian restaurants” might return a set of domain objects representing restaurants. If the user then enters a command such as “call Amilio's”, virtual assistant 1002 can search the results for restaurants named Amilio's within the search results, which is a smaller set than all possible places that can be called.


Delayed Binding of Context Variables


In one embodiment, context variables can represent information that is retrieved or derived on demand. For example, a context variable representing the current location, when accessed, can invoke an API that retrieves current location data from a device and then does other processing to compute, for instance, a street address. The value of that context variable can be maintained for some period of time, depending on a caching policy.


Searching Context


Virtual assistant 1002 can use any of a number of different approaches to search for relevant context information to solve information-processing problems. Example of different types of searches include, without limitation:

    • Search by context variable name. If the name of a required context variable is known, such as “current user first name”, virtual assistant 1002 can search for instances of it. If a history is kept, virtual assistant 1002 can search current values first, and then consult earlier data until a match is found.
    • Search by context variable type. If the type of a required context variable is known, such as Person, virtual assistant 1002 can search for instances of context variables of this type. If a history is kept, virtual assistant 1002 can search current values first, and then consult earlier data until a match is found.


In one embodiment, if the current information processing problem requires a single match, the search is terminated once a match is found. If multiple matches are allowed, matching results can be retrieved in order until some limit is reached.


In one embodiment, if appropriate, virtual assistant 1002 can constrain its search to data having certain derivation. For example, if looking for People objects within a task flow for email, virtual assistant 1002 might only consider context variables whose derivation is an application associated with that domain.


In one embodiment, virtual assistant 1002 uses rules to rank matches according to heuristics, using any available properties of context variables. For example, when processing user input including a command to “tell her I'll be late”, virtual assistant 1002 interprets “her” by reference to context. In doing so, virtual assistant 1002 can apply ranking to indicate a preference for People objects whose derivation is application usage histories for communication applications such as text messaging and email. As another example, when interpreting a command to “call her”, virtual assistant 1002 can apply ranking to prefer People objects that have phone numbers over those whose phone numbers are not known. In one embodiment, ranking rules can be associated with domains. For example, different ranking rules can be used for ranking Person variables for Email and Phone domains. One skilled in the art will recognize that any such ranking rule(s) can be created and/or applied, depending on the particular representation and access to context information needed.


Use of Context to Improve Virtual Assistant Processing


As described above, context can be applied to a variety of computations and inferences in connection with the operation of virtual assistant 1002. Referring now to FIG. 2, there is shown a flow diagram depicting a method 10 for using context at various stages of processing in virtual assistant 1002, according to one embodiment.


Method 10 may be implemented in connection with one or more embodiments of virtual assistant 1002.


In at least one embodiment, method 10 may be operable to perform and/or implement various types of functions, operations, actions, and/or other features such as, for example, one or more of the following (or combinations thereof):

    • Execute an interface control flow loop of a conversational interface between the user and virtual assistant 1002. At least one iteration of method 10 may serve as a ply in the conversation. A conversational interface is an interface in which the user and assistant 1002 communicate by making utterances back and forth in a conversational manner.
    • Provide executive control flow for virtual assistant 1002. That is, the procedure controls the gathering of input, processing of input, generation of output, and presentation of output to the user.
    • Coordinate communications among components of virtual assistant 1002. That is, it may direct where the output of one component feeds into another, and where the overall input from the environment and action on the environment may occur.


In at least some embodiments, portions of method 10 may also be implemented at other devices and/or systems of a computer network.


According to specific embodiments, multiple instances or threads of method 10 may be concurrently implemented and/or initiated via the use of one or more processors 63 and/or other combinations of hardware and/or hardware and software. In at least one embodiment, one or more or selected portions of method 10 may be implemented at one or more client(s) 1304, at one or more server(s) 1340, and/or combinations thereof.


For example, in at least some embodiments, various aspects, features, and/or functionalities of method 10 may be performed, implemented and/or initiated by software components, network services, databases, and/or the like, or any combination thereof.


According to different embodiments, one or more different threads or instances of method 10 may be initiated in response to detection of one or more conditions or events satisfying one or more different types of criteria (such as, for example, minimum threshold criteria) for triggering initiation of at least one instance of method 10. Examples of various types of conditions or events which may trigger initiation and/or implementation of one or more different threads or instances of the method may include, but are not limited to, one or more of the following (or combinations thereof):

    • a user session with an instance of virtual assistant 1002, such as, for example, but not limited to, one or more of:
      • a mobile device application starting up, for instance, a mobile device application that is implementing an embodiment of virtual assistant 1002;
      • a computer application starting up, for instance, an application that is implementing an embodiment of virtual assistant 1002;
      • a dedicated button on a mobile device pressed, such as a “speech input button”;
      • a button on a peripheral device attached to a computer or mobile device, such as a headset, telephone handset or base station, a GPS navigation system, consumer appliance, remote control, or any other device with a button that might be associated with invoking assistance;
      • a web session started from a web browser to a website implementing virtual assistant 1002;
      • an interaction started from within an existing web browser session to a website implementing virtual assistant 1002, in which, for example, virtual assistant 1002 service is requested;
      • an email message sent to a modality server 1426 that is mediating communication with an embodiment of virtual assistant 1002;
      • a text message is sent to a modality server 1426 that is mediating communication with an embodiment of virtual assistant 1002;
      • a phone call is made to a modality server 1434 that is mediating communication with an embodiment of virtual assistant 1002;
      • an event such as an alert or notification is sent to an application that is providing an embodiment of virtual assistant 1002.
    • when a device that provides virtual assistant 1002 is turned on and/or started.


According to different embodiments, one or more different threads or instances of method 10 may be initiated and/or implemented manually, automatically, statically, dynamically, concurrently, and/or combinations thereof. Additionally, different instances and/or embodiments of method 10 may be initiated at one or more different time intervals (e.g., during a specific time interval, at regular periodic intervals, at irregular periodic intervals, upon demand, and the like).


In at least one embodiment, a given instance of method 10 may utilize and/or generate various different types of data and/or other types of information when performing specific tasks and/or operations, including context data as described herein. Data may also include any other type of input data/information and/or output data/information. For example, in at least one embodiment, at least one instance of method 10 may access, process, and/or otherwise utilize information from one or more different types of sources, such as, for example, one or more databases. In at least one embodiment, at least a portion of the database information may be accessed via communication with one or more local and/or remote memory devices. Additionally, at least one instance of method 10 may generate one or more different types of output data/information, which, for example, may be stored in local memory and/or remote memory devices.


In at least one embodiment, initial configuration of a given instance of method 10 may be performed using one or more different types of initialization parameters. In at least one embodiment, at least a portion of the initialization parameters may be accessed via communication with one or more local and/or remote memory devices. In at least one embodiment, at least a portion of the initialization parameters provided to an instance of method 10 may correspond to and/or may be derived from the input data/information.


In the particular example of FIG. 2, it is assumed that a single user is accessing an instance of virtual assistant 1002 over a network from a client application with speech input capabilities.


Speech input is elicited and interpreted 100. Elicitation may include presenting prompts in any suitable mode. In various embodiments, the user interface of the client offers several modes of input. These may include, for example:

    • an interface for typed input, which may invoke an active typed-input elicitation procedure;
    • an interface for speech input, which may invoke an active speech input elicitation procedure.
    • an interface for selecting inputs from a menu, which may invoke active GUI-based input elicitation.


Techniques for performing each of these are described in the above-referenced related patent applications. One skilled in the art will recognize that other input modes may be provided. The output of step 100 is a set of candidate interpretations 190 of the input speech.


The set of candidate interpretations 190 is processed 200 by language interpreter 2770 (also referred to as a natural language processor, or NLP), which parses the text input and generates a set of possible interpretations of the user's intent 290.


In step 300, the representation(s) of the user's intent 290 is/are passed to dialog flow processor 2780, which implements an embodiment of a dialog and flow analysis procedure as described in connection with FIG. 5. Dialog flow processor 2780 determines which interpretation of intent is most likely, maps this interpretation to instances of domain models and parameters of a task model, and determines the next flow step in a task flow.


In step 400, the identified flow step is executed. In one embodiment, invocation of the flow step is performed by services orchestration component 2782 which invokes a set of services on behalf of the user's request. In one embodiment, these services contribute some data to a common result.


In step 500 a dialog response is generated. In step 700, the response is sent to the client device for output thereon. Client software on the device renders it on the screen (or other output device) of the client device.


If, after viewing the response, the user is done 790, the method ends. If the user is not done, another iteration of the loop is initiated by returning to step 100.


Context information 1000 can be used by various components of the system at various points in method 10. For example, as depicted in FIG. 2, context 1000 can be used at steps 100, 200, 300, and 500. Further description of the use of context 1000 in these steps is provided below. One skilled in the art will recognize, however, that the use of context information is not limited to these specific steps, and that the system can use context information at other points as well, without departing from the essential characteristics of the present invention.


In addition, one skilled in the art will recognize that different embodiments of method 10 may include additional features and/or operations than those illustrated in the specific embodiment depicted in FIG. 2, and/or may omit at least a portion of the features and/or operations of method 10 as illustrated in the specific embodiment of FIG. 2.


Use of Context in Speech Elicitation and Interpretation


Referring now to FIG. 3, there is shown a flow diagram depicting a method for using context in speech elicitation and interpretation 100, so as to improve speech recognition according to one embodiment. Context 1000 can be used, for example, for disambiguation in speech recognition to guide the generation, ranking, and filtering of candidate hypotheses that match phonemes to words. Different speech recognition systems use various mixes of generation, rank, and filter, but context 1000 can apply in general to reduce the hypothesis space at any stage.


The method begins 100. Assistant 1002 receives 121 voice or speech input in the form of an auditory signal. A speech-to-text service 122 or processor generates a set of candidate text interpretations 124 of the auditory signal. In one embodiment, speech-to-text service 122 is implemented using, for example, Nuance Recognizer, available from Nuance Communications, Inc. of Burlington, Mass.


In one embodiment, assistant 1002 employs statistical language models 1029 to generate candidate text interpretations 124 of speech input 121. In one embodiment context 1000 is applied to bias the generation, filtering, and/or ranking of candidate interpretations 124 generated by speech-to-text service 122. For example:

    • Speech-to-text service 122 can use vocabulary from user personal database(s) 1058 to bias statistical language models 1029.
    • Speech-to-text service 122 can use dialog state context to select a custom statistical language model 1029. For example, when asking a yes/no question, a statistical language model 1029 can be selected that biases toward hearing these words.
    • Speech-to-text service 122 can use current application context to bias toward relevant words. For example “call her” can be preferred over “collar” in a text message application context, since such a context provides Person Objects that can be called.


For example, a given speech input might lead speech-to-text service 122 to generate interpretations “call her” and “collar”. Guided by statistical language models (SLMs) 1029, speech-to-text service 122 can be tuned by grammatical constraints to hear names after it hears “call”. Speech-to-text service 122 can be also tuned based on context 1000. For example, if “Herb” is a first name in the user's address book, then this context can be used to lower the threshold for considering “Herb” as an interpretation of the second syllable. That is, the presence of names in the user's personal data context can influence the choice and tuning of the statistical language model 1029 used to generate hypotheses. The name “Herb” can be part of a general SLM 1029 or it can be added directly by context 1000. In one embodiment, it can be added as an additional SLM 1029, which is tuned based on context 1000. In one embodiment, it can be a tuning of an existing SLM 1029, which is tuned based on context 1000.


In one embodiment, statistical language models 1029 are also tuned to look for words, names, and phrases from application preferences and usage history 1072 and/or personal databases 1058, which may be stored in long-term personal memory 2754. For example, statistical language models 1029 can be given text from to-do items, list items, personal notes, calendar entries, people names in contacts/address books, email addresses, street or city names mentioned in contact/address books, and the like.


A ranking component analyzes candidate interpretations 124 and ranks 126 them according to how well they fit syntactic and/or semantic models of virtual assistant 1002. Any sources of constraints on user input may be used. For example, in one embodiment, assistant 1002 may rank the output of the speech-to-text interpreter according to how well the interpretations parse in a syntactic and/or semantic sense, a domain model, task flow model, and/or dialog model, and/or the like: it evaluates how well various combinations of words in candidate interpretations 124 would fit the concepts, relations, entities, and properties of an active ontology and its associated models, as described in above-referenced related U.S. utility applications.


Ranking 126 of candidate interpretations can also be influenced by context 1000. For example, if the user is currently carrying on a conversation in a text messaging application when virtual assistant 1002 is invoked, the phrase “call her” is more likely to be a correct interpretation than the word “collar”, because there is a potential “her” to call in this context. Such bias can be achieved by tuning the ranking of hypotheses 126 to favor phrases such as “call her” or “call <contact name>” when the current application context indicates an application that can provide “callable entities”.


In various embodiments, algorithms or procedures used by assistant 1002 for interpretation of text inputs, including any embodiment of the natural language processing procedure shown in FIG. 3, can be used to rank and score candidate text interpretations 124 generated by speech-to-text service 122.


Context 1000 can also be used to filter candidate interpretations 124, instead of or in addition to constraining the generation of them or influencing the ranking of them. For example, a filtering rule could prescribe that the context of the address book entry for “Herb” sufficiently indicates that the phrase containing it should be considered a top candidate 130, even if it would otherwise be below a filtering threshold. Depending on the particular speech recognition technology being used, constraints based on contextual bias can be applied at the generation, rank, and/or filter stages.


In one embodiment, if ranking component 126 determines 128 that the highest-ranking speech interpretation from interpretations 124 ranks above a specified threshold, the highest-ranking interpretation may be automatically selected 130. If no interpretation ranks above a specified threshold, possible candidate interpretations of speech 134 are presented 132 to the user. The user can then select 136 among the displayed choices.


Referring now also to FIGS. 26A and 26B, there are shown screen shots depicting an example of a user interface for selecting among candidate interpretations, according to one embodiment. FIG. 26A shows a presentation of the user's speech with dots underlying an ambiguous interpretation 2651. If the user taps on the text, it shows alternative interpretations 2652A, 2652B as depicted in FIG. 26B. In one embodiment, context 1000 can influence which of the candidate interpretations 2652A, 2652B is a preferred interpretation (which is shown as an initial default as in FIG. 26A) and also the selection of a finite set of alternatives to present as in FIG. 26B.


In various embodiments, user selection 136 among the displayed choices can be achieved by any mode of input, including for example multimodal input. Such input modes include, without limitation, actively elicited typed input, actively elicited speech input, actively presented GUI for input, and/or the like. In one embodiment, the user can select among candidate interpretations 134, for example by tapping or speaking. In the case of speaking, the possible interpretation of the new speech input is highly constrained by the small set of choices offered 134.


Whether input is automatically selected 130 or selected 136 by the user, the resulting one or more text interpretation(s) 190 is/are returned. In at least one embodiment, the returned input is annotated, so that information about which choices were made in step 136 is preserved along with the textual input. This enables, for example, the semantic concepts or entities underlying a string to be associated with the string when it is returned, which improves accuracy of subsequent language interpretation.


Any of the sources described in connection with FIG. 1 can provide context 1000 to the speech elicitation and interpretation method depicted in FIG. 3. For example:

    • Personal Acoustic Context Data 1080 be used to select from possible SLMs 1029 or otherwise tune them to optimize for recognized acoustical contexts.
    • Device Sensor Data 1056, describing properties of microphones and/or cameras in use, can be used to select from possible SLMs 1029 or otherwise tune them to optimize for recognized acoustical contexts.
    • Vocabulary from personal databases 1058 and application preferences and usage history 1072 can be used as context 1000. For example, the titles of media and names of artists can be used to tune language models 1029.
    • Current dialog state, part of dialog history and assistant memory 1052, can be used to bias the generate/filter/rank of candidate interpretations 124 by text-to-speech service 122. For example, one kind of dialog state is asking a yes/no question. When in such a state, procedure 100 can select an SLM 1029 that biases toward hearing these words, or it can bias the ranking and filtering of these words in a context-specific tuning at 122.


      Use of Context in Natural Language Processing


Context 1000 can be used to facilitate natural language processing (NLP)—the parsing of text input into semantic structures representing the possible parses. Referring now to FIG. 4, there is shown a flow diagram depicting a method for using context in natural language processing as may be performed by language interpreter 2770, according to one embodiment.


The method begins 200. Input text 202 is received. In one embodiment, input text 202 is matched 210 against words and phrases using pattern recognizers 2760, vocabulary databases 2758, ontologies and other models 1050, so as to identify associations between user input and concepts. Step 210 yields a set of candidate syntactic parses 212, which are matched for semantic relevance 220 producing candidate semantic parses 222. Candidate parses are then processed to remove ambiguous alternatives at 230, filtered and sorted by relevance 232, and returned.


Throughout natural language processing, contextual information 1000 can be applied to reduce the hypothesis space and constrain possible parses. For example, if language interpreter 2770 receives two candidates “call her” and “call Herb” to, then language interpreter 2770 would find bindings 212 for the words “call”, “her”, and “Herb”. Application context 1060 can be used to constrain the possible word senses for “call” to mean “phone call”. Context can also be used to find the referents for “her” and “Herb”. For “her”, the context sources 1000 could be searched for a source of callable entities. In this example, the party to a text messaging conversation is a callable entity, and this information is part of the context coming from the text messaging application. In the case of “Herb”, the user's address book is a source of disambiguating context, as are other personal data such as application preferences (such as favorite numbers from domain entity databases 2772) and application usage history (such as recent phone calls from domain entity databases 2772). In an example where the current text messaging party is RebeccaRichards and there is a HerbGowen in the user's address book, the two parses created by language interpreter 2770 would be semantic structures representing “PhoneCall(RebeccaRichards)” and “PhoneCall (HerbGowen)”.


Data from application preferences and usage history 1072, dialog history and assistant memory 1052, and/or personal databases 1058 can also be used by language interpreter 2770 in generating candidate syntactic parses 212. Such data can be obtained, for example, from short- and/or long-term memory 2752, 2754. In this manner, input that was provided previously in the same session, and/or known information about the user, can be used to improve performance, reduce ambiguity, and reinforce the conversational nature of the interaction. Data from active ontology 1050, domain models 2756, and task flow models 2786 can also be used, to implement evidential reasoning in determining valid candidate syntactic parses 212.


In semantic matching 220, language interpreter 2770 considers combinations of possible parse results according to how well they fit semantic models such as domain models and databases. Semantic matching 220 may use data from, for example, active ontology 1050, short term personal memory 2752, and long term personal memory 2754. For example, semantic matching 220 may use data from previous references to venues or local events in the dialog (from dialog history and assistant memory 1052) or personal favorite venues (from application preferences and usage history 1072). Semantic matching 220 step also uses context 1000 to interpret phrases into domain intent structures. A set of candidate, or potential, semantic parse results is generated 222.


In disambiguation step 230, language interpreter 2770 weighs the evidential strength of candidate semantic parse results 222. Disambiguation 230 involves reducing the number of candidate semantic parse 222 by eliminating unlikely or redundant alternatives. Disambiguation 230 may use data from, for example, the structure of active ontology 1050. In at least one embodiment, the connections between nodes in an active ontology provide evidential support for disambiguating among candidate semantic parse results 222. In one embodiment, context 1000 is used to assist in such disambiguation. Examples of such disambiguation include: determining one of several people having the same name; determining a referent to a command such as “reply” (email or text message); pronoun dereferencing; and the like.


For example, input such as “call Herb” potentially refers to any entity matching “Herb”. There could be any number of such entities, not only in the user's address book (personal databases 1058) but also in databases of names of businesses from personal databases 1058 and/or domain entity databases 2772. Several sources of context can constrain the set of matching “Herbs”, and/or rank and filter them in step 232. For example:

    • Other Application Preferences and Usage history 1072, such as a Herb who is on a favorite phone numbers list, or recently called, or recently party to a text message conversation or email thread;
    • Herb mentioned in personal databases 1058, such as a Herb who is named as relationship, such as father or brother, or listed participant in a recent calendar event. If the task were playing media instead of phone calling, then the names from media titles, creators, and the like would be sources of constraint;
    • A recent ply of a dialog 1052, either in request or results. For example, as described above in connection with FIGS. 25A to 25B, after searching for email from John, with the search result still in the dialog context, the user can compose a reply. Assistant 1002 can use the dialog context to identify the specific application domain object context.


Context 1000 can also help reduce the ambiguity in words other than proper names. For example, if the user of an email application tells assistant 1002 to “reply” (as depicted in FIG. 20), the context of the application helps determine that the word should be associated with EmailReply as opposed to TextMessagingReply.


In step 232, language interpreter 2770 filters and sorts 232 the top semantic parses as the representation of user intent 290. Context 1000 can be used to inform such filtering and sorting 232. The result is a representation of user intent 290.


Use of Context in Task Flow Processing


Referring now to FIG. 5, there is shown a flow diagram depicting a method for using context in task flow processing as may be performed by dialog flow processor 2780, according to one embodiment. In task flow processing, candidate parses generated from the method of FIG. 4 are ranked and instantiated to produce operational task descriptions that can be executed.


The method begins 300. Multiple candidate representations of user intent 290 are received. As described in connection with FIG. 4, in one embodiment, representations of user intent 290 include a set of semantic parses.


In step 312, dialog flow processor 2780 determines the preferred interpretation of the semantic parse(s) with other information to determine a task to perform and its parameters, based on a determination of the user's intent. Information may be obtained, for example, from domain models 2756, task flow models 2786, and/or dialog flow models 2787, or any combination thereof. For example, a task might be PhoneCall and a task parameter is the PhoneNumber to call.


In one embodiment, context 1000 is used in performing step 312, to guide the binding of parameters 312 by inferring default values and resolving ambiguity. For example, context 1000 can guide the instantiation of the task descriptions and determining whether there is a best interpretation of the user's intent.


For example, assume the intent inputs 290 are PhoneCall(RebeccaRichards)” and “PhoneCall (HerbGowen)”. The PhoneCall task requires parameter PhoneNumber. Several sources of context 100 can be applied to determine which phone number for Rebecca and Herb would work. In this example, the address book entry for Rebecca in a contacts database has two phone numbers and the entry for Herb has no phone numbers but one email address. Using the context information 1000 from personal databases 1058 such as the contacts database allows virtual assistant 1002 to prefer Rebecca over Herb, since there is a phone number for Rebecca and none for Herb. To determine which phone number to use for Rebecca, application context 1060 can be consulted to choose the number that is being used to carry on text messaging conversation with Rebecca. Virtual assistant 1002 can thus determine that “call her” in the context of a text messaging conversation with Rebecca Richards means make a phone call to the mobile phone that Rebecca is using for text messaging. This specific information is returned in step 390.


Context 1000 can be used for more than reducing phone number ambiguity. It can be used whenever there are multiple possible values for a task parameter, as long as any source of context 1000 having values for that parameter is available. Other examples in which context 1000 can reduce the ambiguity (and avoid having to prompt the user to select among candidates) include, without limitation: email addresses; physical addresses; times and dates; places; list names; media titles; artist names; business names; or any other value space.


Other kinds of inferences required for task flow processing 300 can also benefit from context 1000. For example, default value inference can use the current location, time, and other current values. Default value inference is useful for determining the values of task parameters that are implicit in the user's request. For example, if someone says “what is the weather like?” they implicitly mean what is the current weather like around here.


In step 310, dialog flow processor 2780 determines whether this interpretation of user intent is supported strongly enough to proceed, and/or if it is better supported than alternative ambiguous parses. If there are competing ambiguities or sufficient uncertainty, then step 322 is performed, to set the dialog flow step so that the execution phase causes the dialog to output a prompt for more information from the user. An example of a screen shot for prompting the user to resolve an ambiguity is shown in FIG. 14. Context 1000 can be used in step 322 in sorting and annotating the displayed menu of candidate items for the user to choose from.


In step 320, the task flow model is consulted to determine an appropriate next step. Information may be obtained, for example, from domain models 2756, task flow models 2786, and/or dialog flow models 2787, or any combination thereof.


The result of step 320 or step 322 is a representation of the user's request 390, which may include the task parameters sufficient for dialog flow processor 2780 and services orchestration 2782 to dispatch to the appropriate service.


Use of Context to Improve Dialog Generation


During dialog response generation 500, assistant 1002 may paraphrase back its understanding of the user's intent and how it is being operationalized in a task. An example of such output is “OK, I'll call Rebecca on her mobile . . . .” This allows the user to authorize assistant 1002 to perform the associated task automation, such as placing a call. In dialog generation step 500, assistant 1002 determines how much detail to convey back to the user in paraphrasing its understanding of the user's intent.


In one embodiment, context 1000 can also be used to guide selection of the appropriate level of detail in the dialog, as well as to filter based on previous output (so as to avoid repeating information). For example, assistant 1002 can use the knowledge that the person and phone number were inferred from context 1000 to determine whether to mention the name and phone number and in what level of detail. Examples of rules that can be applied include, without limitation:

    • When a pronoun is resolved by context, mention the person to call by name.
    • When a person is inferred from a familiar context such as text messaging, use only the first name.
    • When a phone number is inferred from application or personal data context, use the symbolic name of the phone number such as “mobile phone” rather than the actual number to dial.


In addition to guiding the appropriate level of detail, context 1000 can also be used in dialog generation step 500, for example, to filter previous utterances, so as to avoid repetition, and to refer to previously mentioned entities in the conversation.


One skilled in the art will recognize that context 1000 can also be used in other ways. For example, in connection with the techniques described herein, context 1000 can be used according to mechanisms described in related U.S. Utility application Ser. No. 12/479,477 for “Contextual Voice Commands”, filed Jun. 5, 2009, the entire disclosure of which is incorporated herein by reference.


Context Gathering and Communication Mechanisms


In various embodiments, different mechanisms are used for gathering and communicating context information in virtual assistant 1002. For example, in one embodiment, wherein virtual assistant 1002 is implemented in a client/server environment so that its services are distributed between the client and the server, sources of context 1000 may also be distributed.


Referring now to FIG. 6, there is shown an example of distribution of sources of context 1000 between client 1304 and server 1340 according to one embodiment. Client device 1304, which may be a mobile computing device or other device, can be the source of contextual information 1000 such as device sensor data 1056, current application context 1060, event context 2706, and the like. Other sources of context 1000 can be distributed on client 1304 or server 1340, or some combination of both. Examples include application preferences and usage history 1072c, 1072s; dialog history and assistant memory 1052c, 1052s; personal databases 1058c, 1058s; and personal acoustic context data 1080c, 1080s. In each of these examples, sources of context 1000 may exist on server 1340, on client 1304, or on both. Furthermore, as described above, the various steps depicted in FIG. 2 can be performed by client 1304 or server 1340, or some combination of both.


In one embodiment, context 1000 can be communicated among distributed components such as client 1304 and server 1340. Such communication can be over a local API or over a distributed network, or by some other means.


Referring now to FIGS. 7a through 7d, there are shown event diagrams depicting examples of mechanisms for obtaining and coordinating context information 1000 according to various embodiments. Various techniques exist for loading, or communicating, context so that it is available to virtual assistant 1002 when needed or useful. Each of these mechanisms is described in terms of four events that can place with regard to operation of virtual assistant 1002: device or application initialization 601; initial user input 602; initial input processing 603, and context-dependent processing 604.



FIG. 7a depicts an approach in which context information 1000 is loaded using a “pull” mechanism once user input has begun 602. Once user invokes virtual assistant 1002 and provides at least some input 602, virtual assistant 1002 loads 610 context 1000. Loading 610 can be performed by requesting or retrieving context information 1000 from an appropriate source. Input processing 603 starts once context 1000 has been loaded 610.



FIG. 7b depicts an approach in which some context information 1000 is loaded 620 when a device or application is initialized 601; additional context information 1000 is loaded using a pull mechanism once user input has begun 602. In one embodiment, context information 1000 that is loaded 620 upon initialization can include static context (i.e., context that does not change frequently); context information 1000 that is loaded 621 once user input starts 602 includes dynamic context (i.e., context that may have changed since static context was loaded 620). Such an approach can improve performance by removing the cost of loading static context information 1000 from the runtime performance of the system.



FIG. 7c depicts a variation of the approach of FIG. 7b. In this example, dynamic context information 1000 is allowed to continue loading 621 after input processing begins 603. Thus, loading 621 can take place in parallel with input processing. Virtual assistant 1002 procedure is only blocked at step 604 when processing depends on received context information 1000.



FIG. 7d depicts a fully configurable version, which handles context in any of up to five different ways:

    • Static contextual information 1000 is synchronized 640 in one direction, from context source to the environment or device that runs virtual assistant 1002. As data changes in the context source, the changes are pushed to virtual assistant 1002. For example, an address book might be synchronized to virtual assistant 1002 when it is initially created or enabled. Whenever the address book is modified, changes are pushed to the virtual assistant 1002, either immediately or in a batched approach. As depicted in FIG. 7d, such synchronization 640 can take place at any time, including before user input starts 602.
    • In one embodiment, when user input starts 602, static context sources can be checked for synchronization status. If necessary, a process of synchronizing remaining static context information 1000 is begun 641.
    • When user input starts 602, some dynamic context 1000 is loaded 642, as it was in 610 and 621 Procedures that consume context 1000 are only blocked to wait for the as-yet unloaded context information 1000 they need.
    • Other context information 1000 is loaded on demand 643 by processes when they need it.
    • Event context 2706 is sent 644 from source to the device running virtual assistant 1002 as events occur. Processes that consume event context 2706 only wait for the cache of events to be ready, and can proceed without blocking any time thereafter. Event context 2706 loaded in this manner may include any of the following:
      • Event context 2706 loaded before user input starts 602, for example unread message notifications. Such information can be maintained, for example, using a synchronized cache.
      • Event context 2706 loaded concurrently with or after user input has started 602. For an example, while the user is interacting with virtual assistant 1002, a text message may arrive; the event context that notifies assistant 1002 of this event can be pushed in parallel with assistant 1002 processing.


In one embodiment, flexibility in obtaining and coordinating context information 1000 is accomplished by prescribing, for each source of context information 1000, a communication policy and an access API that balances the cost of communication against the value of having the information available on every request. For example, variables that are relevant to every speech-to-text request, such as personal acoustic context data 1080 or device sensor data 1056 describing parameters of microphones, can be loaded on every request. Such communication policies can be specified, for example, in a configuration table.


Referring now to FIG. 9, there is shown an example of a configuration table 900 that can be used for specifying communication and caching policies for various sources of context information 1000, according to one embodiment. For each of a number of different context sources, including user name, address book names, address book numbers, SMS event context, and calendar database, a particular type of context loading is specified for each of the steps of FIG. 2: elicit and interpret speech input 100, interpret natural language 200, identify task 300, and generate dialog response 500. Each entry in table 900 indicates one of the following:

    • Sync: context information 1000 is synchronized on the device;
    • On demand: context information 1000 is provided in response to virtual assistant's 1002 request for it;
    • Push: context information 1000 is pushed to the device.


The fully configurable method allows a large space of potentially relevant contextual information 1000 to be made available to streamline the natural language interaction between human and machine. Rather than loading all of this information all of the time, which could lead to inefficiencies, some information is maintained in both the context source and virtual assistant 1002, while other information is queried on demand. For example, as described above, information such as names used in real time operations such as speech recognition is maintained locally, while information that is only used by some possible requests such as a user's personal calendar is queried on demand. Data that cannot be anticipated at the time of a user's invoking the assistant such as incoming SMS events are pushed as they happen.


Referring now to FIG. 10, there is shown an event diagram 950 depicting an example of accessing the context information sources configured in FIG. 9 during the processing of an interaction sequence in which assistant 1002 is in dialog with a user, according to one embodiment.


The sequence depicted in FIG. 10 represents the following interaction sequence:

    • T1: Assistant 1002: “Hello Steve, what I can I do for you?”
    • T2: User: “When is my next meeting?”
    • T3: Assistant 1002: “Your next meeting is at 1:00 pm in the boardroom.”
    • T4: [Sound of incoming SMS message]
    • T5: User: “Read me that message.”
    • T6: Assistant 1002: “Your message from Johnny says ‘How about lunch’”
    • T7: User: “Tell Johnny I can't make it today.”
    • T8: Assistant 1002: “OK, I'll tell him.”


At time T0, before the interaction begins, user name is synched 770 and address book names are synched 771. These are examples of static context loaded at initialization time, as shown in element 640 of FIG. 7d. This allows assistant 1002 to refer to the user by his first name (“Steve”).


At time T1, synching steps 770 and 771 are complete. At time T2, the user speaks a request, which is processed according to steps 100, 200, and 300 of FIG. 2. In task identification step 300, virtual assistant 1002 queries 774 user's personal database 1058 as a source of context 1000: specifically, virtual assistant 1002 requests information from the user's calendar database, which is configured for on demand access according to table 900. At time T3, step 500 is performed and a dialog response is generated.


At time T4, an SMS message is received; this is an example of event context 2706. Notification of the event is pushed 773 to virtual assistant 1002, based on the configuration in table 900.


At time T5, the user asks virtual assistant 1002 to read the SMS message. The presence of the event context 2706 guides the NLP component in performing step 200, to interpret “that message” as a new SMS message. At time T6, step 300 can be performed by the task component to invoke an API to read the SMS message to the user. At time T7, the user makes request with an ambiguous verb (“tell”) and name (“Johnny”). The NLP component interprets natural language 200 by resolving these ambiguities using various sources of context 1000 including the event context 2706 received in step 773; this tells the NLP component that the command refers to an SMS message from a person named Johnny. At step T7 execute flow step 400 is performed, including matching the name 771 by looking up the number to use from the received event context object. Assistant 1002 is thus able to compose a new SMS message and send it to Johnny, as confirmed in step T8.


The present invention has been described in particular detail with respect to possible embodiments. Those of skill in the art will appreciate that the invention may be practiced in other embodiments. First, the particular naming of the components, capitalization of terms, the attributes, data structures, or any other programming or structural aspect is not mandatory or significant, and the mechanisms that implement the invention or its features may have different names, formats, or protocols. Further, the system may be implemented via a combination of hardware and software, as described, or entirely in hardware elements, or entirely in software elements. Also, the particular division of functionality between the various system components described herein is merely exemplary, and not mandatory; functions performed by a single system component may instead be performed by multiple components, and functions performed by multiple components may instead be performed by a single component.


In various embodiments, the present invention can be implemented as a system or a method for performing the above-described techniques, either singly or in any combination. In another embodiment, the present invention can be implemented as a computer program product comprising a nontransitory computer-readable storage medium and computer program code, encoded on the medium, for causing a processor in a computing device or other electronic device to perform the above-described techniques.


Reference in the specification to “one embodiment” or to “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiments is included in at least one embodiment of the invention. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment.


Some portions of the above are presented in terms of algorithms and symbolic representations of operations on data bits within a memory of a computing device. These algorithmic descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. An algorithm is here, and generally, conceived to be a self-consistent sequence of steps (instructions) leading to a desired result. The steps are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical, magnetic or optical signals capable of being stored, transferred, combined, compared and otherwise manipulated. It is convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like. Furthermore, it is also convenient at times, to refer to certain arrangements of steps requiring physical manipulations of physical quantities as modules or code devices, without loss of generality.


It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussion, it is appreciated that throughout the description, discussions utilizing terms such as “processing” or “computing” or “calculating” or “displaying” or “determining” or the like, refer to the action and processes of a computer system, or similar electronic computing module and/or device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system memories or registers or other such information storage, transmission or display devices.


Certain aspects of the present invention include process steps and instructions described herein in the form of an algorithm. It should be noted that the process steps and instructions of the present invention can be embodied in software, firmware and/or hardware, and when embodied in software, can be downloaded to reside on and be operated from different platforms used by a variety of operating systems.


The present invention also relates to an apparatus for performing the operations herein. This apparatus may be specially constructed for the required purposes, or it may comprise a general-purpose computing device selectively activated or reconfigured by a computer program stored in the computing device. Such a computer program may be stored in a computer readable storage medium, such as, but is not limited to, any type of disk including floppy disks, optical disks, CD-ROMs, magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs), EPROMs, EEPROMs, magnetic or optical cards, application specific integrated circuits (ASICs), or any type of media suitable for storing electronic instructions, and each coupled to a computer system bus. Further, the computing devices referred to herein may include a single processor or may be architectures employing multiple processor designs for increased computing capability.


The algorithms and displays presented herein are not inherently related to any particular computing device, virtualized system, or other apparatus. Various general-purpose systems may also be used with programs in accordance with the teachings herein, or it may prove convenient to construct more specialized apparatus to perform the required method steps. The required structure for a variety of these systems will be apparent from the description provided herein. In addition, the present invention is not described with reference to any particular programming language. It will be appreciated that a variety of programming languages may be used to implement the teachings of the present invention as described herein, and any references above to specific languages are provided for disclosure of enablement and best mode of the present invention.


Accordingly, in various embodiments, the present invention can be implemented as software, hardware, and/or other elements for controlling a computer system, computing device, or other electronic device, or any combination or plurality thereof. Such an electronic device can include, for example, a processor, an input device (such as a keyboard, mouse, touchpad, trackpad, joystick, trackball, microphone, and/or any combination thereof), an output device (such as a screen, speaker, and/or the like), memory, long-term storage (such as magnetic storage, optical storage, and/or the like), and/or network connectivity, according to techniques that are well known in the art. Such an electronic device may be portable or nonportable. Examples of electronic devices that may be used for implementing the invention include: a mobile phone, personal digital assistant, smartphone, kiosk, desktop computer, laptop computer, tablet computer, consumer electronic device, consumer entertainment device; music player; camera; television; set-top box; electronic gaming unit; or the like. An electronic device for implementing the present invention may use any operating system such as, for example, iOS or MacOS, available from Apple Inc. of Cupertino, Calif., or any other operating system that is adapted for use on the device.


While the invention has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of the above description, will appreciate that other embodiments may be devised which do not depart from the scope of the present invention as described herein. In addition, it should be noted that the language used in the specification has been principally selected for readability and instructional purposes, and may not have been selected to delineate or circumscribe the inventive subject matter. Accordingly, the disclosure of the present invention is intended to be illustrative, but not limiting, of the scope of the invention, which is set forth in the claims.

Claims
  • 1. A computer-implemented method for disambiguating user input to perform a task on a computing device having at least one processor, comprising: at an output device, prompting a user for input;at an input device, receiving spoken user input;at a processor communicatively coupled to the output device and to the input device, receiving context information from a context source;at the processor, generating a first plurality of candidate interpretations of the received spoken user input;at the processor, disambiguating the intent of a word in the first plurality of candidate interpretations based on the context information to generate a second plurality of candidate interpretations, wherein the second plurality of candidate interpretations is a subset of the first plurality of candidate interpretations;at the processor, sorting the second plurality of candidate interpretations by relevance based on the context information;at the processor, deriving a representation of user intent based on the sorted second plurality of candidate interpretations;at the processor, identifying at least one task and at least one parameter for the task, based at least in part on the derived representation of user intent;at the processor, executing the at least one task using the at least one parameter, to derive a result;at the processor, generating a dialog response based on the derived result; andat the output device, outputting the generated dialog response.
  • 2. The method of claim 1, wherein: prompting the user comprises prompting the user via a conversational interface; andreceiving the spoken user input comprises: receiving the spoken user input via the conversational interface; andconverting the spoken user input to a text representation.
  • 3. The method of claim 2, wherein converting the spoken user input to a text representation comprises: generating a plurality of candidate text interpretations of the spoken user input; andranking at least a subset of the generated candidate text interpretations;wherein at least one of the generating and ranking steps is performed using the received context information.
  • 4. The method of claim 3, wherein the received context information used in at least one of the generating and ranking steps comprises at least one selected from the group consisting of: data describing an acoustic environment in which the spoken user input is received;data received from at least one sensor;vocabulary obtained from a database associated with the user;vocabulary associated with application preferences;vocabulary obtained from usage history; andcurrent dialog state.
  • 5. The method of claim 1, wherein prompting the user comprises generating at least one prompt based at least in part on the received context information.
  • 6. The method of claim 1, wherein disambiguating the received spoken user input based on the context information to derive a representation of user intent comprises performing natural language processing on the received spoken user input based at least in part on the received context information.
  • 7. The method of claim 6, wherein the received context information used in disambiguating the received spoken user input comprises at least one selected from the group consisting of: data describing an event;application context;input previously provided by the user;known information about the user;location;date;environmental conditions; andhistory.
  • 8. The method of claim 1, wherein performing natural language processing comprises selecting among a plurality of candidate interpretations of the received spoken user input using the received context information.
  • 9. The method of claim 1, wherein performing natural language processing comprises determining a referent for at least one pronoun in the received spoken user input.
  • 10. The method of claim 1, wherein identifying at least one task and at least one parameter for the task comprises identifying at least one task and at least one parameter for the task based at least in part on the received context information.
  • 11. The method of claim 10, wherein identifying at least one task and at least one parameter for the task based at least in part on the received context information comprises: receiving a plurality of candidate representations of user intent;determining a preferred interpretation of user intent based on at least one selected from the group consisting of: at least one domain model;at least one task flow model; andat least one dialog flow model.
  • 12. The method of claim 10, wherein the received context information used in identifying at least one task and at least one parameter for the task comprises at least one selected from the group consisting of: data describing an event;data from a database associated with the user;data received from at least one sensor;application context;input previously provided by the user;known information about the user;location;date;environmental conditions; andhistory.
  • 13. The method of claim 1, wherein generating a dialog response comprises generating a dialog response based at least in part on the received context information.
  • 14. The method of claim 13, wherein generating a dialog response based at least in part on the received context information comprises at least one selected from the group consisting of: generating a dialog response including a named referent;generating a dialog response including a symbolic name associated with a telephone number;determining which of a plurality of names to use for a referent;determining a level of detail for the generated response; andfiltering a response based on previous output.
  • 15. The method of claim 13, wherein the received context information used in generating a dialog response comprises at least one selected from the group consisting of: data from a database associated with the user;application context;input previously provided by the user;known information about the user;location;date;environmental conditions; andhistory.
  • 16. The method of claim 1, wherein the received context information comprises at least one selected from the group consisting of: context information stored at a server; andcontext information stored at a client.
  • 17. The method of claim 1, wherein receiving context information from a context source comprises: requesting the context information from a context source; andreceiving the context information in response to the request.
  • 18. The method of claim 1, wherein receiving context information from a context source comprises: receiving at least a portion of the context information prior to receiving the spoken user input.
  • 19. The method of claim 1, wherein receiving context information from a context source comprises: receiving at least a portion of the context information after receiving the spoken user input.
  • 20. The method of claim 1, wherein receiving context information from a context source comprises: receiving static context information as part of an initialization step; andreceiving additional context information after receiving the spoken user input.
  • 21. The method of claim 1, wherein receiving context information from a context source comprises: receiving push notification of a change in context information; andresponsive to the push notification, updating locally stored context information.
  • 22. The method of claim 1, wherein the computing device comprises at least one selected from the group consisting of: a telephone;a smartphone;a tablet computer;a laptop computer;a personal digital assistant;a desktop computer;a kiosk;a consumer electronic device;a consumer entertainment device;a music player;a camera;a television;an electronic gaming unit; anda set-top box.
  • 23. The method of claim 1, wherein the received context information further comprises application context.
  • 24. The method of claim 1, wherein the received context information further comprises personal data associated with the user.
  • 25. The method of claim 1, wherein the received context information further comprises data from a database associated with the user.
  • 26. The method of claim 1, wherein the received context information further comprises data obtained from dialog history.
  • 27. The method of claim 1, wherein the received context information further comprises data received from at least one sensor.
  • 28. The method of claim 1, wherein the received context information further comprises application preferences.
  • 29. The method of claim 1, wherein the received context information further comprises application usage history.
  • 30. The method of claim 1, wherein the received context information further comprises data describing an event.
  • 31. The method of claim 1, wherein the received context information further comprises current dialog state.
  • 32. The method of claim 1, wherein the received context information further comprises input previously provided by the user.
  • 33. The method of claim 1, wherein the received context information further comprises location.
  • 34. The method of claim 1, wherein the received context information further comprises local time.
  • 35. The method of claim 1, wherein the received context information further comprises environmental conditions.
  • 36. A computer program product for disambiguating user input to perform a task on a computing device having at least one processor, comprising: a non-transitory computer-readable storage medium; andcomputer program code, encoded on the medium, configured to cause at least one processor communicatively coupled to an output device and to an input device to perform the steps of: causing the output device to prompt a user for input;receiving spoken user input via the input device;receiving context information from a context source;generating a first plurality of candidate interpretations of the received spoken user input;disambiguating the intent of a word in the first plurality of candidate interpretations based on the context information to generate a second plurality of candidate interpretations, wherein the second plurality of candidate interpretations is a subset of the first plurality of candidate interpretations;at the processor, sorting the second plurality of candidate interpretations by relevance based on the context information;at the processor, deriving a representation of user intent based on the sorted second plurality of candidate interpretations;identifying at least one task and at least one parameter for the task, based at least in part on the derived representation of user intent;executing the at least one task using the at least one parameter, to derive a result;generating a dialog response based on the derived result; andcausing the output device to output the generated dialog response.
  • 37. The computer program product of claim 36, wherein: the computer program code configured to cause an output device to prompt the user comprises computer program code configured to cause an output device to prompt the user via a conversational interface; andthe computer program code configured to cause at least one processor to receive the spoken user input comprises computer program code configured to cause at least one processor to receive the spoken user input via the conversational interface.
  • 38. The computer program product of claim 36, wherein the computer program code configured to cause at least one processor to receive the spoken user input further comprises: computer program code configured to cause at least one processor to convert the spoken user input to a text representation by: generating a plurality of candidate text interpretations of the spoken user input; andranking at least a subset of the generated candidate text interpretations;wherein at least one of the generating and ranking steps is performed using the received context information.
  • 39. The computer program product of claim 38, wherein the received context information used in at least one of the generating and ranking steps comprises at least one selected from the group consisting of: data describing an acoustic environment in which the spoken user input is received;data received from at least one sensor;vocabulary obtained from a database associated with the user;vocabulary associated with application preferences;vocabulary obtained from usage history; andcurrent dialog state.
  • 40. The computer program product of claim 36, wherein the computer program code configured to cause at least one processor to prompt the user comprises computer program code configured to cause at least one processor to generate at least one prompt based at least in part on the received context information.
  • 41. The computer program product of claim 36, wherein the computer program code configured to cause at least one processor to disambiguate the received spoken user input based on the context information to derive a representation of user intent comprises computer program code configured to cause at least one processor to perform natural language processing on the received spoken user input based at least in part on the received context information.
  • 42. The computer program product of claim 41, wherein the received context information used in disambiguating the received spoken user input comprises at least one selected from the group consisting of: data describing an event;application context;input previously provided by the user;known information about the user;location;date;environmental conditions; andhistory.
  • 43. The computer program product of claim 36, wherein the computer program code configured to cause at least one processor to identify at least one task and at least one parameter for the task comprises computer program code configured to cause at least one processor to identify at least one task and at least one parameter for the task based at least in part on the received context information.
  • 44. The computer program product of claim 43, wherein the received context information used in identifying at least one task and at least one parameter for the task comprises at least one selected from the group consisting of: data describing an event;data from a database associated with the user;data received from at least one sensor;application context;input previously provided by the user;known information about the user;location;date;environmental conditions; andhistory.
  • 45. The computer program product of claim 36, wherein the computer program code configured to cause at least one processor to generate a dialog response comprises computer program code configured to cause at least one processor to generating a dialog response based at least in part on the received context information.
  • 46. The computer program product of claim 45, wherein the received context information used in generating a dialog response comprises at least one selected from the group consisting of: data from a database associated with the user;application context;input previously provided by the user;known information about the user;location;date;environmental conditions; andhistory.
  • 47. The computer program product of claim 36, wherein the computer program code configured to cause at least one processor to receive context information from a context source comprises: computer program code configured to cause at least one processor to request the context information from a context source; andcomputer program code configured to cause at least one processor to receive the context information in response to the request.
  • 48. The computer program product of claim 36, wherein the computer program code configured to cause at least one processor to receive context information from a context source comprises: computer program code configured to cause at least one processor to receive at least a portion of the context information prior to receiving the spoken user input.
  • 49. The computer program product of claim 36, wherein the computer program code configured to cause at least one processor to receive context information from a context source comprises: computer program code configured to cause at least one processor to receive at least a portion of the context information after receiving the spoken user input.
  • 50. The computer program product of claim 36, wherein the computer program code configured to cause at least one processor to receive context information from a context source comprises: computer program code configured to cause at least one processor to receive static context information as part of an initialization step; andthe computer program code configured to cause at least one processor to receive additional context information after receiving the spoken user input.
  • 51. The computer program product of claim 36, wherein the computer program code configured to cause at least one processor to receive context information from a context source comprises: computer program code configured to cause at least one processor to receive push notification of a change in context information; andcomputer program code configured to cause at least one processor to, responsive to the push notification, update locally stored context information.
  • 52. The computer program product of claim 36, wherein the received context information further comprises application context.
  • 53. The computer program product of claim 36, wherein the received context information further comprises personal data associated with the user.
  • 54. The computer program product of claim 36, wherein the received context information further comprises data from a database associated with the user.
  • 55. The computer program product of claim 36, wherein the received context information further comprises data obtained from dialog history.
  • 56. The computer program product of claim 36, wherein the received context information further comprises data received from at least one sensor.
  • 57. The computer program product of claim 36, wherein the received context information further comprises application preferences.
  • 58. The computer program product of claim 36, wherein the received context information further comprises application usage history.
  • 59. The computer program product of claim 36, wherein the received context information further comprises data describing an event.
  • 60. The computer program product of claim 36, wherein the received context information further comprises current dialog state.
  • 61. The computer program product of claim 36, wherein the received context information further comprises input previously provided by the user.
  • 62. The computer program product of claim 36, wherein the received context information further comprises location.
  • 63. The computer program product of claim 36, wherein the received context information further comprises local time.
  • 64. The computer program product of claim 36, wherein the received context information further comprises environmental conditions.
  • 65. A system for disambiguating user input to perform a task, comprising: an output device, configured to prompt a user for input;an input device, configured to receive spoken user input;at least one processor, communicatively coupled to the output device and to the input device, configured to perform the steps of: receiving context information from a context source;generating a first plurality of candidate interpretations of the received spoken user input;disambiguating the intent of a word in the first plurality of candidate interpretations based on the context information to generate a second plurality of candidate interpretations, wherein the second plurality of candidate interpretations is a subset of the first plurality of candidate interpretations;sorting the second plurality of candidate interpretations by relevance based on the context information;deriving a representation of user intent based on the sorted second plurality of candidate interpretations;identifying at least one task and at least one parameter for the task, based at least in part on the derived representation of user intent;executing the at least one task using the at least one parameter, to derive a result; andgenerating a dialog response based on the derived result.
  • 66. The system of claim 65, wherein: the output device is configured to prompt the user via a conversational interface; andthe input device is configured to receive the spoken user input via the conversational interface;and wherein the at least one processor is configured to convert the spoken user input to a text representation.
  • 67. The system of claim 66, wherein the at least one processor is configured to convert the spoken user input to a text representation by: generating a plurality of candidate text interpretations of the spoken user input; andranking at least a subset of the generated candidate text interpretations;wherein at least one of the generating and ranking steps is performed using the received context information.
  • 68. The system of claim 67, wherein the received context information used in at least one of the generating and ranking comprises at least one selected from the group consisting of: data describing an acoustic environment in which the spoken user input is received;data received from at least one sensor;vocabulary obtained from a database associated with the user;vocabulary associated with application preferences;vocabulary obtained from usage history; andcurrent dialog state.
  • 69. The system of claim 65, wherein the output device is configured to prompt the user by generating at least one prompt based at least in part on the received context information.
  • 70. The system of claim 65, wherein the at least one processor is configured to disambiguate the received spoken user input based on the context information to derive a representation of user intent by performing natural language processing on the received spoken user input based at least in part on the received context information.
  • 71. The system of claim 70, wherein the received context information used in disambiguating the received spoken user input comprises at least one selected from the group consisting of: data describing an event;application context;input previously provided by the user;known information about the user;location;date;environmental conditions; andhistory.
  • 72. The system of claim 65, wherein the at least one processor is configured to identify at least one task and at least one parameter for the task by identifying at least one task and at least one parameter for the task based at least in part on the received context information.
  • 73. The system of claim 72, wherein the received context information used in identifying at least one task and at least one parameter for the task comprises at least one selected from the group consisting of: data describing an event;data from a database associated with the user;data received from at least one sensor;application context;input previously provided by the user;known information about the user;location;date;environmental conditions; andhistory.
  • 74. The system of claim 65, wherein the at least one processor is configured to generate a dialog response by generating a dialog response based at least in part on the received context information.
  • 75. The system of claim 74, wherein the received context information used in generating a dialog response comprises at least one selected from the group consisting of: data from a database associated with the user;application context;input previously provided by the user;known information about the user;location;date;environmental conditions; andhistory.
  • 76. The system of claim 65, wherein the received context information comprises at least one selected from the group consisting of: context information stored at a server; andcontext information stored at a client.
  • 77. The system of claim 65, wherein the at least one processor is configured to receive context information from a context source by: requesting the context information from a context source; andreceiving the context information in response to the request.
  • 78. The system of claim 65, wherein the at least one processor is configured to receive context information from a context source by: receiving at least a portion of the context information prior to receiving the spoken user input.
  • 79. The system of claim 65, wherein the at least one processor is configured to receive context information from a context source by: receiving at least a portion of the context information after receiving the spoken user input.
  • 80. The system of claim 65, wherein the at least one processor is configured to receive context information from a context source by: receiving static context information as part of an initialization step; andreceiving additional context information after receiving the spoken user input.
  • 81. The system of claim 65, wherein the at least one processor is configured to receive context information from a context source by: receiving push notification of a change in context information; andresponsive to the push notification, updating locally stored context information.
  • 82. The system of claim 65, wherein the output device, input device, and at least one processor are implemented as components of at least one selected from the group consisting of: a telephone;a smartphone;a tablet computer;a laptop computer;a personal digital assistant;a desktop computer;a kiosk;a consumer electronic device;a consumer entertainment device;a music player;a camera;a television;an electronic gaming unit; anda set-top box.
  • 83. The system of claim 65, wherein the received context information further comprises application context.
  • 84. The system of claim 65, wherein the received context information further comprises personal data associated with the user.
  • 85. The system of claim 65, wherein the received context information further comprises data from a database associated with the user.
  • 86. The system of claim 65, wherein the received context information further comprises data obtained from dialog history.
  • 87. The system of claim 65, wherein the received context information further comprises data received from at least one sensor.
  • 88. The system of claim 65, wherein the received context information further comprises application preferences.
  • 89. The system of claim 65, wherein the received context information further comprises application usage history.
  • 90. The system of claim 65, wherein the received context information further comprises data describing an event.
  • 91. The system of claim 65, wherein the received context information further comprises current dialog state.
  • 92. The system of claim 65, wherein the received context information further comprises input previously provided by the user.
  • 93. The system of claim 65, wherein the received context information further comprises location.
  • 94. The system of claim 65, wherein the received context information further comprises local time.
  • 95. The system of claim 65, wherein the received context information further comprises environmental conditions.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority as a continuation-in-part of U.S. application Ser. No. 12/479,477, entitled “Contextual Voice Commands”, filed Jun. 5, 2009, the entire disclosure of which is incorporated herein by reference. This application further claims priority as a continuation-in-part of U.S. application Ser. No. 12/987,982, entitled “Intelligent Automated Assistant”, filed Jan. 10, 2011, the entire disclosure of which is incorporated herein by reference. U.S. application Ser. No. 12/987,982 claims priority from U.S. Provisional Patent Application Ser. No. 61/295,774, entitled “Intelligent Automated Assistant”, filed Jan. 18, 2010, the entire disclosure of which is incorporated herein by reference. This application further claims priority from U.S. Provisional Application Ser. No. 61/493,201, entitled “Generating and Processing Data Items That Represent Tasks to Perform”, filed Jun. 3, 2011, the entire disclosure of which is incorporated herein by reference. This application is related to U.S. Utility application Ser. No. 13/251,088, entitled “Generating and Processing Task Items that Represent Tasks to Perform”, filed on the same date as the present application, the entire disclosure of which is incorporated herein by reference. This application is related to U.S. Utility application Ser. No. 13/250,947, entitled “Automatically Adapting User Interfaces for Hands-Free Interaction”, filed on the same date as the present application, the entire disclosure of which is incorporated herein by reference.

US Referenced Citations (3361)
Number Name Date Kind
1559320 Hirsh Oct 1925 A
2180522 Henne Nov 1939 A
2495222 Bierig Jan 1950 A
3704345 Coker et al. Nov 1972 A
3710321 Rubenstein Jan 1973 A
3828132 Flanagan et al. Aug 1974 A
3979557 Schulman et al. Sep 1976 A
4013085 Wright Mar 1977 A
4081631 Feder Mar 1978 A
4090216 Constable May 1978 A
4107784 Van Bemmelen Aug 1978 A
4108211 Tanaka Aug 1978 A
4159536 Kehoe et al. Jun 1979 A
4181821 Pirz et al. Jan 1980 A
4204089 Key et al. May 1980 A
4241286 Gordon Dec 1980 A
4253477 Eichman Mar 1981 A
4278838 Antonov Jul 1981 A
4282405 Taguchi Aug 1981 A
4310721 Manley et al. Jan 1982 A
4332464 Bartulis et al. Jun 1982 A
4348553 Baker et al. Sep 1982 A
4384169 Mozer et al. May 1983 A
4386345 Narveson et al. May 1983 A
4433377 Eustis et al. Feb 1984 A
4451849 Fuhrer May 1984 A
4485439 Rothstein Nov 1984 A
4495644 Parks et al. Jan 1985 A
4513379 Wilson et al. Apr 1985 A
4513435 Sakoe et al. Apr 1985 A
4555775 Pike Nov 1985 A
4577343 Oura Mar 1986 A
4586158 Brandle Apr 1986 A
4587670 Levinson et al. May 1986 A
4589022 Prince et al. May 1986 A
4611346 Bednar et al. Sep 1986 A
4615081 Lindahl Oct 1986 A
4618984 Das et al. Oct 1986 A
4642790 Minshull et al. Feb 1987 A
4653021 Takagi Mar 1987 A
4654875 Srihari et al. Mar 1987 A
4655233 Laughlin Apr 1987 A
4658425 Julstrom Apr 1987 A
4670848 Schramm Jun 1987 A
4677570 Taki Jun 1987 A
4680429 Murdock et al. Jul 1987 A
4680805 Scott Jul 1987 A
4686522 Hernandez et al. Aug 1987 A
4688195 Thompson et al. Aug 1987 A
4692941 Jacks et al. Sep 1987 A
4698625 McCaskill et al. Oct 1987 A
4709390 Atal et al. Nov 1987 A
4713775 Scott et al. Dec 1987 A
4718094 Bahl et al. Jan 1988 A
4724542 Williford Feb 1988 A
4726065 Froessl Feb 1988 A
4727354 Lindsay Feb 1988 A
RE32632 Atkinson Mar 1988 E
4736296 Katayama et al. Apr 1988 A
4750122 Kaji et al. Jun 1988 A
4754489 Bokser Jun 1988 A
4755811 Slavin et al. Jul 1988 A
4776016 Hansen Oct 1988 A
4783804 Juang et al. Nov 1988 A
4783807 Marley Nov 1988 A
4785413 Atsumi Nov 1988 A
4790028 Ramage Dec 1988 A
4797930 Goudie Jan 1989 A
4802223 Lin et al. Jan 1989 A
4803729 Baker Feb 1989 A
4807752 Chodorow Feb 1989 A
4811243 Racine Mar 1989 A
4813074 Marcus Mar 1989 A
4819271 Bahl et al. Apr 1989 A
4827518 Feustel et al. May 1989 A
4827520 Zeinstra May 1989 A
4829576 Porter May 1989 A
4829583 Monroe et al. May 1989 A
4831551 Schalk et al. May 1989 A
4833712 Bahl et al. May 1989 A
4833718 Sprague May 1989 A
4837798 Cohen et al. Jun 1989 A
4837831 Gillick et al. Jun 1989 A
4839853 Deerwester et al. Jun 1989 A
4852168 Sprague Jul 1989 A
4862504 Nomura Aug 1989 A
4875187 Smith Oct 1989 A
4878230 Murakami et al. Oct 1989 A
4887212 Zamora et al. Dec 1989 A
4896359 Yamamoto et al. Jan 1990 A
4903305 Gillick et al. Feb 1990 A
4905163 Garber et al. Feb 1990 A
4908867 Silverman Mar 1990 A
4914586 Swinehart et al. Apr 1990 A
4914590 Loatman et al. Apr 1990 A
4918723 Iggulden et al. Apr 1990 A
4926491 Maeda et al. May 1990 A
4928307 Lynn May 1990 A
4931783 Atkinson Jun 1990 A
4935954 Thompson et al. Jun 1990 A
4939639 Lee et al. Jul 1990 A
4941488 Marxer et al. Jul 1990 A
4944013 Gouvianakis et al. Jul 1990 A
4945504 Nakama et al. Jul 1990 A
4953106 Gansner et al. Aug 1990 A
4955047 Morganstein et al. Sep 1990 A
4965763 Zamora Oct 1990 A
4972462 Shibata Nov 1990 A
4974191 Amirghodsi et al. Nov 1990 A
4975975 Filipski Dec 1990 A
4977598 Doddington et al. Dec 1990 A
4980916 Zinser Dec 1990 A
4985924 Matsuura Jan 1991 A
4992972 Brooks et al. Feb 1991 A
4994966 Hutchins Feb 1991 A
4994983 Landell et al. Feb 1991 A
5001774 Lee Mar 1991 A
5003577 Ertz et al. Mar 1991 A
5007095 Nara et al. Apr 1991 A
5007098 Kumagai Apr 1991 A
5010574 Wang Apr 1991 A
5016002 Levanto May 1991 A
5020112 Chou May 1991 A
5021971 Lindsay Jun 1991 A
5022081 Hirose et al. Jun 1991 A
5027110 Chang et al. Jun 1991 A
5027406 Roberts et al. Jun 1991 A
5027408 Kroeker et al. Jun 1991 A
5029211 Ozawa Jul 1991 A
5031217 Nishimura Jul 1991 A
5032989 Tornetta Jul 1991 A
5033087 Bahl et al. Jul 1991 A
5040218 Vitale et al. Aug 1991 A
5046099 Nishimura Sep 1991 A
5047614 Bianco Sep 1991 A
5047617 Shepard et al. Sep 1991 A
5050215 Nishimura Sep 1991 A
5053758 Cornett et al. Oct 1991 A
5054084 Tanaka et al. Oct 1991 A
5057915 Kohorn et al. Oct 1991 A
5067158 Arjmand Nov 1991 A
5067503 Stile Nov 1991 A
5072452 Brown et al. Dec 1991 A
5075896 Wilcox et al. Dec 1991 A
5079723 Herceg et al. Jan 1992 A
5083119 Trevett et al. Jan 1992 A
5083268 Hemphill et al. Jan 1992 A
5086792 Chodorow Feb 1992 A
5090012 Kajiyama et al. Feb 1992 A
5091790 Silverberg Feb 1992 A
5091945 Kleijn Feb 1992 A
5103498 Lanier et al. Apr 1992 A
5109509 Katayama et al. Apr 1992 A
5111423 Kopec, Jr. et al. May 1992 A
5119079 Hube et al. Jun 1992 A
5122951 Kamiya Jun 1992 A
5123103 Ohtaki et al. Jun 1992 A
5125022 Hunt et al. Jun 1992 A
5125030 Nomura et al. Jun 1992 A
5127043 Hunt et al. Jun 1992 A
5127053 Koch Jun 1992 A
5127055 Larkey Jun 1992 A
5128672 Kaehler Jul 1992 A
5133011 McKiel, Jr. Jul 1992 A
5133023 Bokser Jul 1992 A
5142584 Ozawa Aug 1992 A
5144875 Nakada Sep 1992 A
5148541 Lee et al. Sep 1992 A
5153913 Kandefer et al. Oct 1992 A
5157610 Asano et al. Oct 1992 A
5157779 Washburn et al. Oct 1992 A
5161102 Griffin et al. Nov 1992 A
5164900 Bernath Nov 1992 A
5164982 Davis Nov 1992 A
5165007 Bahl et al. Nov 1992 A
5167004 Netsch et al. Nov 1992 A
5175536 Aschliman et al. Dec 1992 A
5175803 Yeh Dec 1992 A
5175814 Anick et al. Dec 1992 A
5179627 Sweet et al. Jan 1993 A
5179652 Rozmanith et al. Jan 1993 A
5194950 Murakami et al. Mar 1993 A
5195034 Garneau et al. Mar 1993 A
5195167 Bahl et al. Mar 1993 A
5197005 Shwartz et al. Mar 1993 A
5199077 Wilcox et al. Mar 1993 A
5201034 Matsuura et al. Apr 1993 A
5202952 Gillick et al. Apr 1993 A
5208862 Ozawa May 1993 A
5210689 Baker et al. May 1993 A
5212638 Bernath May 1993 A
5212821 Gorin et al. May 1993 A
5216747 Hardwick et al. Jun 1993 A
5218700 Beechick Jun 1993 A
5220629 Kosaka et al. Jun 1993 A
5220639 Lee Jun 1993 A
5220657 Bly et al. Jun 1993 A
5222146 Bahl et al. Jun 1993 A
5230036 Akamine et al. Jul 1993 A
5231670 Goldhor et al. Jul 1993 A
5235680 Bijnagte Aug 1993 A
5237502 White et al. Aug 1993 A
5241619 Schwartz et al. Aug 1993 A
5252951 Tannenbaum et al. Oct 1993 A
5253325 Clark Oct 1993 A
5257387 Richek et al. Oct 1993 A
5260697 Barrett et al. Nov 1993 A
5266931 Tanaka Nov 1993 A
5266949 Rossi Nov 1993 A
5267345 Brown et al. Nov 1993 A
5268990 Cohen et al. Dec 1993 A
5274771 Hamilton et al. Dec 1993 A
5274818 Vasilevsky et al. Dec 1993 A
5276616 Kuga et al. Jan 1994 A
5276794 Lamb, Jr. Jan 1994 A
5278980 Pedersen et al. Jan 1994 A
5282265 Rohra Suda et al. Jan 1994 A
5283818 Klausner et al. Feb 1994 A
5287448 Nicol et al. Feb 1994 A
5289562 Mizuta et al. Feb 1994 A
RE34562 Murakami et al. Mar 1994 E
5291286 Murakami et al. Mar 1994 A
5293254 Eschbach Mar 1994 A
5293448 Honda Mar 1994 A
5293452 Picone et al. Mar 1994 A
5296642 Konishi Mar 1994 A
5297170 Eyuboglu et al. Mar 1994 A
5297194 Hunt et al. Mar 1994 A
5299125 Baker et al. Mar 1994 A
5299284 Roy Mar 1994 A
5301109 Landauer et al. Apr 1994 A
5303406 Hansen et al. Apr 1994 A
5305205 Weber et al. Apr 1994 A
5305768 Gross et al. Apr 1994 A
5309359 Katz et al. May 1994 A
5315689 Kanazawa et al. May 1994 A
5317507 Gallant May 1994 A
5317647 Pagallo May 1994 A
5325297 Bird et al. Jun 1994 A
5325298 Gallant Jun 1994 A
5325462 Farrett Jun 1994 A
5326270 Ostby et al. Jul 1994 A
5327342 Roy Jul 1994 A
5327498 Hamon Jul 1994 A
5329608 Bocchieri et al. Jul 1994 A
5333236 Bahl et al. Jul 1994 A
5333266 Boaz et al. Jul 1994 A
5333275 Wheatley et al. Jul 1994 A
5335011 Addeo et al. Aug 1994 A
5335276 Thompson et al. Aug 1994 A
5341293 Vertelney et al. Aug 1994 A
5341466 Perlin et al. Aug 1994 A
5345536 Hoshimi et al. Sep 1994 A
5349645 Zhao Sep 1994 A
5353374 Wilson et al. Oct 1994 A
5353376 Oh et al. Oct 1994 A
5353377 Kuroda et al. Oct 1994 A
5353408 Kato et al. Oct 1994 A
5353432 Richek et al. Oct 1994 A
5357431 Nakada et al. Oct 1994 A
5367640 Hamilton et al. Nov 1994 A
5369575 Lamberti et al. Nov 1994 A
5369577 Kadashevich et al. Nov 1994 A
5371853 Kao et al. Dec 1994 A
5371901 Reed et al. Dec 1994 A
5373566 Murdock Dec 1994 A
5377103 Lamberti et al. Dec 1994 A
5377301 Rosenberg et al. Dec 1994 A
5377303 Firman Dec 1994 A
5384671 Fisher Jan 1995 A
5384892 Strong Jan 1995 A
5384893 Hutchins Jan 1995 A
5386494 White Jan 1995 A
5386556 Hedin et al. Jan 1995 A
5390236 Klausner et al. Feb 1995 A
5390279 Strong Feb 1995 A
5390281 Luciw et al. Feb 1995 A
5392419 Walton Feb 1995 A
5396625 Parkes Mar 1995 A
5400434 Pearson Mar 1995 A
5404295 Katz et al. Apr 1995 A
5406305 Shimomura et al. Apr 1995 A
5408060 Muurinen Apr 1995 A
5412756 Bauman et al. May 1995 A
5412804 Krishna May 1995 A
5412806 Du et al. May 1995 A
5418951 Damashek May 1995 A
5422656 Allard et al. Jun 1995 A
5424947 Nagao et al. Jun 1995 A
5425108 Hwang et al. Jun 1995 A
5428731 Powers, III Jun 1995 A
5434777 Luciw Jul 1995 A
5440615 Caccuro et al. Aug 1995 A
5442598 Haikawa et al. Aug 1995 A
5442780 Takanashi et al. Aug 1995 A
5444823 Nguyen Aug 1995 A
5449368 Kuzmak Sep 1995 A
5450523 Zhao Sep 1995 A
5455888 Iyengar et al. Oct 1995 A
5457768 Tsuboi et al. Oct 1995 A
5459488 Geiser Oct 1995 A
5463696 Beernink et al. Oct 1995 A
5463725 Henckel et al. Oct 1995 A
5465401 Thompson Nov 1995 A
5469529 Bimbot et al. Nov 1995 A
5471611 McGregor Nov 1995 A
5473728 Luginbuhl et al. Dec 1995 A
5475587 Anick et al. Dec 1995 A
5475796 Iwata Dec 1995 A
5477447 Luciw et al. Dec 1995 A
5477448 Golding et al. Dec 1995 A
5477451 Brown et al. Dec 1995 A
5479488 Lenning et al. Dec 1995 A
5481739 Staats Jan 1996 A
5483261 Yasutake Jan 1996 A
5485372 Golding et al. Jan 1996 A
5485543 Aso Jan 1996 A
5488204 Mead et al. Jan 1996 A
5488727 Agrawal et al. Jan 1996 A
5490234 Narayan Feb 1996 A
5491758 Bellegarda et al. Feb 1996 A
5491772 Hardwick et al. Feb 1996 A
5493677 Balogh Feb 1996 A
5495604 Harding et al. Feb 1996 A
5497319 Chong et al. Mar 1996 A
5500903 Gulli Mar 1996 A
5500905 Martin et al. Mar 1996 A
5500937 Thompson-Rohrlich Mar 1996 A
5502774 Bellegarda et al. Mar 1996 A
5502790 Yi Mar 1996 A
5502791 Nishimura et al. Mar 1996 A
5515475 Gupta et al. May 1996 A
5521816 Roche et al. May 1996 A
5524140 Klausner et al. Jun 1996 A
5533182 Bates et al. Jul 1996 A
5535121 Roche et al. Jul 1996 A
5536902 Serra et al. Jul 1996 A
5537317 Schabes et al. Jul 1996 A
5537618 Boulton et al. Jul 1996 A
5537647 Hermansky et al. Jul 1996 A
5543588 Bisset et al. Aug 1996 A
5543897 Altrieth, III Aug 1996 A
5544264 Bellegarda et al. Aug 1996 A
5548507 Martino et al. Aug 1996 A
5555343 Luther Sep 1996 A
5555344 Zunkler Sep 1996 A
5559301 Bryan, Jr. et al. Sep 1996 A
5559945 Beaudet et al. Sep 1996 A
5564446 Wiltshire Oct 1996 A
5565888 Selker Oct 1996 A
5568536 Tiller et al. Oct 1996 A
5568540 Greco et al. Oct 1996 A
5570324 Geil Oct 1996 A
5572576 Klausner et al. Nov 1996 A
5574823 Hassanein et al. Nov 1996 A
5574824 Slyh et al. Nov 1996 A
5577135 Grajski et al. Nov 1996 A
5577164 Kaneko et al. Nov 1996 A
5577241 Spencer Nov 1996 A
5578808 Taylor Nov 1996 A
5579037 Tahara et al. Nov 1996 A
5579436 Chou et al. Nov 1996 A
5581484 Prince Dec 1996 A
5581652 Abe et al. Dec 1996 A
5581655 Cohen et al. Dec 1996 A
5583993 Foster et al. Dec 1996 A
5584024 Shwartz Dec 1996 A
5594641 Kaplan et al. Jan 1997 A
5596260 Moravec et al. Jan 1997 A
5596676 Swaminathan et al. Jan 1997 A
5596994 Bro Jan 1997 A
5608624 Luciw Mar 1997 A
5608698 Yamanoi et al. Mar 1997 A
5608841 Tsuboka Mar 1997 A
5610812 Schabes et al. Mar 1997 A
5613036 Strong Mar 1997 A
5613122 Burnard et al. Mar 1997 A
5615378 Nishino et al. Mar 1997 A
5615384 Allard et al. Mar 1997 A
5616876 Cluts Apr 1997 A
5617386 Choi Apr 1997 A
5617507 Lee et al. Apr 1997 A
5617539 Ludwig et al. Apr 1997 A
5619583 Page et al. Apr 1997 A
5619694 Shimazu Apr 1997 A
5621859 Schwartz et al. Apr 1997 A
5621903 Luciw et al. Apr 1997 A
5627939 Huang et al. May 1997 A
5634084 Malsheen et al. May 1997 A
5636325 Farrett Jun 1997 A
5638425 Meador, III et al. Jun 1997 A
5638489 Tsuboka Jun 1997 A
5638523 Mullet et al. Jun 1997 A
5640487 Lau et al. Jun 1997 A
5642464 Yue et al. Jun 1997 A
5642466 Narayan Jun 1997 A
5642519 Martin Jun 1997 A
5644656 Akra et al. Jul 1997 A
5644727 Atkins Jul 1997 A
5644735 Luciw et al. Jul 1997 A
5649060 Ellozy et al. Jul 1997 A
5652828 Silverman Jul 1997 A
5652884 Palevich Jul 1997 A
5652897 Linebarger et al. Jul 1997 A
5661787 Pocock Aug 1997 A
5664055 Kroon Sep 1997 A
5670985 Cappels, Sr. et al. Sep 1997 A
5675819 Schuetze Oct 1997 A
5682475 Johnson et al. Oct 1997 A
5682539 Conrad et al. Oct 1997 A
5684513 Decker Nov 1997 A
5687077 Gough, Jr. Nov 1997 A
5689287 Mackinlay et al. Nov 1997 A
5689618 Gasper et al. Nov 1997 A
5692205 Berry et al. Nov 1997 A
5696962 Kupiec Dec 1997 A
5699082 Marks et al. Dec 1997 A
5701400 Amado Dec 1997 A
5706442 Anderson et al. Jan 1998 A
5708659 Rostoker et al. Jan 1998 A
5708822 Wical Jan 1998 A
5710886 Christensen et al. Jan 1998 A
5710922 Alley et al. Jan 1998 A
5712949 Kato et al. Jan 1998 A
5712957 Waibel et al. Jan 1998 A
5715468 Budzinski Feb 1998 A
5717877 Orion et al. Feb 1998 A
5721827 Logan et al. Feb 1998 A
5721949 Smith et al. Feb 1998 A
5724406 Juster Mar 1998 A
5724985 Snell et al. Mar 1998 A
5726672 Hernandez et al. Mar 1998 A
5727950 Cook et al. Mar 1998 A
5729694 Holzrichter et al. Mar 1998 A
5729704 Stone et al. Mar 1998 A
5732216 Logan et al. Mar 1998 A
5732390 Katayanagi et al. Mar 1998 A
5732395 Silverman Mar 1998 A
5734750 Arai et al. Mar 1998 A
5734791 Acero et al. Mar 1998 A
5736974 Selker Apr 1998 A
5737487 Bellegarda et al. Apr 1998 A
5737734 Schultz Apr 1998 A
5739451 Winksy et al. Apr 1998 A
5740143 Suetomi Apr 1998 A
5742705 Parthasarathy Apr 1998 A
5742736 Haddock Apr 1998 A
5745116 Pisutha-Arnond Apr 1998 A
5745873 Braida et al. Apr 1998 A
5748512 Vargas May 1998 A
5748974 Johnson May 1998 A
5749071 Silverman May 1998 A
5749081 Whiteis May 1998 A
5751906 Silverman May 1998 A
5757358 Osga May 1998 A
5757979 Hongo et al. May 1998 A
5758079 Ludwig et al. May 1998 A
5758083 Singh et al. May 1998 A
5758314 McKenna May 1998 A
5759101 Von Kohorn Jun 1998 A
5761640 Kalyanswamy et al. Jun 1998 A
5765131 Stentiford et al. Jun 1998 A
5765168 Burrows Jun 1998 A
5771276 Wolf Jun 1998 A
5774834 Visser Jun 1998 A
5774855 Foti et al. Jun 1998 A
5774859 Houser et al. Jun 1998 A
5777614 Ando et al. Jul 1998 A
5778405 Ogawa Jul 1998 A
5790978 Olive et al. Aug 1998 A
5794050 Dahlgren et al. Aug 1998 A
5794182 Manduchi et al. Aug 1998 A
5794207 Walker et al. Aug 1998 A
5794237 Gore, Jr. Aug 1998 A
5797008 Burrows Aug 1998 A
5799268 Boguraev Aug 1998 A
5799269 Schabes et al. Aug 1998 A
5799276 Komissarchik et al. Aug 1998 A
5801692 Muzio et al. Sep 1998 A
5802466 Gallant et al. Sep 1998 A
5802526 Fawcett et al. Sep 1998 A
5812697 Sakai et al. Sep 1998 A
5812698 Platt et al. Sep 1998 A
5815142 Allard et al. Sep 1998 A
5815225 Nelson Sep 1998 A
5818142 Edleblute et al. Oct 1998 A
5818451 Bertram et al. Oct 1998 A
5818924 King et al. Oct 1998 A
5822288 Shinada Oct 1998 A
5822720 Bookman et al. Oct 1998 A
5822730 Roth et al. Oct 1998 A
5822743 Gupta et al. Oct 1998 A
5825349 Meier et al. Oct 1998 A
5825352 Bisset et al. Oct 1998 A
5825881 Colvin, Sr. Oct 1998 A
5826261 Spencer Oct 1998 A
5828768 Eatwell et al. Oct 1998 A
5828999 Bellegarda et al. Oct 1998 A
5832433 Yashchin et al. Nov 1998 A
5832435 Silverman Nov 1998 A
5833134 Ho et al. Nov 1998 A
5835077 Dao et al. Nov 1998 A
5835079 Shieh Nov 1998 A
5835721 Donahue et al. Nov 1998 A
5835732 Kikinis et al. Nov 1998 A
5835893 Ushioda Nov 1998 A
5839106 Bellegarda Nov 1998 A
5841902 Tu Nov 1998 A
5842165 Raman et al. Nov 1998 A
5845255 Mayaud Dec 1998 A
5848410 Walls et al. Dec 1998 A
5850480 Scanlon Dec 1998 A
5850629 Holm et al. Dec 1998 A
5854893 Ludwig et al. Dec 1998 A
5855000 Waibel et al. Dec 1998 A
5857184 Lynch Jan 1999 A
5859636 Pandit Jan 1999 A
5860063 Gorin et al. Jan 1999 A
5860064 Henton Jan 1999 A
5860075 Hashizume et al. Jan 1999 A
5862223 Walker et al. Jan 1999 A
5862233 Poletti Jan 1999 A
5864806 Mokbel et al. Jan 1999 A
5864815 Rozak et al. Jan 1999 A
5864844 James et al. Jan 1999 A
5864855 Ruocco et al. Jan 1999 A
5864868 Contois Jan 1999 A
5867799 Lang et al. Feb 1999 A
5870710 Ozawa et al. Feb 1999 A
5873056 Liddy et al. Feb 1999 A
5875427 Yamazaki Feb 1999 A
5875429 Douglas Feb 1999 A
5875437 Atkins Feb 1999 A
5876396 Lo et al. Mar 1999 A
5877751 Kanemitsu et al. Mar 1999 A
5877757 Baldwin et al. Mar 1999 A
5878393 Hata et al. Mar 1999 A
5878394 Muhling Mar 1999 A
5878396 Henton Mar 1999 A
5880411 Gillespie et al. Mar 1999 A
5880731 Liles et al. Mar 1999 A
5884039 Ludwig et al. Mar 1999 A
5884323 Hawkins et al. Mar 1999 A
5890117 Silverman Mar 1999 A
5890122 Van et al. Mar 1999 A
5891180 Greeninger et al. Apr 1999 A
5893126 Drews et al. Apr 1999 A
5893132 Huffman et al. Apr 1999 A
5895448 Vysotsky et al. Apr 1999 A
5895464 Bhandari et al. Apr 1999 A
5895466 Goldberg et al. Apr 1999 A
5896321 Miller et al. Apr 1999 A
5896500 Ludwig et al. Apr 1999 A
5899972 Miyazawa et al. May 1999 A
5905498 Diament et al. May 1999 A
5909666 Gould et al. Jun 1999 A
5912951 Checchio et al. Jun 1999 A
5912952 Brendzel Jun 1999 A
5913193 Huang et al. Jun 1999 A
5915001 Uppaluru et al. Jun 1999 A
5915236 Gould et al. Jun 1999 A
5915238 Tjaden Jun 1999 A
5915249 Spencer Jun 1999 A
5917487 Ulrich Jun 1999 A
5918303 Yamaura et al. Jun 1999 A
5920327 Seidensticker, Jr. Jul 1999 A
5920836 Gould et al. Jul 1999 A
5920837 Gould et al. Jul 1999 A
5923757 Hocker et al. Jul 1999 A
5924068 Richard et al. Jul 1999 A
5926769 Valimaa et al. Jul 1999 A
5926789 Barbara et al. Jul 1999 A
5930408 Seto Jul 1999 A
5930751 Cohrs et al. Jul 1999 A
5930754 Karaali et al. Jul 1999 A
5930769 Rose Jul 1999 A
5930783 Li et al. Jul 1999 A
5933477 Wu Aug 1999 A
5933806 Beyerlein et al. Aug 1999 A
5933822 Braden-Harder et al. Aug 1999 A
5936926 Yokouchi et al. Aug 1999 A
5937163 Lee et al. Aug 1999 A
5940811 Norris Aug 1999 A
5940841 Schmuck et al. Aug 1999 A
5941944 Messerly Aug 1999 A
5943043 Furuhata et al. Aug 1999 A
5943049 Matsubara et al. Aug 1999 A
5943052 Allen et al. Aug 1999 A
5943429 Haendel et al. Aug 1999 A
5943443 Itonori et al. Aug 1999 A
5943670 Prager Aug 1999 A
5946647 Miller et al. Aug 1999 A
5948040 DeLorme et al. Sep 1999 A
5949961 Sharman Sep 1999 A
5950123 Schwelb et al. Sep 1999 A
5952992 Helms Sep 1999 A
5953541 King et al. Sep 1999 A
5956021 Kubota et al. Sep 1999 A
5956699 Wong et al. Sep 1999 A
5960394 Gould et al. Sep 1999 A
5960422 Prasad Sep 1999 A
5963208 Dolan et al. Oct 1999 A
5963924 Williams et al. Oct 1999 A
5963964 Nielsen Oct 1999 A
5966126 Szabo Oct 1999 A
5970446 Goldberg Oct 1999 A
5970474 LeRoy et al. Oct 1999 A
5973676 Kawakura Oct 1999 A
5974146 Randle et al. Oct 1999 A
5977950 Rhyne Nov 1999 A
5982352 Pryor Nov 1999 A
5982891 Ginter et al. Nov 1999 A
5982902 Terano Nov 1999 A
5983179 Gould Nov 1999 A
5983216 Kirsch et al. Nov 1999 A
5987132 Rowney Nov 1999 A
5987140 Rowney et al. Nov 1999 A
5987401 Trudeau Nov 1999 A
5987404 Della Pietra et al. Nov 1999 A
5987440 O'Neil et al. Nov 1999 A
5990887 Redpath et al. Nov 1999 A
5991441 Jourjine Nov 1999 A
5995460 Takagi et al. Nov 1999 A
5995590 Brunet et al. Nov 1999 A
5998972 Gong Dec 1999 A
5999169 Lee Dec 1999 A
5999895 Forest Dec 1999 A
5999908 Abelow Dec 1999 A
5999927 Tukey et al. Dec 1999 A
6006274 Hawkins et al. Dec 1999 A
6009237 Hirabayashi et al. Dec 1999 A
6011585 Anderson Jan 2000 A
6014428 Wolf Jan 2000 A
6016471 Kuhn et al. Jan 2000 A
6018705 Gaudet Jan 2000 A
6018711 French-St. George et al. Jan 2000 A
6020881 Naughton et al. Feb 2000 A
6023536 Visser Feb 2000 A
6023676 Erell Feb 2000 A
6023684 Pearson Feb 2000 A
6024288 Gottlich et al. Feb 2000 A
6026345 Shah et al. Feb 2000 A
6026375 Hall et al. Feb 2000 A
6026388 Liddy et al. Feb 2000 A
6026393 Gupta et al. Feb 2000 A
6029132 Kuhn et al. Feb 2000 A
6029135 Krasle Feb 2000 A
6035267 Watanabe et al. Mar 2000 A
6035303 Baer et al. Mar 2000 A
6035336 Lu et al. Mar 2000 A
6038533 Buchsbaum et al. Mar 2000 A
6040824 Maekawa et al. Mar 2000 A
6041023 Lakhansingh Mar 2000 A
6047255 Williamson Apr 2000 A
6052654 Gaudet et al. Apr 2000 A
6052656 Suda et al. Apr 2000 A
6054990 Tran Apr 2000 A
6055514 Wren Apr 2000 A
6055531 Bennett et al. Apr 2000 A
6064767 Muir et al. May 2000 A
6064959 Young et al. May 2000 A
6064960 Bellegarda et al. May 2000 A
6064963 Gainsboro May 2000 A
6067519 Lowry May 2000 A
6069648 Suso et al. May 2000 A
6070138 Iwata May 2000 A
6070139 Miyazawa et al. May 2000 A
6070140 Tran May 2000 A
6070147 Harms et al. May 2000 A
6073033 Campo Jun 2000 A
6073036 Heikkinen et al. Jun 2000 A
6073097 Gould et al. Jun 2000 A
6076051 Messerly et al. Jun 2000 A
6076060 Lin et al. Jun 2000 A
6076088 Paik et al. Jun 2000 A
6078914 Redfern Jun 2000 A
6081750 Hoffberg et al. Jun 2000 A
6081774 de Hita et al. Jun 2000 A
6081780 Lumelsky Jun 2000 A
6094649 Bowen et al. Jun 2000 A
6085204 Chijiwa et al. Jul 2000 A
6088671 Gould et al. Jul 2000 A
6088731 Kiraly et al. Jul 2000 A
6092043 Squires et al. Jul 2000 A
6097391 Wilcox Aug 2000 A
6101468 Gould et al. Aug 2000 A
6101470 Eide et al. Aug 2000 A
6105865 Hardesty Aug 2000 A
6108627 Sabourin Aug 2000 A
6108640 Slotznick Aug 2000 A
6111562 Downs et al. Aug 2000 A
6111572 Blair et al. Aug 2000 A
6116907 Baker et al. Sep 2000 A
6119101 Peckover Sep 2000 A
6121960 Carroll et al. Sep 2000 A
6122340 Darley et al. Sep 2000 A
6122614 Kahn et al. Sep 2000 A
6122616 Henton Sep 2000 A
6122647 Horowitz et al. Sep 2000 A
6125284 Moore et al. Sep 2000 A
6125346 Nishimura et al. Sep 2000 A
6125356 Brockman et al. Sep 2000 A
6129582 Wilhite et al. Oct 2000 A
6138098 Shieber et al. Oct 2000 A
6138158 Boyle et al. Oct 2000 A
6141642 Oh Oct 2000 A
6141644 Kuhn et al. Oct 2000 A
6144377 Oppermann et al. Nov 2000 A
6144380 Shwarts et al. Nov 2000 A
6144938 Surace et al. Nov 2000 A
6144939 Pearson et al. Nov 2000 A
6151401 Annaratone Nov 2000 A
6154551 Frenkel Nov 2000 A
6154720 Onishi et al. Nov 2000 A
6157935 Tran et al. Dec 2000 A
6161084 Messerly et al. Dec 2000 A
6161087 Wightman et al. Dec 2000 A
6161944 Leman Dec 2000 A
6163769 Acero et al. Dec 2000 A
6163809 Buckley Dec 2000 A
6167369 Schulze Dec 2000 A
6169538 Nowlan et al. Jan 2001 B1
6172948 Keller et al. Jan 2001 B1
6173194 Vanttila Jan 2001 B1
6173251 Ito et al. Jan 2001 B1
6173261 Arai et al. Jan 2001 B1
6173263 Conkie Jan 2001 B1
6173279 Levin et al. Jan 2001 B1
6177905 Welch Jan 2001 B1
6177931 Alexander et al. Jan 2001 B1
6179432 Zhang et al. Jan 2001 B1
6182028 Karaali et al. Jan 2001 B1
6185533 Holm et al. Feb 2001 B1
6188391 Seely et al. Feb 2001 B1
6188999 Moody Feb 2001 B1
6191939 Burnett Feb 2001 B1
6192253 Charlier et al. Feb 2001 B1
6192340 Abecassis Feb 2001 B1
6195641 Loring et al. Feb 2001 B1
6205456 Nakao Mar 2001 B1
6208044 Viswanadham et al. Mar 2001 B1
6208932 Ohmura et al. Mar 2001 B1
6208956 Motoyama Mar 2001 B1
6208964 Sabourin Mar 2001 B1
6208967 Pauws et al. Mar 2001 B1
6208971 Bellegarda et al. Mar 2001 B1
6212564 Harter et al. Apr 2001 B1
6216102 Martino et al. Apr 2001 B1
6216131 Liu et al. Apr 2001 B1
6217183 Shipman Apr 2001 B1
6222347 Gong Apr 2001 B1
6226403 Parthasarathy May 2001 B1
6226533 Akahane May 2001 B1
6226614 Mizuno et al. May 2001 B1
6226655 Borman et al. May 2001 B1
6230322 Saib et al. May 2001 B1
6232539 Looney et al. May 2001 B1
6232966 Kurlander May 2001 B1
6233545 Datig May 2001 B1
6233547 Denber et al. May 2001 B1
6233559 Balakrishnan May 2001 B1
6233578 Machihara et al. May 2001 B1
6237025 Ludwig et al. May 2001 B1
6240303 Katzur May 2001 B1
6243681 Guji et al. Jun 2001 B1
6246981 Papineni et al. Jun 2001 B1
6248946 Dwek Jun 2001 B1
6249606 Kiraly et al. Jun 2001 B1
6259436 Moon et al. Jul 2001 B1
6259826 Pollard et al. Jul 2001 B1
6260011 Heckerman et al. Jul 2001 B1
6260013 Sejnoha Jul 2001 B1
6260016 Holm et al. Jul 2001 B1
6260024 Shkedy Jul 2001 B1
6266637 Donovan et al. Jul 2001 B1
6268859 Andresen et al. Jul 2001 B1
6269712 Zentmyer Aug 2001 B1
6271835 Hoeksma Aug 2001 B1
6272456 De Campos Aug 2001 B1
6272464 Kiraz et al. Aug 2001 B1
6275795 Tzirkel-Hancock Aug 2001 B1
6275824 O'Flaherty et al. Aug 2001 B1
6278443 Amro et al. Aug 2001 B1
6278970 Milner Aug 2001 B1
6282507 Horiguchi et al. Aug 2001 B1
6285785 Bellegarda et al. Sep 2001 B1
6285786 Seni et al. Sep 2001 B1
6289085 Miyashita et al. Sep 2001 B1
6289124 Okamoto Sep 2001 B1
6289301 Higginbotham et al. Sep 2001 B1
6289353 Hazlehurst et al. Sep 2001 B1
6292772 Kantrowitz Sep 2001 B1
6292778 Sukkar Sep 2001 B1
6295390 Kobayashi et al. Sep 2001 B1
6295541 Bodnar et al. Sep 2001 B1
6297818 Ulrich et al. Oct 2001 B1
6298314 Blackadar et al. Oct 2001 B1
6298321 Karlov et al. Oct 2001 B1
6300947 Kanevsky Oct 2001 B1
6304844 Pan et al. Oct 2001 B1
6304846 George et al. Oct 2001 B1
6307548 Flinchem et al. Oct 2001 B1
6308149 Gaussier et al. Oct 2001 B1
6310610 Beaton et al. Oct 2001 B1
6311157 Strong Oct 2001 B1
6311189 deVries et al. Oct 2001 B1
6317237 Nakao et al. Nov 2001 B1
6317594 Gossman et al. Nov 2001 B1
6317707 Bangalore et al. Nov 2001 B1
6317831 King Nov 2001 B1
6321092 Fitch et al. Nov 2001 B1
6321179 Glance et al. Nov 2001 B1
6323846 Westerman et al. Nov 2001 B1
6324502 Handel et al. Nov 2001 B1
6324512 Junqua Nov 2001 B1
6330538 Breen Dec 2001 B1
6331867 Eberhard et al. Dec 2001 B1
6332175 Birrell et al. Dec 2001 B1
6334103 Surace et al. Dec 2001 B1
6335722 Tani et al. Jan 2002 B1
6336365 Blackadar et al. Jan 2002 B1
6336727 Kim Jan 2002 B1
6340937 Stepita-Klauco Jan 2002 B1
6341316 Kloba et al. Jan 2002 B1
6343267 Kuhn et al. Jan 2002 B1
6345250 Martin Feb 2002 B1
6351522 Vitikainen Feb 2002 B1
6351762 Ludwig et al. Feb 2002 B1
6353442 Masui Mar 2002 B1
6353794 Davis Mar 2002 B1
6356287 Ruberry et al. Mar 2002 B1
6356854 Schubert et al. Mar 2002 B1
6356864 Foltz et al. Mar 2002 B1
6356905 Gershman et al. Mar 2002 B1
6357147 Darley et al. Mar 2002 B1
6359572 Vale Mar 2002 B1
6359970 Burgess Mar 2002 B1
6360227 Aggarwal et al. Mar 2002 B1
6360237 Schulz et al. Mar 2002 B1
6363348 Besling et al. Mar 2002 B1
6366883 Campbell et al. Apr 2002 B1
6366884 Belllegarda et al. Apr 2002 B1
6374217 Bellegarda Apr 2002 B1
6377530 Burrows Apr 2002 B1
6377925 Greene, Jr. et al. Apr 2002 B1
6377928 Saxena et al. Apr 2002 B1
6381593 Yano et al. Apr 2002 B1
6385586 Dietz May 2002 B1
6385662 Moon et al. May 2002 B1
6389114 Dowens et al. May 2002 B1
6397183 Baba et al. May 2002 B1
6397186 Bush et al. May 2002 B1
6400806 Uppaluru Jun 2002 B1
6401065 Kanevsky et al. Jun 2002 B1
6405169 Kondo et al. Jun 2002 B1
6405238 Votipka Jun 2002 B1
6408272 White et al. Jun 2002 B1
6411924 De Hita et al. Jun 2002 B1
6411932 Molnar et al. Jun 2002 B1
6415250 Van Den Akker Jul 2002 B1
6417873 Fletcher et al. Jul 2002 B1
6421305 Gioscia et al. Jul 2002 B1
6421672 McAllister et al. Jul 2002 B1
6421707 Miller et al. Jul 2002 B1
6424944 Hikawa Jul 2002 B1
6430551 Thelen et al. Aug 2002 B1
6434522 Tsuboka Aug 2002 B1
6434524 Weber Aug 2002 B1
6434604 Harada et al. Aug 2002 B1
6437818 Ludwig et al. Aug 2002 B1
6438523 Oberteuffer et al. Aug 2002 B1
6442518 Van Thong et al. Aug 2002 B1
6442523 Siegel Aug 2002 B1
6446076 Burkey et al. Sep 2002 B1
6448485 Barile Sep 2002 B1
6448986 Smith Sep 2002 B1
6449620 Draper et al. Sep 2002 B1
6453281 Walters et al. Sep 2002 B1
6453292 Ramaswamy et al. Sep 2002 B2
6453315 Weissman et al. Sep 2002 B1
6456616 Rantanen Sep 2002 B1
6456972 Gladstein et al. Sep 2002 B1
6460015 Hetherington et al. Oct 2002 B1
6460029 Fries et al. Oct 2002 B1
6462778 Abram et al. Oct 2002 B1
6463128 Elwin Oct 2002 B1
6466654 Cooper et al. Oct 2002 B1
6467924 Shipman Oct 2002 B2
6469712 Hilpert, Jr. et al. Oct 2002 B1
6469722 Kinoe et al. Oct 2002 B1
6469732 Chang et al. Oct 2002 B1
6470347 Gillam Oct 2002 B1
6473630 Baranowski et al. Oct 2002 B1
6477488 Bellegarda Nov 2002 B1
6477494 Hyde-Thomson et al. Nov 2002 B2
6487533 Hyde-Thomson et al. Nov 2002 B2
6487534 Thelen et al. Nov 2002 B1
6487663 Jaisimha et al. Nov 2002 B1
6489951 Wong et al. Dec 2002 B1
6490560 Ramaswamy et al. Dec 2002 B1
6493006 Gourdol et al. Dec 2002 B1
6493428 Hillier Dec 2002 B1
6493652 Ohlenbusch et al. Dec 2002 B1
6493667 De Souza et al. Dec 2002 B1
6499013 Weber Dec 2002 B1
6499014 Chihara Dec 2002 B1
6499016 Anderson et al. Dec 2002 B1
6501937 Ho et al. Dec 2002 B1
6502194 Berman et al. Dec 2002 B1
6505158 Conkie Jan 2003 B1
6505175 Silverman et al. Jan 2003 B1
6505183 Loofbourrow et al. Jan 2003 B1
6510406 Marchisio Jan 2003 B1
6510417 Woods et al. Jan 2003 B1
6513008 Pearson et al. Jan 2003 B2
6513063 Julia et al. Jan 2003 B1
6519565 Clements et al. Feb 2003 B1
6519566 Boyer et al. Feb 2003 B1
6523026 Gillis Feb 2003 B1
6523061 Halverson et al. Feb 2003 B1
6523172 Martinez-Guerra et al. Feb 2003 B1
6526351 Whitham Feb 2003 B2
6526382 Yuschik Feb 2003 B1
6526395 Morris Feb 2003 B1
6529592 Khan Mar 2003 B1
6529608 Gersabeck et al. Mar 2003 B2
6532444 Weber Mar 2003 B1
6532446 King Mar 2003 B1
6535610 Stewart Mar 2003 B1
6535852 Eide Mar 2003 B2
6535983 McCormack et al. Mar 2003 B1
6536139 Darley et al. Mar 2003 B2
6538665 Crow et al. Mar 2003 B2
6542171 Satou et al. Apr 2003 B1
6542584 Sherwood et al. Apr 2003 B1
6546262 Freadman Apr 2003 B1
6546367 Otsuka Apr 2003 B2
6546388 Edlund et al. Apr 2003 B1
6549497 Miyamoto et al. Apr 2003 B2
6553343 Kagoshima et al. Apr 2003 B1
6553344 Bellegarda et al. Apr 2003 B2
6556971 Rigsby et al. Apr 2003 B1
6556983 Altschuler et al. Apr 2003 B1
6560903 Darley May 2003 B1
6563769 Van Der Meulen May 2003 B1
6564186 Kiraly et al. May 2003 B1
6567549 Marianetti et al. May 2003 B1
6570557 Westerman et al. May 2003 B1
6570596 Frederiksen May 2003 B2
6582342 Kaufman Jun 2003 B2
6583806 Ludwig et al. Jun 2003 B2
6584464 Warthen Jun 2003 B1
6587403 Keller et al. Jul 2003 B1
6587404 Keller et al. Jul 2003 B1
6590303 Austin et al. Jul 2003 B1
6591379 LeVine et al. Jul 2003 B1
6594673 Smith et al. Jul 2003 B1
6594688 Ludwig et al. Jul 2003 B2
6597345 Hirshberg Jul 2003 B2
6598021 Shambaugh et al. Jul 2003 B1
6598022 Yuschik Jul 2003 B2
6598039 Livowsky Jul 2003 B1
6598054 Schuetze et al. Jul 2003 B2
6601026 Appelt et al. Jul 2003 B2
6601234 Bowman-Amuah Jul 2003 B1
6603837 Kesanupalli et al. Aug 2003 B1
6604059 Strubbe et al. Aug 2003 B2
6606101 Malamud et al. Aug 2003 B1
6606388 Townsend et al. Aug 2003 B1
6606632 Saulpaugh et al. Aug 2003 B1
6611789 Darley Aug 2003 B1
6615172 Bennett et al. Sep 2003 B1
6615175 Gazdzinski Sep 2003 B1
6615176 Lewis et al. Sep 2003 B2
6615220 Austin et al. Sep 2003 B1
6621768 Keller et al. Sep 2003 B1
6621892 Banister et al. Sep 2003 B1
6622121 Crepy et al. Sep 2003 B1
6622136 Russell Sep 2003 B2
6623529 Lakritz Sep 2003 B1
6625583 Silverman et al. Sep 2003 B1
6628808 Bach et al. Sep 2003 B1
6631186 Adams et al. Oct 2003 B1
6631346 Karaorman et al. Oct 2003 B1
6633741 Posa et al. Oct 2003 B1
6633846 Bennett et al. Oct 2003 B1
6633932 Bork et al. Oct 2003 B1
6642940 Dakss et al. Nov 2003 B1
6643401 Kashioka et al. Nov 2003 B1
6643824 Bates et al. Nov 2003 B1
6647260 Dusse et al. Nov 2003 B2
6650735 Burton et al. Nov 2003 B2
6651042 Field et al. Nov 2003 B1
6651218 Adler et al. Nov 2003 B1
6654740 Tokuda et al. Nov 2003 B2
6658389 Alpdemir Dec 2003 B1
6658408 Yano et al. Dec 2003 B2
6658577 Huppi et al. Dec 2003 B2
6662023 Helle Dec 2003 B1
6665639 Mozer et al. Dec 2003 B2
6665640 Bennett et al. Dec 2003 B1
6665641 Coorman et al. Dec 2003 B1
6671672 Heck Dec 2003 B1
6671683 Kanno Dec 2003 B2
6671856 Gillam Dec 2003 B1
6675169 Bennett et al. Jan 2004 B1
6675233 Du et al. Jan 2004 B1
6677932 Westerman Jan 2004 B1
6680675 Suzuki Jan 2004 B1
6684187 Conkie Jan 2004 B1
6684376 Kerzman et al. Jan 2004 B1
6690387 Zimmerman et al. Feb 2004 B2
6690800 Resnick Feb 2004 B2
6690828 Meyers Feb 2004 B2
6691064 Vroman Feb 2004 B2
6691090 Laurila et al. Feb 2004 B1
6691111 Lazaridis et al. Feb 2004 B2
6691151 Cheyer et al. Feb 2004 B1
6694295 Lindholm et al. Feb 2004 B2
6694297 Sato Feb 2004 B2
6697780 Beutnagel et al. Feb 2004 B1
6697824 Bowman-Amuah Feb 2004 B1
6701294 Ball et al. Mar 2004 B1
6701305 Holt et al. Mar 2004 B1
6701318 Fox et al. Mar 2004 B2
6704015 Bovarnick et al. Mar 2004 B1
6704034 Rodriguez et al. Mar 2004 B1
6704698 Paulsen, Jr. et al. Mar 2004 B1
6704710 Strong Mar 2004 B2
6708153 Brittan et al. Mar 2004 B2
6711585 Copperman et al. Mar 2004 B1
6714221 Christie et al. Mar 2004 B1
6716139 Hosseinzadeh-Dolkhani et al. Apr 2004 B1
6718324 Edlund et al. Apr 2004 B2
6718331 Davis et al. Apr 2004 B2
6720980 Lui et al. Apr 2004 B1
6721728 McGreevy Apr 2004 B2
6721734 Subasic et al. Apr 2004 B1
6724370 Dutta et al. Apr 2004 B2
6725197 Wuppermann et al. Apr 2004 B1
6728675 Maddalozzo, Jr. et al. Apr 2004 B1
6728681 Whitham Apr 2004 B2
6728729 Jawa et al. Apr 2004 B1
6731312 Robbin May 2004 B2
6732142 Bates et al. May 2004 B1
6735632 Kiraly et al. May 2004 B1
6738738 Henton May 2004 B2
6741264 Lesser May 2004 B1
6742021 Halverson et al. May 2004 B1
6751592 Shiga Jun 2004 B1
6751595 Busayapongchai et al. Jun 2004 B2
6751621 Calistri-Yeh et al. Jun 2004 B1
6754504 Reed Jun 2004 B1
6757362 Cooper et al. Jun 2004 B1
6757365 Bogard Jun 2004 B1
6757646 Marchisio Jun 2004 B2
6757653 Buth et al. Jun 2004 B2
6757718 Halverson et al. Jun 2004 B1
6760412 Loucks Jul 2004 B1
6760700 Lewis et al. Jul 2004 B2
6760754 Isaacs et al. Jul 2004 B1
6762741 Weindorf Jul 2004 B2
6762777 Carroll Jul 2004 B2
6763089 Feigenbaum Jul 2004 B2
6766294 MacGinite et al. Jul 2004 B2
6766320 Want et al. Jul 2004 B1
6766324 Carlson et al. Jul 2004 B2
6768979 Menendez-Pidal et al. Jul 2004 B1
6772123 Cooklev et al. Aug 2004 B2
6772195 Hatlelid et al. Aug 2004 B1
6772394 Kamada Aug 2004 B1
6775358 Breitenbach et al. Aug 2004 B1
6778951 Contractor Aug 2004 B1
6778952 Bellegarda Aug 2004 B2
6778962 Kasai et al. Aug 2004 B1
6778970 Au Aug 2004 B2
6778979 Grefenstette et al. Aug 2004 B2
6782510 Gross et al. Aug 2004 B1
6784901 Harvey et al. Aug 2004 B1
6789094 Rudoff et al. Sep 2004 B2
6789231 Reynar et al. Sep 2004 B1
6790704 Doyle et al. Sep 2004 B2
6792082 Levine Sep 2004 B1
6792086 Saylor et al. Sep 2004 B1
6792407 Kibre et al. Sep 2004 B2
6794566 Pachet Sep 2004 B2
6795059 Endo Sep 2004 B2
6799226 Robbin et al. Sep 2004 B1
6801604 Maes et al. Oct 2004 B2
6801964 Mahdavi Oct 2004 B1
6803905 Capps et al. Oct 2004 B1
6804649 Miranda Oct 2004 B2
6804677 Shadmon et al. Oct 2004 B2
6807536 Achlioptas et al. Oct 2004 B2
6807574 Partovi et al. Oct 2004 B1
6810379 Vermeulen et al. Oct 2004 B1
6813218 Antonelli et al. Nov 2004 B1
6813491 McKinney Nov 2004 B1
6813607 Faruquie et al. Nov 2004 B1
6816578 Kredo et al. Nov 2004 B1
6820055 Saindon et al. Nov 2004 B2
6829018 Lin et al. Dec 2004 B2
6829603 Chai et al. Dec 2004 B1
6832194 Mozer et al. Dec 2004 B1
6832381 Mathur et al. Dec 2004 B1
6836651 Segal et al. Dec 2004 B2
6836760 Bellegarda et al. Dec 2004 B1
6839464 Hawkins et al. Jan 2005 B2
6839669 Gould et al. Jan 2005 B1
6839670 Stammler et al. Jan 2005 B1
6839742 Dyer et al. Jan 2005 B1
6842767 Partovi et al. Jan 2005 B1
6847966 Sommer et al. Jan 2005 B1
6847979 Allemang et al. Jan 2005 B2
6850775 Berg Feb 2005 B1
6850887 Epstein et al. Feb 2005 B2
6851115 Cheyer et al. Feb 2005 B1
6856259 Sharp Feb 2005 B1
6857800 Zhang et al. Feb 2005 B2
6859931 Cheyer et al. Feb 2005 B1
6862568 Case Mar 2005 B2
6862710 Marchisio Mar 2005 B1
6865533 Addison et al. Mar 2005 B2
6868045 Schroder Mar 2005 B1
6868385 Gerson Mar 2005 B1
6870529 Davis Mar 2005 B1
6871346 Kumbalimutt et al. Mar 2005 B1
6873986 McConnell et al. Mar 2005 B2
6876947 Darley et al. Apr 2005 B1
6877003 Ho et al. Apr 2005 B2
6879957 Pechter et al. Apr 2005 B1
6882335 Saarinen Apr 2005 B2
6882337 Shetter Apr 2005 B2
6882747 Thawonmas et al. Apr 2005 B2
6882955 Ohlenbusch et al. Apr 2005 B1
6882971 Craner Apr 2005 B2
6885734 Eberle et al. Apr 2005 B1
6889361 Bates et al. May 2005 B1
6895084 Saylor et al. May 2005 B1
6895257 Boman et al. May 2005 B2
6895380 Sepe, Jr. May 2005 B2
6895558 Loveland May 2005 B1
6898550 Blackadar et al. May 2005 B1
6901364 Nguyen et al. May 2005 B2
6901399 Corston et al. May 2005 B1
6904405 Suominen Jun 2005 B2
6907112 Guedalia et al. Jun 2005 B1
6907140 Matsugu et al. Jun 2005 B2
6910004 Tarbouriech et al. Jun 2005 B2
6910007 Stylianou et al. Jun 2005 B2
6910186 Kim Jun 2005 B2
6911971 Suzuki et al. Jun 2005 B2
6912407 Clarke et al. Jun 2005 B1
6912498 Stevens et al. Jun 2005 B2
6912499 Sabourin et al. Jun 2005 B1
6915138 Kraft Jul 2005 B2
6915246 Gusler et al. Jul 2005 B2
6917373 Vong et al. Jul 2005 B2
6918677 Shipman Jul 2005 B2
6924828 Hirsch Aug 2005 B1
6925438 Mohamed et al. Aug 2005 B2
6928149 Panjwani et al. Aug 2005 B1
6928614 Everhart Aug 2005 B1
6931255 Mekuria Aug 2005 B2
6931384 Horvitz et al. Aug 2005 B1
6932708 Yamashita et al. Aug 2005 B2
6934394 Anderson Aug 2005 B1
6934684 Alpdemir et al. Aug 2005 B2
6934756 Maes Aug 2005 B2
6934812 Robbin et al. Aug 2005 B1
6937975 Elworthy Aug 2005 B1
6937986 Denenberg et al. Aug 2005 B2
6944593 Kuzunuki et al. Sep 2005 B2
6948094 Schultz et al. Sep 2005 B2
6950087 Knox et al. Sep 2005 B2
6950502 Jenkins Sep 2005 B1
6952799 Edwards et al. Oct 2005 B2
6954755 Reisman Oct 2005 B2
6954899 Anderson Oct 2005 B1
6956845 Baker et al. Oct 2005 B2
6957076 Hunzinger Oct 2005 B2
6957183 Malayath et al. Oct 2005 B2
6960734 Park Nov 2005 B1
6961699 Kahn et al. Nov 2005 B1
6961912 Aoki et al. Nov 2005 B2
6963841 Handal et al. Nov 2005 B2
6964023 Maes et al. Nov 2005 B2
6965376 Tani et al. Nov 2005 B2
6968311 Knockeart et al. Nov 2005 B2
6970820 Junqua et al. Nov 2005 B2
6970881 Mohan et al. Nov 2005 B1
6970915 Partovi et al. Nov 2005 B1
6970935 Maes Nov 2005 B1
6976090 Ben-Shaul et al. Dec 2005 B2
6978127 Bulthuis et al. Dec 2005 B1
6978239 Chu et al. Dec 2005 B2
6980949 Ford Dec 2005 B2
6980955 Okutani et al. Dec 2005 B2
6983251 Umemoto et al. Jan 2006 B1
6985858 Frey et al. Jan 2006 B2
6985865 Packingham et al. Jan 2006 B1
6988071 Gazdzinski Jan 2006 B1
6990450 Case et al. Jan 2006 B2
6996520 Levin Feb 2006 B2
6996531 Korall et al. Feb 2006 B2
6996575 Cox et al. Feb 2006 B2
6999066 Litwiller Feb 2006 B2
6999914 Boerner et al. Feb 2006 B1
6999925 Fischer et al. Feb 2006 B2
6999927 Mozer et al. Feb 2006 B2
7000189 Dutta et al. Feb 2006 B2
7002556 Tsukada et al. Feb 2006 B2
7003099 Zhang et al. Feb 2006 B1
7003463 Maes et al. Feb 2006 B1
7003522 Reynar et al. Feb 2006 B1
7006969 Atal Feb 2006 B2
7006973 Genly Feb 2006 B1
7007239 Hawkins et al. Feb 2006 B1
7010581 Brown et al. Mar 2006 B2
7013289 Horn et al. Mar 2006 B2
7013308 Tunstall-Pedoe Mar 2006 B1
7013429 Fujimoto et al. Mar 2006 B2
7015894 Morohoshi Mar 2006 B2
7020685 Chen et al. Mar 2006 B1
7024363 Comerford et al. Apr 2006 B1
7024364 Guerra et al. Apr 2006 B2
7024366 Deyoe et al. Apr 2006 B1
7024460 Koopmas et al. Apr 2006 B2
7027568 Simpson et al. Apr 2006 B1
7027974 Busch et al. Apr 2006 B1
7027990 Sussman Apr 2006 B2
7028252 Baru et al. Apr 2006 B1
7030861 Westerman et al. Apr 2006 B1
7031530 Driggs et al. Apr 2006 B2
7031909 Mao et al. Apr 2006 B2
7035794 Sirivara Apr 2006 B2
7035801 Jimenez-Feltstrom Apr 2006 B2
7035807 Brittain et al. Apr 2006 B1
7036128 Julia et al. Apr 2006 B1
7038659 Rajkowski May 2006 B2
7039588 Okutani et al. May 2006 B2
7043420 Ratnaparkhi May 2006 B2
7043422 Gao et al. May 2006 B2
7046230 Zadesky et al. May 2006 B2
7046850 Braspenning et al. May 2006 B2
7047193 Bellegarda May 2006 B1
7050550 Steinbiss et al. May 2006 B2
7050976 Packingham May 2006 B1
7050977 Bennett May 2006 B1
7051096 Krawiec et al. May 2006 B1
7054419 Culliss May 2006 B2
7054888 LaChapelle et al. May 2006 B2
7057607 Mayoraz et al. Jun 2006 B2
7058569 Coorman et al. Jun 2006 B2
7058888 Gjerstad et al. Jun 2006 B1
7058889 Trovato et al. Jun 2006 B2
7062223 Gerber et al. Jun 2006 B2
7062225 White Jun 2006 B2
7062428 Hogenhout et al. Jun 2006 B2
7062438 Kobayashi et al. Jun 2006 B2
7065185 Koch Jun 2006 B1
7065485 Chong-White et al. Jun 2006 B1
7069213 Thompson Jun 2006 B2
7069220 Coffman et al. Jun 2006 B2
7069560 Cheyer et al. Jun 2006 B1
7072686 Schrager Jul 2006 B1
7072941 Griffin et al. Jul 2006 B2
7076527 Bellegarda et al. Jul 2006 B2
7079713 Simmons Jul 2006 B2
7082322 Harano Jul 2006 B2
7084758 Cole Aug 2006 B1
7084856 Huppi Aug 2006 B2
7085723 Ross et al. Aug 2006 B2
7085960 Bouat et al. Aug 2006 B2
7088345 Robinson et al. Aug 2006 B2
7089292 Roderick et al. Aug 2006 B1
7092370 Jiang et al. Aug 2006 B2
7092887 Mozer et al. Aug 2006 B2
7092928 Elad et al. Aug 2006 B1
7092950 Wong et al. Aug 2006 B2
7093693 Gazdzinski Aug 2006 B1
7095733 Yarlagadda et al. Aug 2006 B1
7096183 Junqua Aug 2006 B2
7100117 Chwa et al. Aug 2006 B1
7103548 Squibbs et al. Sep 2006 B2
7107204 Liu et al. Sep 2006 B1
7111248 Mulvey et al. Sep 2006 B2
7111774 Song Sep 2006 B2
7113803 Dehlin Sep 2006 B2
7113943 Bradford et al. Sep 2006 B2
7115035 Tanaka Oct 2006 B2
7117231 Fischer et al. Oct 2006 B2
7123696 Lowe Oct 2006 B2
7124081 Bellegarda Oct 2006 B1
7124082 Freedman Oct 2006 B2
7124164 Chemtob Oct 2006 B1
7127046 Smith et al. Oct 2006 B1
7127396 Chu et al. Oct 2006 B2
7127403 Saylor et al. Oct 2006 B1
7133900 Szeto Nov 2006 B1
7136710 Hoffberg et al. Nov 2006 B1
7136818 Cosatto et al. Nov 2006 B1
7137126 Coffman et al. Nov 2006 B1
7139697 Häkkinen et al. Nov 2006 B2
7139714 Bennett et al. Nov 2006 B2
7139722 Perrella et al. Nov 2006 B2
7143028 Hillis et al. Nov 2006 B2
7143038 Katae Nov 2006 B2
7143040 Durston et al. Nov 2006 B2
7146319 Hunt Dec 2006 B2
7146437 Robbin et al. Dec 2006 B2
7149319 Roeck Dec 2006 B2
7149695 Bellegarda Dec 2006 B1
7149964 Cottrille et al. Dec 2006 B1
7152070 Musick et al. Dec 2006 B1
7152093 Ludwig et al. Dec 2006 B2
7154526 Foote et al. Dec 2006 B2
7155668 Holland et al. Dec 2006 B2
7158647 Azima et al. Jan 2007 B2
7159174 Johnson et al. Jan 2007 B2
7162412 Yamada et al. Jan 2007 B2
7162482 Dunning Jan 2007 B1
7165073 Vandersluis Jan 2007 B2
7166791 Robbin et al. Jan 2007 B2
7171360 Huang et al. Jan 2007 B2
7174042 Simmons et al. Feb 2007 B1
7174295 Kivimaki Feb 2007 B1
7174297 Guerra et al. Feb 2007 B2
7174298 Sharma Feb 2007 B2
7177794 Mani et al. Feb 2007 B2
7177798 Hsu et al. Feb 2007 B2
7177817 Khosla et al. Feb 2007 B1
7181386 Mohri et al. Feb 2007 B2
7181388 Tian Feb 2007 B2
7184064 Zimmerman et al. Feb 2007 B2
7185276 Keswa Feb 2007 B2
7188085 Pelletier Mar 2007 B2
7190351 Goren Mar 2007 B1
7190794 Hinde Mar 2007 B2
7191118 Bellegarda Mar 2007 B2
7191131 Nagao Mar 2007 B1
7193615 Kim et al. Mar 2007 B2
7194186 Strub et al. Mar 2007 B1
7194413 Mahoney et al. Mar 2007 B2
7194471 Nagatsuka et al. Mar 2007 B1
7194611 Bear et al. Mar 2007 B2
7194699 Thomson et al. Mar 2007 B2
7197120 Luehrig et al. Mar 2007 B2
7197460 Gupta et al. Mar 2007 B1
7200550 Menezes et al. Apr 2007 B2
7200558 Kato et al. Apr 2007 B2
7200559 Wang Apr 2007 B2
7203646 Bennett Apr 2007 B2
7206809 Ludwig et al. Apr 2007 B2
7216008 Sakata May 2007 B2
7216073 Lavi et al. May 2007 B2
7216080 Tsiao et al. May 2007 B2
7218920 Hyon May 2007 B2
7218943 Klassen et al. May 2007 B2
7219063 Schalk et al. May 2007 B2
7219123 Fiechter et al. May 2007 B1
7225125 Bennett et al. May 2007 B2
7228278 Nguyen et al. Jun 2007 B2
7231343 Treadgold et al. Jun 2007 B1
7231597 Braun et al. Jun 2007 B1
7233790 Kjellberg et al. Jun 2007 B2
7233904 Luisi Jun 2007 B2
7234026 Robbin et al. Jun 2007 B2
7236932 Grajski Jun 2007 B1
7240002 Minamino et al. Jul 2007 B2
7243130 Horvitz et al. Jul 2007 B2
7243305 Schabes et al. Jul 2007 B2
7246118 Chastain et al. Jul 2007 B2
7246151 Isaacs et al. Jul 2007 B2
7251454 White Jul 2007 B2
7254773 Bates et al. Aug 2007 B2
7259752 Simmons Aug 2007 B1
7260529 Lengen Aug 2007 B1
7263373 Mattisson Aug 2007 B2
7266189 Day Sep 2007 B1
7266495 Beaufays et al. Sep 2007 B1
7266496 Wang et al. Sep 2007 B2
7266499 Surace et al. Sep 2007 B2
7269544 Simske Sep 2007 B2
7269556 Kiss et al. Sep 2007 B2
7272224 Normile et al. Sep 2007 B1
7275063 Horn Sep 2007 B2
7277088 Robinson et al. Oct 2007 B2
7277854 Bennett et al. Oct 2007 B2
7277855 Acker et al. Oct 2007 B1
7280958 Pavlov et al. Oct 2007 B2
7283072 Plachta et al. Oct 2007 B1
7289102 Hinckley et al. Oct 2007 B2
7290039 Lisitsa et al. Oct 2007 B1
7292579 Morris Nov 2007 B2
7292979 Karas et al. Nov 2007 B2
7296230 Fukatsu et al. Nov 2007 B2
7299033 Kjellberg et al. Nov 2007 B2
7302392 Thenthiruperai et al. Nov 2007 B1
7302394 Baray et al. Nov 2007 B1
7302686 Togawa Nov 2007 B2
7308404 Venkataraman et al. Dec 2007 B2
7308408 Stifelman et al. Dec 2007 B1
7310329 Vieri et al. Dec 2007 B2
7310600 Garner et al. Dec 2007 B1
7310605 Janakiraman et al. Dec 2007 B2
7313523 Bellegarda et al. Dec 2007 B1
7315809 Xun Jan 2008 B2
7315818 Stevens et al. Jan 2008 B2
7319957 Robinson et al. Jan 2008 B2
7321783 Kim Jan 2008 B2
7322023 Shulman et al. Jan 2008 B2
7324833 White et al. Jan 2008 B2
7324947 Jordan et al. Jan 2008 B2
7328155 Endo et al. Feb 2008 B2
7345670 Armstrong Mar 2008 B2
7345671 Robbin et al. Mar 2008 B2
7349953 Lisitsa et al. Mar 2008 B2
7353139 Burrell et al. Apr 2008 B1
7359493 Wang et al. Apr 2008 B1
7359671 Richenstein et al. Apr 2008 B2
7359851 Tong et al. Apr 2008 B2
7360158 Beeman Apr 2008 B1
7362738 Taube et al. Apr 2008 B2
7363227 Mapes-Riordan et al. Apr 2008 B2
7365260 Kawashima Apr 2008 B2
7366461 Brown Apr 2008 B1
7373612 Risch et al. May 2008 B2
7376556 Bennett May 2008 B2
7376632 Sadek et al. May 2008 B1
7376645 Bernard May 2008 B2
7378963 Begault et al. May 2008 B1
7379874 Schmid et al. May 2008 B2
7380203 Keely et al. May 2008 B2
7383170 Mills et al. Jun 2008 B2
7386438 Franz et al. Jun 2008 B1
7386449 Sun et al. Jun 2008 B2
7386799 Clanton et al. Jun 2008 B1
7389224 Elworthy Jun 2008 B1
7389225 Jensen et al. Jun 2008 B1
7392185 Bennett Jun 2008 B2
7394947 Li et al. Jul 2008 B2
7398209 Kennewick et al. Jul 2008 B2
7401300 Nurmi Jul 2008 B2
7403938 Harrison et al. Jul 2008 B2
7403941 Bedworth et al. Jul 2008 B2
7404143 Freelander et al. Jul 2008 B2
7409337 Potter et al. Aug 2008 B1
7409347 Bellegarda Aug 2008 B1
7412389 Yang Aug 2008 B2
7412470 Masuno et al. Aug 2008 B2
7415100 Cooper et al. Aug 2008 B2
7418389 Chu et al. Aug 2008 B2
7418392 Mozer et al. Aug 2008 B1
7426467 Nashida et al. Sep 2008 B2
7426468 Coifman et al. Sep 2008 B2
7427024 Gazdzinski et al. Sep 2008 B1
7428541 Houle Sep 2008 B2
7433869 Gollapudi Oct 2008 B2
7433921 Ludwig et al. Oct 2008 B2
7441184 Frerebeau et al. Oct 2008 B2
7443316 Lim Oct 2008 B2
7444589 Zellner Oct 2008 B2
7447360 Li et al. Nov 2008 B2
7447635 Konopka et al. Nov 2008 B1
7451081 Gajic et al. Nov 2008 B1
7454351 Jeschke et al. Nov 2008 B2
7460652 Chang Dec 2008 B2
7467087 Gillick et al. Dec 2008 B1
7467164 Marsh Dec 2008 B2
7472061 Alewine et al. Dec 2008 B1
7472065 Aaron et al. Dec 2008 B2
7475010 Chao Jan 2009 B2
7475063 Datta et al. Jan 2009 B2
7477238 Fux et al. Jan 2009 B2
7477240 Yanagisawa Jan 2009 B2
7478037 Strong Jan 2009 B2
7478091 Mojsilovic et al. Jan 2009 B2
7478129 Chemtob Jan 2009 B1
7479948 Kim et al. Jan 2009 B2
7479949 Jobs et al. Jan 2009 B2
7483832 Tischer Jan 2009 B2
7483894 Cao Jan 2009 B2
7487089 Mozer Feb 2009 B2
7487093 Mutsuno et al. Feb 2009 B2
7490034 Finnigan et al. Feb 2009 B2
7490039 Shaffer et al. Feb 2009 B1
7493560 Kipnes et al. Feb 2009 B1
7496498 Chu et al. Feb 2009 B2
7496512 Zhao et al. Feb 2009 B2
7499923 Kawatani Mar 2009 B2
7502738 Kennewick et al. Mar 2009 B2
7505795 Lim et al. Mar 2009 B1
7508324 Suraqui Mar 2009 B2
7508373 Lin et al. Mar 2009 B2
7516123 Betz et al. Apr 2009 B2
7519327 White Apr 2009 B2
7522927 Fitch et al. Apr 2009 B2
7523036 Akabane et al. Apr 2009 B2
7523108 Cao Apr 2009 B2
7526466 Au Apr 2009 B2
7526738 Ording et al. Apr 2009 B2
7528713 Singh et al. May 2009 B2
7529671 Rockenbeck et al. May 2009 B2
7529676 Koyama May 2009 B2
7535997 McQuaide, Jr. et al. May 2009 B1
7536029 Choi et al. May 2009 B2
7536565 Girish et al. May 2009 B2
7538685 Cooper et al. May 2009 B1
7539619 Seligman et al. May 2009 B1
7539656 Fratkina et al. May 2009 B2
7541940 Upton Jun 2009 B2
7542967 Hurst-Hiller et al. Jun 2009 B2
7543232 Easton et al. Jun 2009 B2
7546382 Healey et al. Jun 2009 B2
7546529 Reynar et al. Jun 2009 B2
7548895 Pulsipher Jun 2009 B2
7552045 Barliga et al. Jun 2009 B2
7552055 Lecoeuche Jun 2009 B2
7555431 Bennett Jun 2009 B2
7555496 Lantrip et al. Jun 2009 B1
7558381 Ali et al. Jul 2009 B1
7558730 Davis et al. Jul 2009 B2
7559026 Girish et al. Jul 2009 B2
7561069 Horstemeyer Jul 2009 B2
7562007 Hwang Jul 2009 B2
7562032 Abbosh et al. Jul 2009 B2
7565104 Brown et al. Jul 2009 B1
7565380 Venkatachary Jul 2009 B1
7571106 Cao et al. Aug 2009 B2
7577522 Rosenberg Aug 2009 B2
7580551 Srihari et al. Aug 2009 B1
7580576 Wang et al. Aug 2009 B2
7580839 Tamura et al. Aug 2009 B2
7584093 Potter et al. Sep 2009 B2
7584278 Rajarajan et al. Sep 2009 B2
7584429 Fabritius Sep 2009 B2
7593868 Margiloff et al. Sep 2009 B2
7596269 King et al. Sep 2009 B2
7596499 Anguera et al. Sep 2009 B2
7596606 Codignotto Sep 2009 B2
7596765 Almas Sep 2009 B2
7599918 Shen et al. Oct 2009 B2
7603381 Burke et al. Oct 2009 B2
7609179 Diaz-Gutierrez et al. Oct 2009 B2
7610258 Yuknewicz et al. Oct 2009 B2
7613264 Wells et al. Nov 2009 B2
7614008 Ording Nov 2009 B2
7617094 Aoki et al. Nov 2009 B2
7620407 Donald et al. Nov 2009 B1
7620549 Di Cristo et al. Nov 2009 B2
7623119 Autio et al. Nov 2009 B2
7624007 Bennett Nov 2009 B2
7627481 Kuo et al. Dec 2009 B1
7630901 Omi Dec 2009 B2
7633076 Huppi et al. Dec 2009 B2
7634409 Kennewick et al. Dec 2009 B2
7634413 Kuo et al. Dec 2009 B1
7634718 Nakajima Dec 2009 B2
7634732 Blagsvedt et al. Dec 2009 B1
7636657 Ju et al. Dec 2009 B2
7640158 Detlef et al. Dec 2009 B2
7640160 Di Cristo et al. Dec 2009 B2
7643990 Bellegarda Jan 2010 B1
7647225 Bennett et al. Jan 2010 B2
7649454 Singh et al. Jan 2010 B2
7649877 Vieri et al. Jan 2010 B2
7653883 Hotelling et al. Jan 2010 B2
7656393 King et al. Feb 2010 B2
7657424 Bennett Feb 2010 B2
7657844 Gibson et al. Feb 2010 B2
7657849 Chaudhri et al. Feb 2010 B2
7663607 Hotelling et al. Feb 2010 B2
7664558 Lindahl et al. Feb 2010 B2
7664638 Cooper et al. Feb 2010 B2
7669134 Christie et al. Feb 2010 B1
7672841 Bennett Mar 2010 B2
7672952 Isaacson et al. Mar 2010 B2
7673238 Girish et al. Mar 2010 B2
7673340 Cohen et al. Mar 2010 B1
7676026 Baxter, Jr. Mar 2010 B1
7676365 Hwang et al. Mar 2010 B2
7676463 Thompson et al. Mar 2010 B2
7679534 Kay et al. Mar 2010 B2
7680649 Park Mar 2010 B2
7681126 Roose Mar 2010 B2
7683886 Willey Mar 2010 B2
7683893 Kim Mar 2010 B2
7684985 Dominach et al. Mar 2010 B2
7684990 Caskey et al. Mar 2010 B2
7684991 Stohr et al. Mar 2010 B2
7689245 Cox et al. Mar 2010 B2
7689408 Chen et al. Mar 2010 B2
7689409 Heinecke Mar 2010 B2
7689421 Li et al. Mar 2010 B2
7693715 Hwang et al. Apr 2010 B2
7693717 Kahn et al. Apr 2010 B2
7693719 Chu et al. Apr 2010 B2
7693720 Kennewick et al. Apr 2010 B2
7698131 Bennett Apr 2010 B2
7702500 Blaedow Apr 2010 B2
7702508 Bennett Apr 2010 B2
7706510 Ng Apr 2010 B2
7707026 Liu Apr 2010 B2
7707027 Balchandran et al. Apr 2010 B2
7707032 Wang et al. Apr 2010 B2
7707221 Dunning et al. Apr 2010 B1
7707267 Lisitsa et al. Apr 2010 B2
7710262 Ruha May 2010 B2
7711129 Lindahl et al. May 2010 B2
7711550 Feinberg et al. May 2010 B1
7711565 Gazdzinski May 2010 B1
7711672 Au May 2010 B2
7712053 Bradford et al. May 2010 B2
7716056 Weng et al. May 2010 B2
7716216 Harik et al. May 2010 B1
7720674 Kaiser et al. May 2010 B2
7720683 Vermeulen et al. May 2010 B1
7721226 Barabe et al. May 2010 B2
7721301 Wong et al. May 2010 B2
7724242 Hillis et al. May 2010 B2
7725307 Bennett May 2010 B2
7725318 Gavalda et al. May 2010 B2
7725320 Bennett May 2010 B2
7725321 Bennett May 2010 B2
7725838 Williams May 2010 B2
7729904 Bennett Jun 2010 B2
7729916 Coffman et al. Jun 2010 B2
7734461 Kwak et al. Jun 2010 B2
7735012 Naik Jun 2010 B2
7739588 Reynar et al. Jun 2010 B2
7742953 King et al. Jun 2010 B2
7743188 Haitani et al. Jun 2010 B2
7747616 Yamada et al. Jun 2010 B2
7752152 Paek et al. Jul 2010 B2
7756868 Lee Jul 2010 B2
7757173 Beaman Jul 2010 B2
7757182 Elliott et al. Jul 2010 B2
7761296 Bakis et al. Jul 2010 B1
7763842 Hsu et al. Jul 2010 B2
7774204 Mozer et al. Aug 2010 B2
7774388 Runchey Aug 2010 B1
7778432 Larsen Aug 2010 B2
7778595 White et al. Aug 2010 B2
7778632 Kurlander et al. Aug 2010 B2
7779353 Grigoriu et al. Aug 2010 B2
7779356 Griesmer Aug 2010 B2
7779357 Naik Aug 2010 B2
7783283 Kuusinen et al. Aug 2010 B2
7783486 Rosser et al. Aug 2010 B2
7788590 Taboada et al. Aug 2010 B2
7797265 Brinker et al. Sep 2010 B2
7797269 Rieman et al. Sep 2010 B2
7797331 Theimer et al. Sep 2010 B2
7801721 Rosart et al. Sep 2010 B2
7801728 Ben-David et al. Sep 2010 B2
7801729 Mozer Sep 2010 B2
7805299 Coifman Sep 2010 B2
7809565 Coifman Oct 2010 B2
7809569 Attwater et al. Oct 2010 B2
7809570 Kennewick et al. Oct 2010 B2
7809610 Cao Oct 2010 B2
7809744 Nevidomski et al. Oct 2010 B2
7818165 Carlgren et al. Oct 2010 B2
7818176 Freeman et al. Oct 2010 B2
7818215 King et al. Oct 2010 B2
7818291 Ferguson et al. Oct 2010 B2
7818672 McCormack et al. Oct 2010 B2
7822608 Cross, Jr. et al. Oct 2010 B2
7823123 Sabbouh Oct 2010 B2
7826945 Zhang et al. Nov 2010 B2
7827047 Anderson et al. Nov 2010 B2
7831423 Schubert Nov 2010 B2
7831426 Bennett Nov 2010 B2
7831432 Bodin et al. Nov 2010 B2
7836437 Kacmarcik et al. Nov 2010 B2
7840400 Lavi et al. Nov 2010 B2
7840447 Kleinrock et al. Nov 2010 B2
7840581 Ross et al. Nov 2010 B2
7840912 Elias et al. Nov 2010 B2
7848924 Nurminen et al. Dec 2010 B2
7848926 Goto et al. Dec 2010 B2
7853444 Wang et al. Dec 2010 B2
7853445 Bachenko et al. Dec 2010 B2
7853574 Kraenzel et al. Dec 2010 B2
7853577 Sundaresan et al. Dec 2010 B2
7853664 Wang et al. Dec 2010 B1
7853900 Nguyen et al. Dec 2010 B2
7865817 Ryan et al. Jan 2011 B2
7869999 Amato et al. Jan 2011 B2
7870118 Jiang et al. Jan 2011 B2
7873519 Bennett Jan 2011 B2
7873654 Bernard Jan 2011 B2
7877705 Chambers et al. Jan 2011 B2
7880730 Robinson et al. Feb 2011 B2
7881936 Longé et al. Feb 2011 B2
7885844 Cohen et al. Feb 2011 B1
7886233 Rainisto et al. Feb 2011 B2
7889184 Blumenberg et al. Feb 2011 B2
7889185 Blumenberg et al. Feb 2011 B2
7890330 Ozkaragoz et al. Feb 2011 B2
7890652 Bull et al. Feb 2011 B2
7895531 Radtke et al. Feb 2011 B2
7899666 Varone Mar 2011 B2
7908287 Katragadda Mar 2011 B1
7912289 Kansal et al. Mar 2011 B2
7912699 Saraclar et al. Mar 2011 B1
7912702 Bennett Mar 2011 B2
7912720 Hakkani-Tur et al. Mar 2011 B1
7912828 Bonnet et al. Mar 2011 B2
7913185 Benson et al. Mar 2011 B1
7916979 Simmons Mar 2011 B2
7917367 Di Cristo et al. Mar 2011 B2
7917497 Harrison et al. Mar 2011 B2
7920678 Cooper et al. Apr 2011 B2
7920682 Byrne et al. Apr 2011 B2
7920857 Lau et al. Apr 2011 B2
7925525 Chin Apr 2011 B2
7925610 Elbaz et al. Apr 2011 B2
7929805 Wang et al. Apr 2011 B2
7930168 Weng et al. Apr 2011 B2
7930183 Odell et al. Apr 2011 B2
7930197 Ozzie et al. Apr 2011 B2
7936339 Marggraff et al. May 2011 B2
7941009 Li et al. May 2011 B2
7945470 Cohen et al. May 2011 B1
7949529 Weider et al. May 2011 B2
7949534 Davis et al. May 2011 B2
7953679 Chidlovskii et al. May 2011 B2
7957975 Burns et al. Jun 2011 B2
7962179 Huang Jun 2011 B2
7974844 Sumita Jul 2011 B2
7974972 Cao Jul 2011 B2
7975216 Woolf et al. Jul 2011 B2
7983478 Liu et al. Jul 2011 B2
7983915 Knight et al. Jul 2011 B2
7983917 Kennewick et al. Jul 2011 B2
7983919 Conkie Jul 2011 B2
7983997 Allen et al. Jul 2011 B2
7984062 Dunning et al. Jul 2011 B2
7986431 Emori et al. Jul 2011 B2
7987151 Schott et al. Jul 2011 B2
7987244 Lewis et al. Jul 2011 B1
7991614 Washio et al. Aug 2011 B2
7992085 Wang-Aryattanwanich et al. Aug 2011 B2
7996228 Miller et al. Aug 2011 B2
7996589 Schultz et al. Aug 2011 B2
7996792 Anzures et al. Aug 2011 B2
7999669 Singh et al. Aug 2011 B2
8000453 Cooper et al. Aug 2011 B2
8005664 Hanumanthappa Aug 2011 B2
8005679 Jordan et al. Aug 2011 B2
8006180 Tunning et al. Aug 2011 B2
8015006 Kennewick et al. Sep 2011 B2
8015011 Nagano et al. Sep 2011 B2
8015144 Zheng et al. Sep 2011 B2
8018431 Zehr et al. Sep 2011 B1
8019271 Izdepski Sep 2011 B1
8024195 Mozer et al. Sep 2011 B2
8027836 Baker et al. Sep 2011 B2
8031943 Chen et al. Oct 2011 B2
8032383 Bhardwaj et al. Oct 2011 B1
8036901 Mozer Oct 2011 B2
8037034 Plachta et al. Oct 2011 B2
8041557 Liu Oct 2011 B2
8041570 Mirkovic et al. Oct 2011 B2
8041611 Kleinrock et al. Oct 2011 B2
8042053 Darwish et al. Oct 2011 B2
8046363 Cha et al. Oct 2011 B2
8050500 Batty et al. Nov 2011 B1
8055502 Clark et al. Nov 2011 B2
8055708 Chitsaz et al. Nov 2011 B2
8060824 Brownrigg et al. Nov 2011 B2
8064753 Freeman Nov 2011 B2
8065143 Yanagihara Nov 2011 B2
8065155 Gazdzinski Nov 2011 B1
8065156 Gazdzinski Nov 2011 B2
8069046 Kennewick et al. Nov 2011 B2
8069422 Sheshagiri et al. Nov 2011 B2
8073681 Baldwin et al. Dec 2011 B2
8077153 Benko et al. Dec 2011 B2
8078473 Gazdzinski Dec 2011 B1
8082153 Coffman et al. Dec 2011 B2
8082498 Salamon et al. Dec 2011 B2
8090571 Elshishiny et al. Jan 2012 B2
8095364 Longé et al. Jan 2012 B2
8099289 Mozer et al. Jan 2012 B2
8099395 Pabla et al. Jan 2012 B2
8099418 Inoue et al. Jan 2012 B2
8103510 Sato Jan 2012 B2
8107401 John et al. Jan 2012 B2
8112275 Kennewick et al. Feb 2012 B2
8112280 Lu Feb 2012 B2
8117037 Gazdzinski Feb 2012 B2
8117542 Radtke et al. Feb 2012 B2
8121413 Hwang et al. Feb 2012 B2
8121837 Agapi et al. Feb 2012 B2
8122094 Kotab Feb 2012 B1
8122353 Bouta Feb 2012 B2
8131557 Davis et al. Mar 2012 B2
8135115 Hogg, Jr. et al. Mar 2012 B1
8138912 Singh et al. Mar 2012 B2
8140335 Kennewick et al. Mar 2012 B2
8140567 Padovitz et al. Mar 2012 B2
8150694 Kennewick et al. Apr 2012 B2
8150700 Shin et al. Apr 2012 B2
8155956 Cho et al. Apr 2012 B2
8156005 Vieri Apr 2012 B2
8160883 Lecoeuche Apr 2012 B2
8165321 Paquier et al. Apr 2012 B2
8165886 Gagnon et al. Apr 2012 B1
8166019 Lee et al. Apr 2012 B1
8170790 Lee et al. May 2012 B2
8179370 Yamasani et al. May 2012 B1
8188856 Singh et al. May 2012 B2
8190359 Bourne May 2012 B2
8195467 Mozer et al. Jun 2012 B2
8200495 Braho et al. Jun 2012 B2
8201109 Van Os et al. Jun 2012 B2
8204238 Mozer Jun 2012 B2
8205788 Gazdzinski et al. Jun 2012 B1
8209183 Patel et al. Jun 2012 B1
8219115 Nelissen Jul 2012 B1
8219406 Yu et al. Jul 2012 B2
8219407 Roy et al. Jul 2012 B1
8219608 alSafadi et al. Jul 2012 B2
8224649 Chaudhari et al. Jul 2012 B2
8239207 Seligman et al. Aug 2012 B2
8255217 Stent et al. Aug 2012 B2
8275621 Alewine et al. Sep 2012 B2
8285546 Reich Oct 2012 B2
8285551 Gazdzinski Oct 2012 B2
8285553 Gazdzinski Oct 2012 B2
8290777 Nguyen et al. Oct 2012 B1
8290778 Gazdzinski Oct 2012 B2
8290781 Gazdzinski Oct 2012 B2
8296146 Gazdzinski Oct 2012 B2
8296153 Gazdzinski Oct 2012 B2
8296380 Kelly et al. Oct 2012 B1
8296383 Lindahl Oct 2012 B2
8300801 Sweeney et al. Oct 2012 B2
8301456 Gazdzinski Oct 2012 B2
8311834 Gazdzinski Nov 2012 B1
8332224 Di Cristo et al. Dec 2012 B2
8332748 Karam Dec 2012 B1
8345665 Vieri et al. Jan 2013 B2
8352183 Thota et al. Jan 2013 B2
8352268 Naik et al. Jan 2013 B2
8352272 Rogers et al. Jan 2013 B2
8355919 Silverman et al. Jan 2013 B2
8359234 Vieri Jan 2013 B2
8370158 Gazdzinski Feb 2013 B2
8371503 Gazdzinski Feb 2013 B2
8374871 Ehsani et al. Feb 2013 B2
8375320 Kotler et al. Feb 2013 B2
8380504 Peden et al. Feb 2013 B1
8381107 Rottler et al. Feb 2013 B2
8381135 Hotelling et al. Feb 2013 B2
8396714 Rogers et al. Mar 2013 B2
8423288 Stahl et al. Apr 2013 B2
8428758 Naik et al. Apr 2013 B2
8447612 Gazdzinski May 2013 B2
8479122 Hotelling et al. Jul 2013 B2
8489599 Bellotti Jul 2013 B2
8498857 Kopparapu et al. Jul 2013 B2
8521513 Millett et al. Aug 2013 B2
8583416 Huang et al. Nov 2013 B2
8589869 Wolfram Nov 2013 B2
8595004 Koshinaka Nov 2013 B2
8600743 Lindahl Dec 2013 B2
8620659 Di Cristo et al. Dec 2013 B2
8645137 Bellegarda et al. Feb 2014 B2
8655901 Li et al. Feb 2014 B1
8660849 Gruber et al. Feb 2014 B2
8660970 Fiedorowicz Feb 2014 B1
8706472 Ramerth et al. Apr 2014 B2
8731610 Appaji May 2014 B2
8760537 Johnson et al. Jun 2014 B2
8768693 Lempel et al. Jul 2014 B2
8838457 Cerra et al. Sep 2014 B2
8880405 Cerra et al. Nov 2014 B2
8886540 Cerra et al. Nov 2014 B2
8943423 Merrill et al. Jan 2015 B2
8972878 David et al. Mar 2015 B2
20010005859 Okuyama et al. Jun 2001 A1
20010020259 Sekiguchi et al. Sep 2001 A1
20010027396 Sato Oct 2001 A1
20010029455 Chin et al. Oct 2001 A1
20010030660 Zainoulline Oct 2001 A1
20010032080 Fukada Oct 2001 A1
20010041021 Boyle et al. Nov 2001 A1
20010042107 Palm Nov 2001 A1
20010044724 Hon et al. Nov 2001 A1
20010047264 Roundtree Nov 2001 A1
20010056342 Piehn et al. Dec 2001 A1
20010056347 Chazan et al. Dec 2001 A1
20020001395 Davis et al. Jan 2002 A1
20020002039 Qureshey et al. Jan 2002 A1
20020002413 Tokue Jan 2002 A1
20020002461 Tetsumoto Jan 2002 A1
20020004703 Gaspard, II Jan 2002 A1
20020010581 Euler et al. Jan 2002 A1
20020010584 Schultz et al. Jan 2002 A1
20020010726 Rogson Jan 2002 A1
20020010798 Ben-Shaul et al. Jan 2002 A1
20020013707 Shaw et al. Jan 2002 A1
20020013784 Swanson Jan 2002 A1
20020013852 Janik Jan 2002 A1
20020015024 Westerman et al. Feb 2002 A1
20020015064 Robotham et al. Feb 2002 A1
20020021278 Hinckley et al. Feb 2002 A1
20020026315 Miranda Feb 2002 A1
20020026456 Bradford Feb 2002 A1
20020031254 Lantrip et al. Mar 2002 A1
20020031262 Imagawa et al. Mar 2002 A1
20020032048 Kitao et al. Mar 2002 A1
20020032564 Ehsani et al. Mar 2002 A1
20020032751 Bharadwaj Mar 2002 A1
20020035467 Morimoto et al. Mar 2002 A1
20020035469 Holzapfel Mar 2002 A1
20020035474 Alpdemir Mar 2002 A1
20020040359 Green et al. Apr 2002 A1
20020042707 Zhao et al. Apr 2002 A1
20020045438 Tagawa et al. Apr 2002 A1
20020045961 Gibbs et al. Apr 2002 A1
20020046025 Hain Apr 2002 A1
20020046315 Miller et al. Apr 2002 A1
20020052730 Nakao May 2002 A1
20020052740 Charlesworth et al. May 2002 A1
20020052747 Sarukkai May 2002 A1
20020054094 Matsuda May 2002 A1
20020055844 L'Esperance et al. May 2002 A1
20020055934 Lipscomb et al. May 2002 A1
20020059066 O'hagan May 2002 A1
20020059068 Rose et al. May 2002 A1
20020065659 Isono et al. May 2002 A1
20020065797 Meidan et al. May 2002 A1
20020067308 Robertson Jun 2002 A1
20020069063 Buchner et al. Jun 2002 A1
20020069220 Tran Jun 2002 A1
20020072816 Shdema et al. Jun 2002 A1
20020072908 Case et al. Jun 2002 A1
20020072914 Alshawi et al. Jun 2002 A1
20020077082 Cruickshank Jun 2002 A1
20020077817 Atal Jun 2002 A1
20020078041 Wu Jun 2002 A1
20020080163 Morey Jun 2002 A1
20020085037 Leavitt et al. Jul 2002 A1
20020087306 Lee et al. Jul 2002 A1
20020087508 Hull et al. Jul 2002 A1
20020091511 Hellwig et al. Jul 2002 A1
20020095286 Ross et al. Jul 2002 A1
20020095290 Kahn et al. Jul 2002 A1
20020099547 Chu et al. Jul 2002 A1
20020099552 Rubin et al. Jul 2002 A1
20020101447 Carro Aug 2002 A1
20020103641 Kuo et al. Aug 2002 A1
20020103644 Brocious et al. Aug 2002 A1
20020103646 Kochanski et al. Aug 2002 A1
20020107684 Gao Aug 2002 A1
20020109709 Sagar Aug 2002 A1
20020110248 Kovales et al. Aug 2002 A1
20020111810 Khan et al. Aug 2002 A1
20020116082 Gudorf Aug 2002 A1
20020116171 Russell Aug 2002 A1
20020116185 Cooper et al. Aug 2002 A1
20020116189 Yeh et al. Aug 2002 A1
20020116420 Allam et al. Aug 2002 A1
20020120697 Generous et al. Aug 2002 A1
20020120925 Logan Aug 2002 A1
20020122053 Dutta et al. Sep 2002 A1
20020123894 Woodward Sep 2002 A1
20020126097 Savolainen Sep 2002 A1
20020128827 Bu et al. Sep 2002 A1
20020128840 Hinde et al. Sep 2002 A1
20020129057 Spielberg Sep 2002 A1
20020133347 Schoneburg et al. Sep 2002 A1
20020133348 Pearson et al. Sep 2002 A1
20020135565 Gordon et al. Sep 2002 A1
20020135618 Maes et al. Sep 2002 A1
20020138254 Isaka et al. Sep 2002 A1
20020138265 Stevens et al. Sep 2002 A1
20020138270 Bellegarda et al. Sep 2002 A1
20020138616 Basson et al. Sep 2002 A1
20020140679 Wen Oct 2002 A1
20020143533 Lucas et al. Oct 2002 A1
20020143542 Eide Oct 2002 A1
20020143551 Sharma et al. Oct 2002 A1
20020143826 Day et al. Oct 2002 A1
20020151297 Remboski et al. Oct 2002 A1
20020152045 Dowling et al. Oct 2002 A1
20020152255 Smith et al. Oct 2002 A1
20020154160 Hosokawa Oct 2002 A1
20020161865 Nguyen Oct 2002 A1
20020163544 Baker et al. Nov 2002 A1
20020164000 Cohen et al. Nov 2002 A1
20020165918 Bettis Nov 2002 A1
20020167534 Burke Nov 2002 A1
20020169592 Aityan Nov 2002 A1
20020169605 Damiba et al. Nov 2002 A1
20020173273 Spurgat et al. Nov 2002 A1
20020173889 Odinak et al. Nov 2002 A1
20020173961 Guerra Nov 2002 A1
20020173962 Tang et al. Nov 2002 A1
20020173966 Henton Nov 2002 A1
20020177993 Veditz et al. Nov 2002 A1
20020184015 Li et al. Dec 2002 A1
20020184027 Brittan et al. Dec 2002 A1
20020184189 Hay et al. Dec 2002 A1
20020189426 Hirade et al. Dec 2002 A1
20020191029 Gillespie et al. Dec 2002 A1
20020193996 Squibbs et al. Dec 2002 A1
20020198714 Zhou Dec 2002 A1
20020198715 Belrose Dec 2002 A1
20030001881 Mannheimer et al. Jan 2003 A1
20030002632 Bhogal et al. Jan 2003 A1
20030013483 Ausems et al. Jan 2003 A1
20030016770 Trans et al. Jan 2003 A1
20030020760 Takatsu et al. Jan 2003 A1
20030026402 Clapper Feb 2003 A1
20030028380 Freeland et al. Feb 2003 A1
20030033153 Olson et al. Feb 2003 A1
20030033214 Mikkelsen et al. Feb 2003 A1
20030037073 Tokuda et al. Feb 2003 A1
20030037254 Fischer et al. Feb 2003 A1
20030040908 Yang et al. Feb 2003 A1
20030046075 Stone Mar 2003 A1
20030046401 Abbott et al. Mar 2003 A1
20030046434 Flanagin et al. Mar 2003 A1
20030050781 Tamura et al. Mar 2003 A1
20030051136 Curtis et al. Mar 2003 A1
20030055537 Odinak et al. Mar 2003 A1
20030061317 Brown et al. Mar 2003 A1
20030061570 Hatori et al. Mar 2003 A1
20030063073 Geaghan et al. Apr 2003 A1
20030074195 Bartosik et al. Apr 2003 A1
20030074198 Sussman Apr 2003 A1
20030074457 Kluth Apr 2003 A1
20030076301 Tsuk et al. Apr 2003 A1
20030078766 Appelt et al. Apr 2003 A1
20030078780 Kochanski et al. Apr 2003 A1
20030078969 Sprague et al. Apr 2003 A1
20030079024 Hough et al. Apr 2003 A1
20030079038 Robbin et al. Apr 2003 A1
20030080991 Crow et al. May 2003 A1
20030083113 Chua et al. May 2003 A1
20030083878 Lee et al. May 2003 A1
20030083884 Odinak et al. May 2003 A1
20030084350 Eibach et al. May 2003 A1
20030085870 Hinckley May 2003 A1
20030086699 Benyamin et al. May 2003 A1
20030088414 Huang et al. May 2003 A1
20030088421 Maes et al. May 2003 A1
20030090467 Hohl et al. May 2003 A1
20030090474 Schaefer May 2003 A1
20030095096 Robbin et al. May 2003 A1
20030097210 Horst et al. May 2003 A1
20030097379 Ireton May 2003 A1
20030097408 Kageyama et al. May 2003 A1
20030098892 Hiipakka May 2003 A1
20030099335 Tanaka et al. May 2003 A1
20030101045 Moffatt et al. May 2003 A1
20030115060 Junqua et al. Jun 2003 A1
20030115064 Gusler et al. Jun 2003 A1
20030115186 Wilkinson et al. Jun 2003 A1
20030115552 Jahnke et al. Jun 2003 A1
20030117365 Shteyn Jun 2003 A1
20030120494 Jost et al. Jun 2003 A1
20030122787 Zimmerman et al. Jul 2003 A1
20030125927 Seme Jul 2003 A1
20030126559 Fuhrmann Jul 2003 A1
20030128819 Lee et al. Jul 2003 A1
20030133694 Yeo Jul 2003 A1
20030134678 Tanaka Jul 2003 A1
20030135740 Talmor et al. Jul 2003 A1
20030144846 Denenberg et al. Jul 2003 A1
20030145285 Miyahira et al. Jul 2003 A1
20030147512 Abburi Aug 2003 A1
20030149557 Cox et al. Aug 2003 A1
20030149567 Schmitz et al. Aug 2003 A1
20030149978 Plotnick Aug 2003 A1
20030152203 Berger et al. Aug 2003 A1
20030152894 Townshend Aug 2003 A1
20030154081 Chu et al. Aug 2003 A1
20030157968 Boman et al. Aug 2003 A1
20030158735 Yamada et al. Aug 2003 A1
20030158737 Csicsatka Aug 2003 A1
20030160702 Tanaka Aug 2003 A1
20030160830 DeGross Aug 2003 A1
20030163316 Addison et al. Aug 2003 A1
20030164848 Dutta et al. Sep 2003 A1
20030167167 Gong Sep 2003 A1
20030167318 Robbin et al. Sep 2003 A1
20030167335 Alexander Sep 2003 A1
20030171928 Falcon et al. Sep 2003 A1
20030171936 Sall et al. Sep 2003 A1
20030174830 Boyer et al. Sep 2003 A1
20030179222 Noma et al. Sep 2003 A1
20030182115 Malayath et al. Sep 2003 A1
20030187655 Dunsmuir Oct 2003 A1
20030187844 Li et al. Oct 2003 A1
20030187925 Inala et al. Oct 2003 A1
20030188005 Yoneda et al. Oct 2003 A1
20030188192 Tang et al. Oct 2003 A1
20030190074 Loudon et al. Oct 2003 A1
20030191645 Zhou Oct 2003 A1
20030193481 Sokolsky Oct 2003 A1
20030194080 Michaelis et al. Oct 2003 A1
20030195741 Mani et al. Oct 2003 A1
20030197736 Murphy Oct 2003 A1
20030197744 Irvine Oct 2003 A1
20030200858 Xie Oct 2003 A1
20030204392 Finnigan et al. Oct 2003 A1
20030204492 Wolf et al. Oct 2003 A1
20030208756 Macrae et al. Nov 2003 A1
20030210266 Cragun et al. Nov 2003 A1
20030212961 Soin et al. Nov 2003 A1
20030214519 Smith et al. Nov 2003 A1
20030224760 Day Dec 2003 A1
20030228863 Vander Veen et al. Dec 2003 A1
20030228909 Tanaka et al. Dec 2003 A1
20030229490 Etter Dec 2003 A1
20030229616 Wong Dec 2003 A1
20030233230 Ammicht et al. Dec 2003 A1
20030233237 Garside et al. Dec 2003 A1
20030233240 Kaatrasalo Dec 2003 A1
20030234824 Litwiller Dec 2003 A1
20030236663 Dimitrova et al. Dec 2003 A1
20040001396 Keller et al. Jan 2004 A1
20040006467 Anisimovich et al. Jan 2004 A1
20040012556 Yong et al. Jan 2004 A1
20040013252 Craner Jan 2004 A1
20040021676 Chen et al. Feb 2004 A1
20040022373 Suder et al. Feb 2004 A1
20040023643 Vander Veen et al. Feb 2004 A1
20040030556 Bennett Feb 2004 A1
20040030996 Van Liempd et al. Feb 2004 A1
20040036715 Warren Feb 2004 A1
20040048627 Olvera-Hernandez Mar 2004 A1
20040049391 Polanyi et al. Mar 2004 A1
20040051729 Borden, IV Mar 2004 A1
20040052338 Celi, Jr. et al. Mar 2004 A1
20040054530 Davis et al. Mar 2004 A1
20040054533 Bellegarda Mar 2004 A1
20040054534 Junqua Mar 2004 A1
20040054535 Mackie et al. Mar 2004 A1
20040054541 Kryze et al. Mar 2004 A1
20040054690 Hillerbrand et al. Mar 2004 A1
20040055446 Robbin et al. Mar 2004 A1
20040056899 Sinclair, II et al. Mar 2004 A1
20040059577 Pickering Mar 2004 A1
20040059790 Austin-Lane et al. Mar 2004 A1
20040061717 Menon et al. Apr 2004 A1
20040062367 Fellenstein et al. Apr 2004 A1
20040064593 Sinclair et al. Apr 2004 A1
20040069122 Wilson Apr 2004 A1
20040070567 Longe et al. Apr 2004 A1
20040070612 Sinclair et al. Apr 2004 A1
20040073427 Moore Apr 2004 A1
20040073428 Zlokarnik et al. Apr 2004 A1
20040076086 Keller et al. Apr 2004 A1
20040078382 Mercer et al. Apr 2004 A1
20040085162 Agarwal et al. May 2004 A1
20040085368 Johnson, Jr. et al. May 2004 A1
20040086120 Akins, III et al. May 2004 A1
20040093213 Conkie May 2004 A1
20040093215 Gupta et al. May 2004 A1
20040094018 Ueshima et al. May 2004 A1
20040096105 Holtsberg May 2004 A1
20040098250 Kimchi et al. May 2004 A1
20040100479 Nakano et al. May 2004 A1
20040106432 Kanamori et al. Jun 2004 A1
20040107169 Lowe Jun 2004 A1
20040111266 Coorman et al. Jun 2004 A1
20040111332 Baar et al. Jun 2004 A1
20040114731 Gillett et al. Jun 2004 A1
20040122656 Abir Jun 2004 A1
20040122664 Lorenzo et al. Jun 2004 A1
20040124583 Landis Jul 2004 A1
20040125088 Zimmerman et al. Jul 2004 A1
20040125922 Specht Jul 2004 A1
20040127198 Roskind et al. Jul 2004 A1
20040127241 Shostak Jul 2004 A1
20040128137 Bush et al. Jul 2004 A1
20040133817 Choi Jul 2004 A1
20040135701 Yasuda et al. Jul 2004 A1
20040135774 La Monica Jul 2004 A1
20040136510 Vander Veen Jul 2004 A1
20040138869 Heinecke Jul 2004 A1
20040145607 Alderson Jul 2004 A1
20040153306 Tanner et al. Aug 2004 A1
20040160419 Padgitt Aug 2004 A1
20040162741 Flaxer et al. Aug 2004 A1
20040174399 Wu et al. Sep 2004 A1
20040174434 Walker et al. Sep 2004 A1
20040176958 Salmenkaita Sep 2004 A1
20040177319 Horn Sep 2004 A1
20040178994 Kairls, Jr. Sep 2004 A1
20040183833 Chua Sep 2004 A1
20040186713 Gomas et al. Sep 2004 A1
20040186714 Baker Sep 2004 A1
20040186777 Margiloff et al. Sep 2004 A1
20040193398 Chu et al. Sep 2004 A1
20040193420 Kennewick et al. Sep 2004 A1
20040193421 Blass Sep 2004 A1
20040193426 Maddux et al. Sep 2004 A1
20040196256 Wobbrock et al. Oct 2004 A1
20040198436 Alden Oct 2004 A1
20040199375 Ehsani et al. Oct 2004 A1
20040199387 Wang et al. Oct 2004 A1
20040199663 Horvitz et al. Oct 2004 A1
20040203520 Schirtzinger et al. Oct 2004 A1
20040205151 Sprigg et al. Oct 2004 A1
20040205671 Sukehiro et al. Oct 2004 A1
20040208302 Urban et al. Oct 2004 A1
20040210634 Ferrer et al. Oct 2004 A1
20040213419 Varma et al. Oct 2004 A1
20040215731 Tzann-en Szeto Oct 2004 A1
20040216049 Lewis et al. Oct 2004 A1
20040218451 Said et al. Nov 2004 A1
20040220798 Chi et al. Nov 2004 A1
20040223485 Arellano et al. Nov 2004 A1
20040223599 Bear et al. Nov 2004 A1
20040224638 Fadell et al. Nov 2004 A1
20040225501 Cutaia et al. Nov 2004 A1
20040225650 Cooper et al. Nov 2004 A1
20040225746 Niell et al. Nov 2004 A1
20040230637 Lecoueche et al. Nov 2004 A1
20040236778 Junqua et al. Nov 2004 A1
20040242286 Benco et al. Dec 2004 A1
20040243412 Gupta et al. Dec 2004 A1
20040243419 Wang Dec 2004 A1
20040249629 Webster Dec 2004 A1
20040249667 Oon Dec 2004 A1
20040252119 Hunleth et al. Dec 2004 A1
20040252604 Johnson et al. Dec 2004 A1
20040252966 Holloway et al. Dec 2004 A1
20040254791 Coifman et al. Dec 2004 A1
20040254792 Busayapongchai et al. Dec 2004 A1
20040257432 Girish et al. Dec 2004 A1
20040259536 Keskar et al. Dec 2004 A1
20040261023 Bier Dec 2004 A1
20040262051 Carro Dec 2004 A1
20040263636 Cutler et al. Dec 2004 A1
20040267825 Novak et al. Dec 2004 A1
20040268253 DeMello et al. Dec 2004 A1
20040268262 Gupta et al. Dec 2004 A1
20050002507 Timmins et al. Jan 2005 A1
20050010409 Hull et al. Jan 2005 A1
20050012723 Pallakoff Jan 2005 A1
20050015254 Beaman Jan 2005 A1
20050015772 Saare et al. Jan 2005 A1
20050022114 Shanahan et al. Jan 2005 A1
20050024341 Gillespie et al. Feb 2005 A1
20050024345 Eastty et al. Feb 2005 A1
20050027385 Yueh Feb 2005 A1
20050030175 Wolfe Feb 2005 A1
20050031106 Henderson Feb 2005 A1
20050033582 Gadd et al. Feb 2005 A1
20050033771 Schmitter et al. Feb 2005 A1
20050034164 Sano et al. Feb 2005 A1
20050038657 Roth et al. Feb 2005 A1
20050039141 Burke et al. Feb 2005 A1
20050043946 Ueyama et al. Feb 2005 A1
20050043949 Roth et al. Feb 2005 A1
20050044569 Marcus Feb 2005 A1
20050045373 Born Mar 2005 A1
20050049880 Roth et al. Mar 2005 A1
20050055212 Nagao Mar 2005 A1
20050055403 Brittan Mar 2005 A1
20050058438 Hayashi Mar 2005 A1
20050060155 Chu et al. Mar 2005 A1
20050071165 Hofstader et al. Mar 2005 A1
20050071332 Ortega et al. Mar 2005 A1
20050071437 Bear et al. Mar 2005 A1
20050074113 Mathew et al. Apr 2005 A1
20050080613 Colledge et al. Apr 2005 A1
20050080620 Rao et al. Apr 2005 A1
20050080625 Bennett et al. Apr 2005 A1
20050080632 Endo et al. Apr 2005 A1
20050080780 Colledge et al. Apr 2005 A1
20050086059 Bennett Apr 2005 A1
20050086255 Schran et al. Apr 2005 A1
20050086605 Ferrer et al. Apr 2005 A1
20050091118 Fano Apr 2005 A1
20050094475 Naoi May 2005 A1
20050099398 Garside et al. May 2005 A1
20050100214 Zhang et al. May 2005 A1
20050102144 Rapoport May 2005 A1
20050102614 Brockett et al. May 2005 A1
20050102625 Lee et al. May 2005 A1
20050105712 Williams et al. May 2005 A1
20050108001 Aarskog May 2005 A1
20050108017 Esser et al. May 2005 A1
20050108074 Bloechl et al. May 2005 A1
20050108338 Simske et al. May 2005 A1
20050108344 Tafoya et al. May 2005 A1
20050114124 Liu et al. May 2005 A1
20050114140 Brackett et al. May 2005 A1
20050114791 Bollenbacher et al. May 2005 A1
20050119890 Hirose Jun 2005 A1
20050119897 Bennett et al. Jun 2005 A1
20050125216 Chitrapura et al. Jun 2005 A1
20050125235 Lazay et al. Jun 2005 A1
20050131951 Zhang et al. Jun 2005 A1
20050132301 Ikeda Jun 2005 A1
20050136949 Barnes, Jr. Jun 2005 A1
20050138305 Zellner Jun 2005 A1
20050140504 Marshall et al. Jun 2005 A1
20050143972 Gopalakrishnan et al. Jun 2005 A1
20050144003 Iso-Sipila Jun 2005 A1
20050144070 Cheshire Jun 2005 A1
20050144568 Gruen et al. Jun 2005 A1
20050148356 Ferguson et al. Jul 2005 A1
20050149214 Yoo et al. Jul 2005 A1
20050149330 Katae Jul 2005 A1
20050149332 Kuzunuki et al. Jul 2005 A1
20050149510 Shafrir Jul 2005 A1
20050152558 Van Tassel Jul 2005 A1
20050152602 Chen et al. Jul 2005 A1
20050154578 Tong et al. Jul 2005 A1
20050154591 Lecoeuche Jul 2005 A1
20050159939 Mohler et al. Jul 2005 A1
20050162395 Unruh Jul 2005 A1
20050165607 DiFabbrizio et al. Jul 2005 A1
20050166153 Eytchison et al. Jul 2005 A1
20050177445 Church Aug 2005 A1
20050181770 Helferich Aug 2005 A1
20050182616 Kotipalli Aug 2005 A1
20050182627 Tanaka et al. Aug 2005 A1
20050182628 Choi Aug 2005 A1
20050182629 Coorman et al. Aug 2005 A1
20050182630 Miro et al. Aug 2005 A1
20050182765 Liddy Aug 2005 A1
20050187767 Godden Aug 2005 A1
20050187773 Filoche et al. Aug 2005 A1
20050190970 Griffin Sep 2005 A1
20050192801 Lewis et al. Sep 2005 A1
20050195077 McCulloch et al. Sep 2005 A1
20050195429 Archbold Sep 2005 A1
20050196733 Budra et al. Sep 2005 A1
20050201572 Lindahl et al. Sep 2005 A1
20050202854 Kortum et al. Sep 2005 A1
20050203747 Lecoeuche Sep 2005 A1
20050203991 Kawamura et al. Sep 2005 A1
20050209848 Ishii Sep 2005 A1
20050210394 Crandall et al. Sep 2005 A1
20050216331 Ahrens et al. Sep 2005 A1
20050222843 Kahn et al. Oct 2005 A1
20050222973 Kaiser Oct 2005 A1
20050228665 Kobayashi et al. Oct 2005 A1
20050245243 Zuniga Nov 2005 A1
20050246350 Canaran Nov 2005 A1
20050246365 Lowles et al. Nov 2005 A1
20050246726 Labrou et al. Nov 2005 A1
20050267738 Wilkinson et al. Dec 2005 A1
20050267757 Iso-Sipila et al. Dec 2005 A1
20050271216 Lashkari Dec 2005 A1
20050273337 Erell et al. Dec 2005 A1
20050273626 Pearson et al. Dec 2005 A1
20050278297 Nelson Dec 2005 A1
20050278643 Ukai et al. Dec 2005 A1
20050278647 Leavitt et al. Dec 2005 A1
20050283364 Longe et al. Dec 2005 A1
20050283726 Lunati Dec 2005 A1
20050283729 Morris et al. Dec 2005 A1
20050288934 Omi Dec 2005 A1
20050288936 Busayapongchai et al. Dec 2005 A1
20050289463 Wu et al. Dec 2005 A1
20060001652 Chiu et al. Jan 2006 A1
20060004570 Ju et al. Jan 2006 A1
20060004744 Nevidomski et al. Jan 2006 A1
20060007174 Shen Jan 2006 A1
20060009973 Nguyen et al. Jan 2006 A1
20060013414 Shih Jan 2006 A1
20060015341 Baker Jan 2006 A1
20060015819 Hawkins et al. Jan 2006 A1
20060018446 Schmandt et al. Jan 2006 A1
20060018492 Chiu et al. Jan 2006 A1
20060020890 Kroll et al. Jan 2006 A1
20060025999 Feng et al. Feb 2006 A1
20060026233 Tenembaum et al. Feb 2006 A1
20060026521 Hotelling et al. Feb 2006 A1
20060026535 Hotelling et al. Feb 2006 A1
20060026536 Hotelling et al. Feb 2006 A1
20060033724 Chaudhri et al. Feb 2006 A1
20060035632 Sorvari et al. Feb 2006 A1
20060036946 Radtke et al. Feb 2006 A1
20060041424 Todhunter et al. Feb 2006 A1
20060041431 Maes Feb 2006 A1
20060047632 Zhang Mar 2006 A1
20060050865 Kortum et al. Mar 2006 A1
20060052141 Suzuki Mar 2006 A1
20060053365 Hollander et al. Mar 2006 A1
20060053379 Henderson et al. Mar 2006 A1
20060053387 Ording Mar 2006 A1
20060058999 Barker et al. Mar 2006 A1
20060059437 Conklin Mar 2006 A1
20060060762 Chan et al. Mar 2006 A1
20060061488 Dunton Mar 2006 A1
20060067535 Culbert et al. Mar 2006 A1
20060067536 Culbert et al. Mar 2006 A1
20060069567 Tischer et al. Mar 2006 A1
20060069664 Ling et al. Mar 2006 A1
20060072248 Watanabe et al. Apr 2006 A1
20060072716 Pham Apr 2006 A1
20060074628 Elbaz et al. Apr 2006 A1
20060074660 Waters et al. Apr 2006 A1
20060074674 Zhang et al. Apr 2006 A1
20060074750 Clark et al. Apr 2006 A1
20060074898 Gavalda et al. Apr 2006 A1
20060077055 Basir Apr 2006 A1
20060080098 Campbell Apr 2006 A1
20060085187 Barquilla Apr 2006 A1
20060085465 Nori et al. Apr 2006 A1
20060085757 Andre et al. Apr 2006 A1
20060095265 Chu et al. May 2006 A1
20060095790 Nguyen et al. May 2006 A1
20060095846 Nurmi May 2006 A1
20060095848 Naik May 2006 A1
20060097991 Hotelling et al. May 2006 A1
20060100848 Cozzi et al. May 2006 A1
20060100849 Chan May 2006 A1
20060101354 Hashimoto et al. May 2006 A1
20060103633 Gioeli May 2006 A1
20060106592 Brockett et al. May 2006 A1
20060106594 Brockett et al. May 2006 A1
20060106595 Brockett et al. May 2006 A1
20060111906 Cross et al. May 2006 A1
20060111909 Maes et al. May 2006 A1
20060116874 Samuelsson et al. Jun 2006 A1
20060116877 Pickering et al. Jun 2006 A1
20060117002 Swen Jun 2006 A1
20060119582 Ng et al. Jun 2006 A1
20060122834 Bennett Jun 2006 A1
20060122836 Cross et al. Jun 2006 A1
20060129929 Weber et al. Jun 2006 A1
20060132812 Barnes et al. Jun 2006 A1
20060136213 Hirose et al. Jun 2006 A1
20060141990 Zak et al. Jun 2006 A1
20060143007 Koh et al. Jun 2006 A1
20060143576 Gupta et al. Jun 2006 A1
20060148520 Baker et al. Jul 2006 A1
20060150087 Cronenberger et al. Jul 2006 A1
20060152496 Knaven Jul 2006 A1
20060153040 Girish et al. Jul 2006 A1
20060156252 Sheshagiri et al. Jul 2006 A1
20060156307 Kunjithapatham et al. Jul 2006 A1
20060161870 Hotelling et al. Jul 2006 A1
20060161871 Hotelling et al. Jul 2006 A1
20060161872 Rytivaara et al. Jul 2006 A1
20060165105 Shenfield et al. Jul 2006 A1
20060167676 Plumb Jul 2006 A1
20060168150 Naik et al. Jul 2006 A1
20060168507 Hansen Jul 2006 A1
20060168539 Hawkins et al. Jul 2006 A1
20060172720 Islam et al. Aug 2006 A1
20060173684 Fischer Aug 2006 A1
20060174207 Deshpande Aug 2006 A1
20060178868 Billerey-Mosier Aug 2006 A1
20060181519 Vernier et al. Aug 2006 A1
20060183466 Lee et al. Aug 2006 A1
20060184886 Chung et al. Aug 2006 A1
20060187073 Lin et al. Aug 2006 A1
20060190269 Tessel et al. Aug 2006 A1
20060190577 Yamada Aug 2006 A1
20060193518 Dong Aug 2006 A1
20060195206 Moon et al. Aug 2006 A1
20060195323 Monne et al. Aug 2006 A1
20060197753 Hotelling Sep 2006 A1
20060197755 Bawany Sep 2006 A1
20060200253 Hoffberg et al. Sep 2006 A1
20060200342 Corston-Oliver et al. Sep 2006 A1
20060200347 Kim et al. Sep 2006 A1
20060205432 Hawkins et al. Sep 2006 A1
20060206454 Forstall et al. Sep 2006 A1
20060212415 Backer et al. Sep 2006 A1
20060217967 Goertzen et al. Sep 2006 A1
20060221738 Park et al. Oct 2006 A1
20060221788 Lindahl et al. Oct 2006 A1
20060224570 Quiroga et al. Oct 2006 A1
20060229870 Kobal Oct 2006 A1
20060229876 Aaron et al. Oct 2006 A1
20060230410 Kurganov et al. Oct 2006 A1
20060234680 Doulton Oct 2006 A1
20060235550 Csicsatka et al. Oct 2006 A1
20060235700 Wong et al. Oct 2006 A1
20060235841 Betz et al. Oct 2006 A1
20060236262 Bathiche et al. Oct 2006 A1
20060239419 Joseph et al. Oct 2006 A1
20060239471 Mao et al. Oct 2006 A1
20060240866 Eilts et al. Oct 2006 A1
20060242190 Wnek Oct 2006 A1
20060246955 Nirhamo et al. Nov 2006 A1
20060247931 Caskey et al. Nov 2006 A1
20060252457 Schrager Nov 2006 A1
20060253210 Rosenberg Nov 2006 A1
20060253787 Fogg Nov 2006 A1
20060256934 Mazor Nov 2006 A1
20060262876 LaDue Nov 2006 A1
20060265208 Assadollahi Nov 2006 A1
20060265503 Jones et al. Nov 2006 A1
20060265648 Rainisto et al. Nov 2006 A1
20060271364 Mirkovic Nov 2006 A1
20060271627 Szczepanek Nov 2006 A1
20060274051 Longe et al. Dec 2006 A1
20060274905 Lindahl et al. Dec 2006 A1
20060277058 J''maev et al. Dec 2006 A1
20060282264 Denny et al. Dec 2006 A1
20060282415 Shibata et al. Dec 2006 A1
20060286527 Morel Dec 2006 A1
20060288024 Braica Dec 2006 A1
20060291666 Ball et al. Dec 2006 A1
20060293876 Kamatani et al. Dec 2006 A1
20060293880 Elshishiny et al. Dec 2006 A1
20060293886 Odell et al. Dec 2006 A1
20070003026 Hodge et al. Jan 2007 A1
20070004451 C. Anderson Jan 2007 A1
20070005849 Oliver Jan 2007 A1
20070006098 Krumm et al. Jan 2007 A1
20070011154 Musgrove et al. Jan 2007 A1
20070016563 Omoigui Jan 2007 A1
20070016865 Johnson et al. Jan 2007 A1
20070021956 Qu et al. Jan 2007 A1
20070022380 Swartz et al. Jan 2007 A1
20070025704 Tsukazaki et al. Feb 2007 A1
20070026852 Logan et al. Feb 2007 A1
20070027732 Hudgens Feb 2007 A1
20070028009 Robbin et al. Feb 2007 A1
20070032247 Shaffer et al. Feb 2007 A1
20070033003 Morris Feb 2007 A1
20070033005 Cristo et al. Feb 2007 A1
20070036117 Taube et al. Feb 2007 A1
20070038436 Cristo et al. Feb 2007 A1
20070038609 Wu Feb 2007 A1
20070040813 Kushler et al. Feb 2007 A1
20070041361 Iso-Sipila Feb 2007 A1
20070043568 Dhanakshirur et al. Feb 2007 A1
20070044038 Horentrup et al. Feb 2007 A1
20070046641 Lim Mar 2007 A1
20070047719 Dhawan et al. Mar 2007 A1
20070050184 Drucker et al. Mar 2007 A1
20070050191 Weider et al. Mar 2007 A1
20070050393 Vogel et al. Mar 2007 A1
20070050712 Hull et al. Mar 2007 A1
20070052586 Horstemeyer Mar 2007 A1
20070055493 Lee Mar 2007 A1
20070055508 Zhao et al. Mar 2007 A1
20070055514 Beattie et al. Mar 2007 A1
20070055525 Kennewick et al. Mar 2007 A1
20070055529 Kanevsky et al. Mar 2007 A1
20070058832 Hug et al. Mar 2007 A1
20070060107 Day Mar 2007 A1
20070061487 Moore et al. Mar 2007 A1
20070061712 Bodin et al. Mar 2007 A1
20070061754 Ardhanari et al. Mar 2007 A1
20070067173 Bellegarda Mar 2007 A1
20070067272 Flynt et al. Mar 2007 A1
20070073540 Hirakawa et al. Mar 2007 A1
20070073541 Tian Mar 2007 A1
20070073745 Scott et al. Mar 2007 A1
20070075965 Huppi et al. Apr 2007 A1
20070079027 Marriott et al. Apr 2007 A1
20070080936 Tsuk et al. Apr 2007 A1
20070083467 Lindahl et al. Apr 2007 A1
20070083623 Nishimura et al. Apr 2007 A1
20070088556 Andrew Apr 2007 A1
20070089132 Qureshey et al. Apr 2007 A1
20070089135 Qureshey et al. Apr 2007 A1
20070093277 Cavacuiti et al. Apr 2007 A1
20070094026 Ativanichayaphong et al. Apr 2007 A1
20070098195 Holmes May 2007 A1
20070100206 Lin et al. May 2007 A1
20070100602 Kim May 2007 A1
20070100635 Mahajan et al. May 2007 A1
20070100709 Lee et al. May 2007 A1
20070100790 Cheyer et al. May 2007 A1
20070100883 Rose et al. May 2007 A1
20070106512 Acero et al. May 2007 A1
20070106513 Boillot et al. May 2007 A1
20070106674 Agrawal et al. May 2007 A1
20070116195 Thompson et al. May 2007 A1
20070118377 Badino et al. May 2007 A1
20070118378 Skuratovsky May 2007 A1
20070121846 Altberg et al. May 2007 A1
20070124149 Shen et al. May 2007 A1
20070124676 Amundsen et al. May 2007 A1
20070127888 Hayashi et al. Jun 2007 A1
20070128777 Yin et al. Jun 2007 A1
20070129059 Nadarajah et al. Jun 2007 A1
20070130014 Altberg et al. Jun 2007 A1
20070130128 Garg et al. Jun 2007 A1
20070132738 Lowles et al. Jun 2007 A1
20070133771 Stifelman et al. Jun 2007 A1
20070135949 Snover et al. Jun 2007 A1
20070136064 Carroll Jun 2007 A1
20070136778 Birger et al. Jun 2007 A1
20070143163 Weiss et al. Jun 2007 A1
20070149252 Jobs et al. Jun 2007 A1
20070150842 Chaudhri et al. Jun 2007 A1
20070152978 Kocienda et al. Jul 2007 A1
20070152980 Kocienda et al. Jul 2007 A1
20070155346 Mijatovic et al. Jul 2007 A1
20070156410 Stohr et al. Jul 2007 A1
20070156627 D'Alicandro Jul 2007 A1
20070157089 Van Os et al. Jul 2007 A1
20070157268 Girish et al. Jul 2007 A1
20070162296 Altberg et al. Jul 2007 A1
20070162414 Horowitz et al. Jul 2007 A1
20070168922 Kaiser et al. Jul 2007 A1
20070173233 Vander Veen et al. Jul 2007 A1
20070173267 Klassen et al. Jul 2007 A1
20070174188 Fish Jul 2007 A1
20070174396 Kumar et al. Jul 2007 A1
20070179776 Segond et al. Aug 2007 A1
20070179778 Gong et al. Aug 2007 A1
20070180383 Naik Aug 2007 A1
20070182595 Ghasabian Aug 2007 A1
20070185551 Meadows et al. Aug 2007 A1
20070185754 Schmidt Aug 2007 A1
20070185831 Churcher Aug 2007 A1
20070185917 Prahlad et al. Aug 2007 A1
20070188901 Heckerman et al. Aug 2007 A1
20070192027 Lee et al. Aug 2007 A1
20070192105 Neeracher et al. Aug 2007 A1
20070192293 Swen Aug 2007 A1
20070192403 Heine et al. Aug 2007 A1
20070192744 Reponen Aug 2007 A1
20070198269 Braho et al. Aug 2007 A1
20070198273 Hennecke Aug 2007 A1
20070198566 Sustik Aug 2007 A1
20070203955 Pomerantz Aug 2007 A1
20070207785 Chatterjee et al. Sep 2007 A1
20070208569 Subramanian et al. Sep 2007 A1
20070208579 Peterson Sep 2007 A1
20070208726 Krishnaprasad et al. Sep 2007 A1
20070211071 Slotznick et al. Sep 2007 A1
20070213099 Bast Sep 2007 A1
20070213857 Bodin et al. Sep 2007 A1
20070219777 Chu et al. Sep 2007 A1
20070219803 Chiu et al. Sep 2007 A1
20070219983 Fish Sep 2007 A1
20070225980 Sumita Sep 2007 A1
20070225984 Milstein et al. Sep 2007 A1
20070226652 Kikuchi et al. Sep 2007 A1
20070229323 Plachta et al. Oct 2007 A1
20070230729 Naylor et al. Oct 2007 A1
20070233490 Yao Oct 2007 A1
20070233497 Paek et al. Oct 2007 A1
20070233692 Lisa et al. Oct 2007 A1
20070233725 Michmerhuizen et al. Oct 2007 A1
20070238488 Scott Oct 2007 A1
20070238489 Scott Oct 2007 A1
20070238520 Kacmarcik Oct 2007 A1
20070239429 Johnson et al. Oct 2007 A1
20070244702 Kahn et al. Oct 2007 A1
20070247441 Kim et al. Oct 2007 A1
20070255435 Cohen et al. Nov 2007 A1
20070255979 Deily et al. Nov 2007 A1
20070257890 Hotelling et al. Nov 2007 A1
20070258642 Thota Nov 2007 A1
20070260460 Hyatt Nov 2007 A1
20070260595 Beatty et al. Nov 2007 A1
20070260822 Adams Nov 2007 A1
20070261080 Saetti Nov 2007 A1
20070265831 Dinur et al. Nov 2007 A1
20070271104 Mckay Nov 2007 A1
20070271510 Grigoriu et al. Nov 2007 A1
20070274468 Cai Nov 2007 A1
20070276651 Bliss et al. Nov 2007 A1
20070276714 Beringer Nov 2007 A1
20070276810 Rosen Nov 2007 A1
20070277088 Bodin et al. Nov 2007 A1
20070282595 Tunning Dec 2007 A1
20070285958 Platchta et al. Dec 2007 A1
20070286363 Burg et al. Dec 2007 A1
20070288241 Cross et al. Dec 2007 A1
20070288449 Datta et al. Dec 2007 A1
20070291108 Huber et al. Dec 2007 A1
20070294077 Narayanan et al. Dec 2007 A1
20070294263 Punj et al. Dec 2007 A1
20070299664 Peters et al. Dec 2007 A1
20070299831 Williams et al. Dec 2007 A1
20070300140 Makela et al. Dec 2007 A1
20080010355 Vieri et al. Jan 2008 A1
20080012950 Lee et al. Jan 2008 A1
20080013751 Hiselius Jan 2008 A1
20080015864 Ross Jan 2008 A1
20080016575 Vincent et al. Jan 2008 A1
20080021708 Bennett et al. Jan 2008 A1
20080022208 Morse Jan 2008 A1
20080031475 Goldstein Feb 2008 A1
20080034032 Healey et al. Feb 2008 A1
20080034044 Bhakta et al. Feb 2008 A1
20080036743 Westerman et al. Feb 2008 A1
20080040339 Zhou et al. Feb 2008 A1
20080042970 Liang et al. Feb 2008 A1
20080043936 Liebermann Feb 2008 A1
20080043943 Sipher et al. Feb 2008 A1
20080046239 Boo Feb 2008 A1
20080046422 Lee et al. Feb 2008 A1
20080046820 Lee et al. Feb 2008 A1
20080046948 Verosub Feb 2008 A1
20080048908 Sato Feb 2008 A1
20080052063 Bennett et al. Feb 2008 A1
20080052073 Goto et al. Feb 2008 A1
20080052077 Bennett et al. Feb 2008 A1
20080056459 Vallier et al. Mar 2008 A1
20080056579 Guha Mar 2008 A1
20080057922 Kokes et al. Mar 2008 A1
20080059190 Chu et al. Mar 2008 A1
20080059200 Puli Mar 2008 A1
20080059876 Hantler et al. Mar 2008 A1
20080062141 Chaudhri Mar 2008 A1
20080065382 Gerl et al. Mar 2008 A1
20080071529 Silverman et al. Mar 2008 A1
20080071544 Beaufays et al. Mar 2008 A1
20080075296 Lindahl et al. Mar 2008 A1
20080076972 Dorogusker et al. Mar 2008 A1
20080077310 Murlidar et al. Mar 2008 A1
20080077384 Agapi et al. Mar 2008 A1
20080077386 Gao et al. Mar 2008 A1
20080077391 Chino et al. Mar 2008 A1
20080077393 Gao et al. Mar 2008 A1
20080077406 Ganong, III Mar 2008 A1
20080077859 Schabes et al. Mar 2008 A1
20080079566 Singh et al. Apr 2008 A1
20080082332 Mallett et al. Apr 2008 A1
20080082338 0"Neil et al. Apr 2008 A1
20080082390 Hawkins et al. Apr 2008 A1
20080082576 Bodin et al. Apr 2008 A1
20080082651 Singh et al. Apr 2008 A1
20080084974 Dhanakshirur Apr 2008 A1
20080091406 Baldwin et al. Apr 2008 A1
20080091426 Rempel et al. Apr 2008 A1
20080091443 Strope et al. Apr 2008 A1
20080096726 Riley et al. Apr 2008 A1
20080097937 Hadjarian Apr 2008 A1
20080098302 Roose Apr 2008 A1
20080098480 Henry et al. Apr 2008 A1
20080100579 Robinson et al. May 2008 A1
20080109222 Liu May 2008 A1
20080114480 Harb May 2008 A1
20080114598 Prieto et al. May 2008 A1
20080114841 Lambert May 2008 A1
20080118143 Gordon et al. May 2008 A1
20080120102 Rao May 2008 A1
20080120112 Jordan et al. May 2008 A1
20080120342 Reed et al. May 2008 A1
20080122796 Jobs et al. May 2008 A1
20080126077 Thorn May 2008 A1
20080126091 Clark et al. May 2008 A1
20080126093 Sivadas May 2008 A1
20080126100 Grost et al. May 2008 A1
20080129520 Lee Jun 2008 A1
20080130867 Bowen Jun 2008 A1
20080131006 Oliver Jun 2008 A1
20080132221 Willey et al. Jun 2008 A1
20080133215 Sarukkai Jun 2008 A1
20080133228 Rao Jun 2008 A1
20080133241 Baker et al. Jun 2008 A1
20080133956 Fadell Jun 2008 A1
20080140413 Millman et al. Jun 2008 A1
20080140416 Shostak Jun 2008 A1
20080140652 Millman et al. Jun 2008 A1
20080140657 Azvine et al. Jun 2008 A1
20080141180 Reed et al. Jun 2008 A1
20080141182 Barsness et al. Jun 2008 A1
20080146245 Appaji Jun 2008 A1
20080146290 Sreeram et al. Jun 2008 A1
20080147408 Da Palma et al. Jun 2008 A1
20080147411 Dames et al. Jun 2008 A1
20080147874 Yoneda et al. Jun 2008 A1
20080150900 Han Jun 2008 A1
20080154600 Tian et al. Jun 2008 A1
20080154612 Evermann et al. Jun 2008 A1
20080154828 Antebi et al. Jun 2008 A1
20080157867 Krah Jul 2008 A1
20080162137 Saitoh Jul 2008 A1
20080163119 Kim et al. Jul 2008 A1
20080163131 Hirai et al. Jul 2008 A1
20080165144 Forstall et al. Jul 2008 A1
20080165980 Pavlovic et al. Jul 2008 A1
20080165994 Caren et al. Jul 2008 A1
20080167013 Novick et al. Jul 2008 A1
20080167858 Christie et al. Jul 2008 A1
20080168366 Kocienda et al. Jul 2008 A1
20080183473 Nagano et al. Jul 2008 A1
20080189099 Friedman et al. Aug 2008 A1
20080189106 Low et al. Aug 2008 A1
20080189110 Freeman et al. Aug 2008 A1
20080189114 Fail et al. Aug 2008 A1
20080189606 Rybak Aug 2008 A1
20080195312 Aaron et al. Aug 2008 A1
20080195601 Ntoulas et al. Aug 2008 A1
20080195940 Gail et al. Aug 2008 A1
20080200142 Abdel-Kader et al. Aug 2008 A1
20080201306 Cooper et al. Aug 2008 A1
20080201375 Khedouri et al. Aug 2008 A1
20080204379 Perez-Noguera Aug 2008 A1
20080207176 Brackbill et al. Aug 2008 A1
20080208585 Ativanichayaphong et al. Aug 2008 A1
20080208587 Ben-David et al. Aug 2008 A1
20080212796 Denda Sep 2008 A1
20080219641 Sandrew et al. Sep 2008 A1
20080221866 Katragadda et al. Sep 2008 A1
20080221880 Cerra et al. Sep 2008 A1
20080221889 Cerra et al. Sep 2008 A1
20080221903 Kanevsky et al. Sep 2008 A1
20080222118 Scian et al. Sep 2008 A1
20080228463 Mod et al. Sep 2008 A1
20080228485 Owen Sep 2008 A1
20080228490 Fischer et al. Sep 2008 A1
20080228496 Yu et al. Sep 2008 A1
20080228928 Donelli et al. Sep 2008 A1
20080229185 Lynch Sep 2008 A1
20080229218 Maeng Sep 2008 A1
20080235017 Satomura et al. Sep 2008 A1
20080235024 Goldberg et al. Sep 2008 A1
20080235027 Cross Sep 2008 A1
20080240569 Tonouchi Oct 2008 A1
20080242280 Shapiro et al. Oct 2008 A1
20080244390 Fux et al. Oct 2008 A1
20080244446 LeFevre et al. Oct 2008 A1
20080247519 Abella Oct 2008 A1
20080248797 Freeman et al. Oct 2008 A1
20080249770 Kim et al. Oct 2008 A1
20080253577 Eppolito Oct 2008 A1
20080255837 Kahn et al. Oct 2008 A1
20080255845 Bennett Oct 2008 A1
20080256613 Grover Oct 2008 A1
20080259022 Mansfield et al. Oct 2008 A1
20080262838 Nurminen et al. Oct 2008 A1
20080262846 Burns et al. Oct 2008 A1
20080270118 Kuo et al. Oct 2008 A1
20080270138 Knight et al. Oct 2008 A1
20080270139 Shi et al. Oct 2008 A1
20080270140 Hertz et al. Oct 2008 A1
20080277473 Kotlarsky et al. Nov 2008 A1
20080281510 Shahine Nov 2008 A1
20080292112 Valenzuela et al. Nov 2008 A1
20080294651 Masuyama et al. Nov 2008 A1
20080294981 Balzano et al. Nov 2008 A1
20080298766 Wen et al. Dec 2008 A1
20080299523 Chai et al. Dec 2008 A1
20080300871 Gilbert Dec 2008 A1
20080300878 Bennett Dec 2008 A1
20080306727 Thurmair et al. Dec 2008 A1
20080312909 Hermansen et al. Dec 2008 A1
20080313335 Jung et al. Dec 2008 A1
20080316183 Westerman et al. Dec 2008 A1
20080319753 Hancock Dec 2008 A1
20080319763 Di Fabbrizio et al. Dec 2008 A1
20090003115 Lindahl et al. Jan 2009 A1
20090005012 Van Heugten Jan 2009 A1
20090005891 Batson et al. Jan 2009 A1
20090006097 Etezadi et al. Jan 2009 A1
20090006099 Sharpe et al. Jan 2009 A1
20090006100 Badger et al. Jan 2009 A1
20090006343 Platt et al. Jan 2009 A1
20090006345 Platt et al. Jan 2009 A1
20090006488 Lindahl et al. Jan 2009 A1
20090006671 Batson et al. Jan 2009 A1
20090007001 Morin et al. Jan 2009 A1
20090011709 Akasaka et al. Jan 2009 A1
20090012748 Beish et al. Jan 2009 A1
20090012775 El Hady et al. Jan 2009 A1
20090018828 Nakadai et al. Jan 2009 A1
20090018834 Cooper et al. Jan 2009 A1
20090018835 Cooper et al. Jan 2009 A1
20090018839 Cooper et al. Jan 2009 A1
20090018840 Lutz et al. Jan 2009 A1
20090022329 Mahowald Jan 2009 A1
20090028435 Wu et al. Jan 2009 A1
20090030800 Grois Jan 2009 A1
20090030978 Johnson et al. Jan 2009 A1
20090043583 Agapi et al. Feb 2009 A1
20090048821 Yam et al. Feb 2009 A1
20090048845 Burckart et al. Feb 2009 A1
20090049067 Murray Feb 2009 A1
20090055179 Cho et al. Feb 2009 A1
20090055186 Lance et al. Feb 2009 A1
20090058823 Kocienda Mar 2009 A1
20090058860 Fong et al. Mar 2009 A1
20090060472 Bull et al. Mar 2009 A1
20090063974 Bull et al. Mar 2009 A1
20090064031 Bull et al. Mar 2009 A1
20090070097 Wu et al. Mar 2009 A1
20090070102 Maegawa Mar 2009 A1
20090070114 Staszak Mar 2009 A1
20090074214 Bradford et al. Mar 2009 A1
20090076792 Lawson-Tancred Mar 2009 A1
20090076796 Daraselia Mar 2009 A1
20090076798 Oh Mar 2009 A1
20090076819 Wouters et al. Mar 2009 A1
20090076821 Brenner et al. Mar 2009 A1
20090076825 Bradford et al. Mar 2009 A1
20090077165 Rhodes et al. Mar 2009 A1
20090083035 Huang et al. Mar 2009 A1
20090083036 Zhao et al. Mar 2009 A1
20090083037 Gleason et al. Mar 2009 A1
20090083047 Lindahl et al. Mar 2009 A1
20090089058 Bellegarda Apr 2009 A1
20090092260 Powers Apr 2009 A1
20090092261 Bard Apr 2009 A1
20090092262 Costa et al. Apr 2009 A1
20090094029 Koch et al. Apr 2009 A1
20090094033 Mozer et al. Apr 2009 A1
20090097634 Nambiar et al. Apr 2009 A1
20090097637 Boscher et al. Apr 2009 A1
20090100049 Cao Apr 2009 A1
20090100454 Weber Apr 2009 A1
20090104898 Harris Apr 2009 A1
20090106026 Ferrieux Apr 2009 A1
20090106376 Tom et al. Apr 2009 A1
20090106397 O'Keefe Apr 2009 A1
20090112572 Thorn Apr 2009 A1
20090112677 Rhett Apr 2009 A1
20090112892 Cardie et al. Apr 2009 A1
20090119587 Allen et al. May 2009 A1
20090123021 Jung et al. May 2009 A1
20090123071 Iwasaki May 2009 A1
20090125477 Lu et al. May 2009 A1
20090128505 Partridge et al. May 2009 A1
20090137286 Luke et al. May 2009 A1
20090138736 Chin May 2009 A1
20090138828 Schultz et al. May 2009 A1
20090144049 Haddad et al. Jun 2009 A1
20090144609 Liang et al. Jun 2009 A1
20090146848 Ghassabian Jun 2009 A1
20090150147 Jacoby et al. Jun 2009 A1
20090150156 Kennewick et al. Jun 2009 A1
20090153288 Hope et al. Jun 2009 A1
20090154669 Wood et al. Jun 2009 A1
20090157382 Bar Jun 2009 A1
20090157384 Toutanova et al. Jun 2009 A1
20090157401 Bennett Jun 2009 A1
20090158423 Orlassino et al. Jun 2009 A1
20090160803 Hashimoto Jun 2009 A1
20090164441 Cheyer Jun 2009 A1
20090164655 Pettersson et al. Jun 2009 A1
20090164937 Alviar et al. Jun 2009 A1
20090167508 Fadell et al. Jul 2009 A1
20090167509 Fadell et al. Jul 2009 A1
20090171578 Kim et al. Jul 2009 A1
20090171664 Kennewick et al. Jul 2009 A1
20090172108 Singh Jul 2009 A1
20090172542 Girish et al. Jul 2009 A1
20090174667 Kocienda et al. Jul 2009 A1
20090174677 Gehani et al. Jul 2009 A1
20090177300 Lee Jul 2009 A1
20090177461 Ehsani et al. Jul 2009 A1
20090177966 Chaudhri Jul 2009 A1
20090182445 Girish et al. Jul 2009 A1
20090187402 Scholl Jul 2009 A1
20090187577 Reznik et al. Jul 2009 A1
20090191895 Singh et al. Jul 2009 A1
20090192782 Drewes Jul 2009 A1
20090198497 Kwon Aug 2009 A1
20090204409 Mozer et al. Aug 2009 A1
20090213134 Stephanick et al. Aug 2009 A1
20090215503 Zhang et al. Aug 2009 A1
20090216704 Zheng et al. Aug 2009 A1
20090222270 Likens et al. Sep 2009 A2
20090222488 Boerries et al. Sep 2009 A1
20090228126 Spielberg et al. Sep 2009 A1
20090228273 Wang Sep 2009 A1
20090228281 Singleton et al. Sep 2009 A1
20090228792 van Os et al. Sep 2009 A1
20090228842 Westerman et al. Sep 2009 A1
20090234655 Kwon Sep 2009 A1
20090239202 Stone Sep 2009 A1
20090239552 Churchill et al. Sep 2009 A1
20090240485 Dalal et al. Sep 2009 A1
20090241054 Hendricks Sep 2009 A1
20090241760 Georges Oct 2009 A1
20090247237 Mittleman et al. Oct 2009 A1
20090248182 Logan et al. Oct 2009 A1
20090249198 Davis et al. Oct 2009 A1
20090252350 Seguin Oct 2009 A1
20090253457 Seguin Oct 2009 A1
20090253463 Shin et al. Oct 2009 A1
20090254339 Seguin Oct 2009 A1
20090254345 Fleizach et al. Oct 2009 A1
20090259969 Pallakoff Oct 2009 A1
20090265368 Crider et al. Oct 2009 A1
20090271109 Lee et al. Oct 2009 A1
20090271175 Bodin et al. Oct 2009 A1
20090271176 Bodin et al. Oct 2009 A1
20090271178 Bodin et al. Oct 2009 A1
20090271188 Agapi et al. Oct 2009 A1
20090271189 Agapi et al. Oct 2009 A1
20090274315 Carnes et al. Nov 2009 A1
20090281789 Waibel et al. Nov 2009 A1
20090284482 Chin Nov 2009 A1
20090286514 Lichorowic et al. Nov 2009 A1
20090287583 Holmes Nov 2009 A1
20090290718 Kahn et al. Nov 2009 A1
20090292987 Sorenson Nov 2009 A1
20090296552 Hicks et al. Dec 2009 A1
20090298474 George Dec 2009 A1
20090299745 Kennewick et al. Dec 2009 A1
20090299849 Cao et al. Dec 2009 A1
20090300391 Jessup et al. Dec 2009 A1
20090300488 Salamon et al. Dec 2009 A1
20090304198 Herre et al. Dec 2009 A1
20090306967 Nicolov et al. Dec 2009 A1
20090306969 Goud et al. Dec 2009 A1
20090306979 Jaiswal et al. Dec 2009 A1
20090306980 Shin Dec 2009 A1
20090306981 Cromack et al. Dec 2009 A1
20090306985 Roberts et al. Dec 2009 A1
20090306988 Chen et al. Dec 2009 A1
20090306989 Kaji Dec 2009 A1
20090307162 Bui et al. Dec 2009 A1
20090307201 Dunning et al. Dec 2009 A1
20090307584 Davidson et al. Dec 2009 A1
20090313023 Jones Dec 2009 A1
20090313026 Coffman et al. Dec 2009 A1
20090313544 Wood et al. Dec 2009 A1
20090313564 Rottler et al. Dec 2009 A1
20090316943 Frigola Munoz et al. Dec 2009 A1
20090318119 Basir et al. Dec 2009 A1
20090318198 Carroll Dec 2009 A1
20090319266 Brown et al. Dec 2009 A1
20090326936 Nagashima Dec 2009 A1
20090326938 Marila et al. Dec 2009 A1
20090326949 Douthitt et al. Dec 2009 A1
20090327977 Bachfischer et al. Dec 2009 A1
20100004931 Ma et al. Jan 2010 A1
20100005081 Bennett Jan 2010 A1
20100013796 Abileah et al. Jan 2010 A1
20100019834 Zerbe et al. Jan 2010 A1
20100023318 Lemoine Jan 2010 A1
20100023320 Di Cristo et al. Jan 2010 A1
20100145700 Kennewick et al. Jan 2010 A1
20100030928 Conroy et al. Feb 2010 A1
20100031143 Rao et al. Feb 2010 A1
20100036655 Cecil et al. Feb 2010 A1
20100036660 Bennett Feb 2010 A1
20100037183 Miyashita et al. Feb 2010 A1
20100042400 Block et al. Feb 2010 A1
20100049514 Kennewick et al. Feb 2010 A1
20100050064 Liu et al. Feb 2010 A1
20100054512 Solum Mar 2010 A1
20100057457 Ogata et al. Mar 2010 A1
20100057643 Yang Mar 2010 A1
20100060646 Unsal et al. Mar 2010 A1
20100063804 Sato et al. Mar 2010 A1
20100063825 Williams et al. Mar 2010 A1
20100063961 Guiheneuf et al. Mar 2010 A1
20100064113 Lindahl et al. Mar 2010 A1
20100067723 Bergmann et al. Mar 2010 A1
20100067867 Lin et al. Mar 2010 A1
20100070281 Conkie et al. Mar 2010 A1
20100070899 Hunt et al. Mar 2010 A1
20100076760 Kraenzel et al. Mar 2010 A1
20100076993 Klawitter et al. Mar 2010 A1
20100077350 Lim et al. Mar 2010 A1
20100079501 Ikeda et al. Apr 2010 A1
20100080398 Waldmann Apr 2010 A1
20100080470 Deluca et al. Apr 2010 A1
20100081456 Singh et al. Apr 2010 A1
20100081487 Chen et al. Apr 2010 A1
20100082327 Rogers et al. Apr 2010 A1
20100082328 Rogers et al. Apr 2010 A1
20100082329 Silverman et al. Apr 2010 A1
20100082346 Rogers et al. Apr 2010 A1
20100082347 Rogers et al. Apr 2010 A1
20100082348 Silverman et al. Apr 2010 A1
20100082349 Bellegarda et al. Apr 2010 A1
20100082970 Lindahl et al. Apr 2010 A1
20100086152 Rank et al. Apr 2010 A1
20100086153 Hagen et al. Apr 2010 A1
20100086156 Rank et al. Apr 2010 A1
20100088020 Sano et al. Apr 2010 A1
20100088093 Lee et al. Apr 2010 A1
20100088100 Lindahl Apr 2010 A1
20100100212 Lindahl et al. Apr 2010 A1
20100100384 Ju et al. Apr 2010 A1
20100103776 Chan Apr 2010 A1
20100106500 McKee et al. Apr 2010 A1
20100114856 Kuboyama May 2010 A1
20100125460 Mellott et al. May 2010 A1
20100125811 Moore et al. May 2010 A1
20100131273 Aley-Raz et al. May 2010 A1
20100131498 Linthicum et al. May 2010 A1
20100131899 Hubert May 2010 A1
20100138215 Williams Jun 2010 A1
20100138224 Bedingfield, Sr. Jun 2010 A1
20100138416 Bellotti Jun 2010 A1
20100142740 Roerup Jun 2010 A1
20100145694 Ju et al. Jun 2010 A1
20100146442 Nagasaka et al. Jun 2010 A1
20100150321 Harris Jun 2010 A1
20100153115 Klee et al. Jun 2010 A1
20100161313 Karttunen Jun 2010 A1
20100161554 Datuashvili et al. Jun 2010 A1
20100164897 Morin et al. Jul 2010 A1
20100169075 Raffa et al. Jul 2010 A1
20100169097 Nachman et al. Jul 2010 A1
20100171713 Kwok et al. Jul 2010 A1
20100174544 Heifets Jul 2010 A1
20100179932 Yoon et al. Jul 2010 A1
20100179991 Nachman et al. Jul 2010 A1
20100185448 Meisel Jul 2010 A1
20100185949 Jaeger Jul 2010 A1
20100197359 Harris Aug 2010 A1
20100199180 Brichter Aug 2010 A1
20100204986 Kennewick et al. Aug 2010 A1
20100211199 Naik et al. Aug 2010 A1
20100217604 Baldwin et al. Aug 2010 A1
20100222098 Garg Sep 2010 A1
20100223055 Mclean Sep 2010 A1
20100223056 Kadirkamanathan Sep 2010 A1
20100228540 Bennett Sep 2010 A1
20100228691 Yang et al. Sep 2010 A1
20100231474 Yamagajo et al. Sep 2010 A1
20100235167 Bourdon Sep 2010 A1
20100235341 Bennett Sep 2010 A1
20100235729 Kocienda et al. Sep 2010 A1
20100235770 Ording et al. Sep 2010 A1
20100250542 Fujimaki Sep 2010 A1
20100250599 Schmidt et al. Sep 2010 A1
20100257160 Cao Oct 2010 A1
20100257478 Longe et al. Oct 2010 A1
20100262599 Nitz Oct 2010 A1
20100268539 Xu et al. Oct 2010 A1
20100274753 Liberty et al. Oct 2010 A1
20100277579 Cho et al. Nov 2010 A1
20100278320 Arsenault et al. Nov 2010 A1
20100278453 King Nov 2010 A1
20100280983 Cho et al. Nov 2010 A1
20100281034 Petrou et al. Nov 2010 A1
20100286985 Kennewick et al. Nov 2010 A1
20100287514 Cragun et al. Nov 2010 A1
20100293460 Budelli Nov 2010 A1
20100299133 Kopparapu et al. Nov 2010 A1
20100299138 Kim Nov 2010 A1
20100299142 Freeman et al. Nov 2010 A1
20100302056 Dutton et al. Dec 2010 A1
20100305807 Basir et al. Dec 2010 A1
20100305947 Schwarz et al. Dec 2010 A1
20100312547 van Os et al. Dec 2010 A1
20100312566 Odinak et al. Dec 2010 A1
20100318576 Kim Dec 2010 A1
20100322438 Siotis Dec 2010 A1
20100324895 Kurzweil et al. Dec 2010 A1
20100324905 Kurzweil et al. Dec 2010 A1
20100325573 Estrada et al. Dec 2010 A1
20100325588 Reddy et al. Dec 2010 A1
20100332224 Mäkelä et al. Dec 2010 A1
20100332235 David Dec 2010 A1
20100332280 Bradley et al. Dec 2010 A1
20100332348 Cao Dec 2010 A1
20100332428 Mchenry et al. Dec 2010 A1
20100332976 Fux et al. Dec 2010 A1
20100333030 Johns Dec 2010 A1
20110002487 Panther et al. Jan 2011 A1
20110010178 Lee et al. Jan 2011 A1
20110010644 Merrill et al. Jan 2011 A1
20110016150 Engstrom et al. Jan 2011 A1
20110018695 Bells et al. Jan 2011 A1
20110021213 Carr Jan 2011 A1
20110022292 Shen et al. Jan 2011 A1
20110022388 Wu et al. Jan 2011 A1
20110022394 Wide et al. Jan 2011 A1
20110022952 Wu et al. Jan 2011 A1
20110029616 Wang et al. Feb 2011 A1
20110033064 Johnson et al. Feb 2011 A1
20110038489 Visser et al. Feb 2011 A1
20110047072 Ciurea Feb 2011 A1
20110047161 Myaeng et al. Feb 2011 A1
20110050591 Kim et al. Mar 2011 A1
20110054901 Qin et al. Mar 2011 A1
20110055256 Phillips et al. Mar 2011 A1
20110060584 Ferrucci et al. Mar 2011 A1
20110060587 Phillips et al. Mar 2011 A1
20110060807 Martin et al. Mar 2011 A1
20110066468 Huang et al. Mar 2011 A1
20110072492 Mohler et al. Mar 2011 A1
20110076994 Kim et al. Mar 2011 A1
20110082688 Kim et al. Apr 2011 A1
20110083079 Farrell et al. Apr 2011 A1
20110087491 Wittenstein et al. Apr 2011 A1
20110090078 Kim et al. Apr 2011 A1
20110093261 Angott Apr 2011 A1
20110093265 Stent et al. Apr 2011 A1
20110093271 Bernard et al. Apr 2011 A1
20110099000 Rai et al. Apr 2011 A1
20110103682 Chidlovskii et al. May 2011 A1
20110106736 Aharonson et al. May 2011 A1
20110110502 Daye et al. May 2011 A1
20110112827 Kennewick et al. May 2011 A1
20110112837 Kurki-Suonio et al. May 2011 A1
20110112921 Kennewick et al. May 2011 A1
20110116610 Shaw et al. May 2011 A1
20110119049 Ylonen May 2011 A1
20110119051 Li et al. May 2011 A1
20110125540 Jang et al. May 2011 A1
20110130958 Stahl et al. Jun 2011 A1
20110131036 Di Cristo et al. Jun 2011 A1
20110131038 Oyaizu et al. Jun 2011 A1
20110131045 Cristo et al. Jun 2011 A1
20110143811 Rodriguez Jun 2011 A1
20110144973 Bocchieri et al. Jun 2011 A1
20110144999 Jang et al. Jun 2011 A1
20110145718 Ketola et al. Jun 2011 A1
20110151830 Blanda et al. Jun 2011 A1
20110153209 Geelen Jun 2011 A1
20110153330 Yazdani et al. Jun 2011 A1
20110157029 Tseng Jun 2011 A1
20110161076 Davis et al. Jun 2011 A1
20110161079 Gruhn et al. Jun 2011 A1
20110161309 Lung et al. Jun 2011 A1
20110161852 Vainio et al. Jun 2011 A1
20110167350 Hoellwarth Jul 2011 A1
20110175810 Markovic et al. Jul 2011 A1
20110179002 Dumitru et al. Jul 2011 A1
20110179372 Moore et al. Jul 2011 A1
20110184721 Subramanian et al. Jul 2011 A1
20110184730 LeBeau Jul 2011 A1
20110191271 Baker et al. Aug 2011 A1
20110191344 Jin et al. Aug 2011 A1
20110195758 Damale et al. Aug 2011 A1
20110201387 Paek et al. Aug 2011 A1
20110209088 Hinckley et al. Aug 2011 A1
20110212717 Rhoads et al. Sep 2011 A1
20110218855 Cao et al. Sep 2011 A1
20110219018 Bailey et al. Sep 2011 A1
20110224972 Millett et al. Sep 2011 A1
20110231182 Weider et al. Sep 2011 A1
20110231188 Kennewick et al. Sep 2011 A1
20110231474 Locker et al. Sep 2011 A1
20110238407 Kent Sep 2011 A1
20110238408 Larcheveque et al. Sep 2011 A1
20110238676 Liu et al. Sep 2011 A1
20110242007 Gray et al. Oct 2011 A1
20110249144 Chang Oct 2011 A1
20110260861 Singh et al. Oct 2011 A1
20110264643 Cao Oct 2011 A1
20110274303 Filson et al. Nov 2011 A1
20110276598 Kozempel Nov 2011 A1
20110279368 Klein et al. Nov 2011 A1
20110282888 Koperski et al. Nov 2011 A1
20110288861 Kurzweil et al. Nov 2011 A1
20110298585 Barry Dec 2011 A1
20110306426 Novak et al. Dec 2011 A1
20110307491 Fisk et al. Dec 2011 A1
20110307810 Hilerio et al. Dec 2011 A1
20110314032 Bennett et al. Dec 2011 A1
20110314404 Kotler et al. Dec 2011 A1
20120002820 Leichter Jan 2012 A1
20120011138 Dunning et al. Jan 2012 A1
20120013609 Reponen et al. Jan 2012 A1
20120016678 Gruber et al. Jan 2012 A1
20120020490 Leichter Jan 2012 A1
20120022787 LeBeau et al. Jan 2012 A1
20120022857 Baldwin et al. Jan 2012 A1
20120022860 Lloyd et al. Jan 2012 A1
20120022868 LeBeau et al. Jan 2012 A1
20120022869 Lloyd et al. Jan 2012 A1
20120022870 Kristjansson et al. Jan 2012 A1
20120022872 Gruber Jan 2012 A1
20120022874 Lloyd et al. Jan 2012 A1
20120022876 LeBeau et al. Jan 2012 A1
20120023088 Cheng et al. Jan 2012 A1
20120034904 LeBeau et al. Feb 2012 A1
20120035907 Lebeau et al. Feb 2012 A1
20120035908 LeBeau et al. Feb 2012 A1
20120035924 Jitkoff Feb 2012 A1
20120035925 Friend et al. Feb 2012 A1
20120035931 LeBeau et al. Feb 2012 A1
20120035932 Jitkoff Feb 2012 A1
20120036556 Lebeau et al. Feb 2012 A1
20120042343 Laligand et al. Feb 2012 A1
20120053815 Montanari et al. Mar 2012 A1
20120053945 Gupta et al. Mar 2012 A1
20120056815 Mehra Mar 2012 A1
20120078627 Wagner Mar 2012 A1
20120082317 Pance et al. Apr 2012 A1
20120084086 Gilbert et al. Apr 2012 A1
20120108221 Thomas et al. May 2012 A1
20120116770 Chen et al. May 2012 A1
20120124126 Alcazar et al. May 2012 A1
20120136572 Norton May 2012 A1
20120137367 Dupont et al. May 2012 A1
20120149394 Singh et al. Jun 2012 A1
20120150580 Norton Jun 2012 A1
20120158293 Burnham Jun 2012 A1
20120158422 Burnham et al. Jun 2012 A1
20120163710 Skaff et al. Jun 2012 A1
20120173464 Tur et al. Jul 2012 A1
20120174121 Treat et al. Jul 2012 A1
20120185237 Gajic et al. Jul 2012 A1
20120197995 Caruso Aug 2012 A1
20120197998 Kessel et al. Aug 2012 A1
20120201362 Crossan et al. Aug 2012 A1
20120214141 Raya et al. Aug 2012 A1
20120214517 Singh et al. Aug 2012 A1
20120221339 Wang et al. Aug 2012 A1
20120221552 Reponen et al. Aug 2012 A1
20120245719 Story, Jr. et al. Sep 2012 A1
20120245941 Cheyer Sep 2012 A1
20120245944 Gruber et al. Sep 2012 A1
20120252367 Gaglio et al. Oct 2012 A1
20120254152 Park et al. Oct 2012 A1
20120265528 Gruber et al. Oct 2012 A1
20120265535 Bryant-Rich et al. Oct 2012 A1
20120271625 Bernard Oct 2012 A1
20120271635 Ljolje Oct 2012 A1
20120271676 Aravamudan et al. Oct 2012 A1
20120284027 Mallett et al. Nov 2012 A1
20120290300 Lee et al. Nov 2012 A1
20120296649 Bansal et al. Nov 2012 A1
20120304124 Chen et al. Nov 2012 A1
20120309363 Gruber et al. Dec 2012 A1
20120310642 Cao et al. Dec 2012 A1
20120310649 Cannistraro et al. Dec 2012 A1
20120310652 O'Sullivan Dec 2012 A1
20120311478 van Os et al. Dec 2012 A1
20120311583 Gruber et al. Dec 2012 A1
20120311584 Gruber et al. Dec 2012 A1
20120311585 Gruber et al. Dec 2012 A1
20120317498 Logan et al. Dec 2012 A1
20120330660 Jaiswal Dec 2012 A1
20120330661 Lindahl Dec 2012 A1
20130006633 Grokop et al. Jan 2013 A1
20130006638 Lindahl Jan 2013 A1
20130055099 Yao et al. Feb 2013 A1
20130073286 Bastea-Forte et al. Mar 2013 A1
20130080167 Mozer Mar 2013 A1
20130080177 Chen Mar 2013 A1
20130085761 Bringert et al. Apr 2013 A1
20130110505 Gruber et al. May 2013 A1
20130110515 Guzzoni et al. May 2013 A1
20130110518 Gruber et al. May 2013 A1
20130110519 Cheyer et al. May 2013 A1
20130110520 Cheyer et al. May 2013 A1
20130111330 Staikos et al. May 2013 A1
20130111348 Gruber et al. May 2013 A1
20130111487 Cheyer et al. May 2013 A1
20130115927 Gruber et al. May 2013 A1
20130117022 Chen et al. May 2013 A1
20130170738 Capuozzo et al. Jul 2013 A1
20130185074 Gruber et al. Jul 2013 A1
20130185081 Cheyer et al. Jul 2013 A1
20130225128 Gomar Aug 2013 A1
20130238647 Thompson Sep 2013 A1
20130275117 Winer Oct 2013 A1
20130289991 Eshwar et al. Oct 2013 A1
20130304758 Gruber et al. Nov 2013 A1
20130325443 Begeja et al. Dec 2013 A1
20130346068 Solem et al. Dec 2013 A1
20140040748 Lemay et al. Feb 2014 A1
20140080428 Rhoads et al. Mar 2014 A1
20140086458 Rogers et al. Mar 2014 A1
20140152577 Yuen et al. Jun 2014 A1
20140297284 Gruber et al. Oct 2014 A1
20170050191 Kramer Feb 2017 A1
20170161018 Lemay et al. Jun 2017 A1
Foreign Referenced Citations (343)
Number Date Country
2666438 Jun 2013 CA
681573 Apr 1993 CH
1263385 Aug 2000 CN
1494695 May 2004 CN
1673939 Sep 2005 CN
1864204 Nov 2006 CN
101297541 Oct 2008 CN
101535983 Sep 2009 CN
101939740 Jan 2011 CN
3837590 May 1990 DE
4126902 Feb 1992 DE
4334773 Apr 1994 DE
4445023 Jun 1996 DE
10-2004-029203 Dec 2005 DE
198 41 541 Dec 2007 DE
0030390 Jun 1981 EP
0057514 Aug 1982 EP
0138061 Sep 1984 EP
0138061 Apr 1985 EP
0218859 Apr 1987 EP
0262938 Apr 1988 EP
0283995 Sep 1988 EP
0293259 Nov 1988 EP
0299572 Jan 1989 EP
0313975 May 1989 EP
0314908 May 1989 EP
0327408 Aug 1989 EP
0389271 Sep 1990 EP
0411675 Feb 1991 EP
0441089 Aug 1991 EP
0464712 Jan 1992 EP
0476972 Mar 1992 EP
0558312 Sep 1993 EP
0559349 Sep 1993 EP
0559349 Sep 1993 EP
0570660 Nov 1993 EP
0575146 Dec 1993 EP
0578604 Jan 1994 EP
0586996 Mar 1994 EP
0609030 Aug 1994 EP
0651543 May 1995 EP
0679005 Oct 1995 EP
0795811 Sep 1997 EP
0476972 May 1998 EP
0845894 Jun 1998 EP
0852052 Jul 1998 EP
0863453 Sep 1998 EP
0863469 Sep 1998 EP
0867860 Sep 1998 EP
0869697 Oct 1998 EP
0889626 Jan 1999 EP
0917077 May 1999 EP
0691023 Sep 1999 EP
0946032 Sep 1999 EP
0981236 Feb 2000 EP
0982732 Mar 2000 EP
984430 Mar 2000 EP
1001588 May 2000 EP
1014277 Jun 2000 EP
1028425 Aug 2000 EP
1028426 Aug 2000 EP
1047251 Oct 2000 EP
1076302 Feb 2001 EP
1091615 Apr 2001 EP
1107229 Jun 2001 EP
1229496 Aug 2002 EP
1233600 Aug 2002 EP
1245023 Oct 2002 EP
1246075 Oct 2002 EP
1280326 Jan 2003 EP
1311102 May 2003 EP
1315084 May 2003 EP
1315086 May 2003 EP
1347361 Sep 2003 EP
1379061 Jan 2004 EP
1432219 Jun 2004 EP
1435620 Jul 2004 EP
1480421 Nov 2004 EP
1517228 Mar 2005 EP
1536612 Jun 2005 EP
1566948 Aug 2005 EP
1650938 Apr 2006 EP
1693829 Aug 2006 EP
1739546 Jan 2007 EP
1181802 Feb 2007 EP
1818786 Aug 2007 EP
1892700 Feb 2008 EP
1912205 Apr 2008 EP
1939860 Jul 2008 EP
0651543 Sep 2008 EP
1909263 Jan 2009 EP
1335620 Mar 2009 EP
2069895 Jun 2009 EP
2094032 Aug 2009 EP
2109295 Oct 2009 EP
1720375 Jul 2010 EP
2205010 Jul 2010 EP
2400373 Dec 2011 EP
2431842 Mar 2012 EP
2575128 Apr 2013 EP
2293667 Apr 1996 GB
2310559 Aug 1997 GB
2342802 Apr 2000 GB
2346500 Aug 2000 GB
2352377 Jan 2001 GB
2384399 Jul 2003 GB
2402855 Dec 2004 GB
2445436 Jul 2008 GB
FI20010199 Apr 2003 IT
57-41731 Mar 1982 JP
59-57336 Apr 1984 JP
2-86397 Mar 1990 JP
2-153415 Jun 1990 JP
3-113578 May 1991 JP
4-236624 Aug 1992 JP
5-79951 Mar 1993 JP
5-165459 Jul 1993 JP
5-293126 Nov 1993 JP
06 019965 Jan 1994 JP
6-69954 Mar 1994 JP
6-274586 Sep 1994 JP
6-332617 Dec 1994 JP
7-199379 Aug 1995 JP
7-320051 Dec 1995 JP
7-320079 Dec 1995 JP
8-63330 Mar 1996 JP
8-185265 Jul 1996 JP
8-223281 Aug 1996 JP
8-227341 Sep 1996 JP
9-18585 Jan 1997 JP
9-55792 Feb 1997 JP
9-259063 Oct 1997 JP
9-265457 Oct 1997 JP
10-31497 Feb 1998 JP
10-105324 Apr 1998 JP
11-6743 Jan 1999 JP
11-45241 Feb 1999 JP
2000-90119 Mar 2000 JP
2000-099225 Apr 2000 JP
2000-134407 May 2000 JP
2000-163031 Jun 2000 JP
2000-207167 Jul 2000 JP
2000-224663 Aug 2000 JP
2000-339137 Dec 2000 JP
2001-56233 Feb 2001 JP
2001-109493 Apr 2001 JP
2001 125896 May 2001 JP
2001-148899 May 2001 JP
2002-14954 Jan 2002 JP
2002 024212 Jan 2002 JP
2002-041624 Feb 2002 JP
2002-082893 Mar 2002 JP
2002-342033 Nov 2002 JP
2002-344880 Nov 2002 JP
2002-542501 Dec 2002 JP
2003-044091 Feb 2003 JP
2003-84877 Mar 2003 JP
2003 517158 May 2003 JP
2003-233568 Aug 2003 JP
2004-48804 Feb 2004 JP
2004-505525 Feb 2004 JP
2004-86356 Mar 2004 JP
2004-152063 May 2004 JP
2005-070645 Mar 2005 JP
2005-86624 Mar 2005 JP
2005-506602 Mar 2005 JP
2005-92441 Apr 2005 JP
2005-181386 Jul 2005 JP
2005-189454 Jul 2005 JP
2005-221678 Aug 2005 JP
2005-283843 Oct 2005 JP
2005-311864 Nov 2005 JP
2006-023860 Jan 2006 JP
2006-107438 Apr 2006 JP
2006-146008 Jun 2006 JP
2006-146182 Jun 2006 JP
2006-195637 Jul 2006 JP
2007-4633 Jan 2007 JP
2007-193794 Aug 2007 JP
2007-206317 Aug 2007 JP
2008-26381 Feb 2008 JP
2008-039928 Feb 2008 JP
2008-090545 Apr 2008 JP
2008-97003 Apr 2008 JP
2008-134949 Jun 2008 JP
2008-526101 Jul 2008 JP
2008-217468 Sep 2008 JP
2008-233678 Oct 2008 JP
2008-236448 Oct 2008 JP
2008-271481 Nov 2008 JP
2009 036999 Feb 2009 JP
2009-47920 Mar 2009 JP
2009-98490 May 2009 JP
2009-186989 Aug 2009 JP
2009-205367 Sep 2009 JP
2009-294913 Dec 2009 JP
2009-294946 Dec 2009 JP
2010066519 Mar 2010 JP
2010-78979 Apr 2010 JP
2010-157207 Jul 2010 JP
2010-535377 Nov 2010 JP
2010-287063 Dec 2010 JP
2013-511214 Mar 2013 JP
2013-527947 Jul 2013 JP
10-1999-0073234 Oct 1999 KR
11-2002-0013984 Feb 2002 KR
10-2002-0057262 Jul 2002 KR
10-2002-0069952 Sep 2002 KR
10-2003-0016993 Mar 2003 KR
10-2004-0044632 May 2004 KR
10-2005-0083561 Aug 2005 KR
10-2005-0090568 Sep 2005 KR
10-2006-0011603 Feb 2006 KR
10-2006-0012730 Feb 2006 KR
10-2006-0055313 May 2006 KR
10-2006-0073574 Jun 2006 KR
10-2007-0024262 Mar 2007 KR
10-2007-0057496 Jun 2007 KR
10-2007-0071675 Jul 2007 KR
10-2007-0100837 Oct 2007 KR
10-0776800 Nov 2007 KR
10-2008-001227 Feb 2008 KR
10-0810500 Mar 2008 KR
10-2008-0049647 Jun 2008 KR
10 2008 10932 Dec 2008 KR
10-2009-0001716 Jan 2009 KR
10 2009 08680 Aug 2009 KR
10-0920267 Oct 2009 KR
10-2010-0032792 Apr 2010 KR
10-2010-0119519 Nov 2010 KR
10-2011-0086492 Jul 2011 KR
10 2011 0113414 Oct 2011 KR
10-1193668 Dec 2012 KR
1014847 Oct 2001 NL
2273106 Mar 2006 RU
2349970 Mar 2009 RU
2353068 Apr 2009 RU
200643744 Dec 2006 TW
200801988 Jan 2008 TW
1993020640 Oct 1993 WO
1994016434 Jul 1994 WO
1994029788 Dec 1994 WO
WO 9502221 Jan 1995 WO
1995016950 Jun 1995 WO
1995017746 Jun 1995 WO
1997010586 Mar 1997 WO
WO 9726612 Jul 1997 WO
1997029614 Aug 1997 WO
1997038488 Oct 1997 WO
1997049044 Dec 1997 WO
1998009270 Mar 1998 WO
1998033111 Jul 1998 WO
WO 9841956 Sep 1998 WO
WO 9901834 Jan 1999 WO
WO 9908238 Feb 1999 WO
1999016181 Apr 1999 WO
WO 9956227 Nov 1999 WO
2000019697 Apr 2000 WO
2000022820 Apr 2000 WO
2000029964 May 2000 WO
2000030070 May 2000 WO
2000038041 Jun 2000 WO
2000044173 Jul 2000 WO
2000063766 Oct 2000 WO
WO 200060435 Oct 2000 WO
WO 200060435 Oct 2000 WO
2000068936 Nov 2000 WO
2001006489 Jan 2001 WO
2001030046 Apr 2001 WO
2001030047 Apr 2001 WO
2001033569 May 2001 WO
2001035391 May 2001 WO
2001046946 Jun 2001 WO
2001065413 Sep 2001 WO
2001067753 Sep 2001 WO
2002025610 Mar 2002 WO
2002031814 Apr 2002 WO
2002037469 May 2002 WO
2002071259 Sep 2002 WO
02073603 Sep 2002 WO
2003003152 Jan 2003 WO
2003003765 Jan 2003 WO
2003023786 Mar 2003 WO
2003041364 May 2003 WO
2003049494 Jun 2003 WO
2003056789 Jul 2003 WO
2003067202 Aug 2003 WO
2003084196 Oct 2003 WO
2003094489 Nov 2003 WO
2003107179 Dec 2003 WO
2004008801 Jan 2004 WO
2004025938 Mar 2004 WO
2004047415 Jun 2004 WO
2004055637 Jul 2004 WO
2004057486 Jul 2004 WO
2004061850 Jul 2004 WO
2004084413 Sep 2004 WO
2005003920 Jan 2005 WO
2005008505 Jan 2005 WO
2005008899 Jan 2005 WO
2005010725 Feb 2005 WO
2005027472 Mar 2005 WO
2005027485 Mar 2005 WO
2005031737 Apr 2005 WO
2005034085 Apr 2005 WO
2005041455 May 2005 WO
2005059895 Jun 2005 WO
2005069171 Jul 2005 WO
2005101176 Oct 2005 WO
2006020305 Feb 2006 WO
2006054724 May 2006 WO
2006056822 Jun 2006 WO
2006078246 Jul 2006 WO
2006101649 Sep 2006 WO
2006133571 Dec 2006 WO
WO 2006129967 Dec 2006 WO
2007002753 Jan 2007 WO
2007083894 Jul 2007 WO
WO 2007080559 Jul 2007 WO
2008030970 Mar 2008 WO
2008071231 Jun 2008 WO
2008085742 Jul 2008 WO
2008109835 Sep 2008 WO
2008140236 Nov 2008 WO
2008153639 Dec 2008 WO
2009009240 Jan 2009 WO
2009016631 Feb 2009 WO
2009017280 Feb 2009 WO
2009104126 Aug 2009 WO
2009156438 Dec 2009 WO
2010075623 Jul 2010 WO
2011057346 May 2011 WO
2011060106 May 2011 WO
WO2011088053 Jul 2011 WO
WO 2011088053 Jul 2011 WO
2011116309 Sep 2011 WO
2011133543 Oct 2011 WO
2011150730 Dec 2011 WO
2011163350 Dec 2011 WO
2011088053 Jan 2012 WO
2012154317 Nov 2012 WO
WO2012167168 Dec 2012 WO
2013048880 Apr 2013 WO
Non-Patent Literature Citations (1089)
Entry
Alfred App, 2011, http://www.alfredapp.com/, 5 pages.
Ambite, JL., et al., “Design and Implementation of the CALO Query Manager,” Copyright © 2006, American Association for Artificial Intelligence, (www.aaai.org), 8 pages.
Ambite, JL., et al., “Integration of Heterogeneous Knowledge Sources in the CALO Query Manager,” 2005, The 4th International Conference on Ontologies, DataBases, and Applications of Semantics (ODBASE), Agia Napa, Cyprus, ttp://www.isi.edu/people/ambite/publications/integration—heterogeneous—knowledge—sources—calo—query—manager, 18 pages.
Belvin, R. et al., “Development of the HRL Route Navigation Dialogue System,” 2001, In Proceedings of the First International Conference on Human Language Technology Research, Paper, Copyright © 2001 HRL Laboratories, LLC, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.10.6538, 5 pages.
Berry, P. M., et al. “PTIME: Personalized Assistance for Calendaring,” ACM Transactions on Intelligent Systems and Technology, vol. 2, No. 4, Article 40, Publication date: Jul. 2011, 40:1-22, 22 pages.
Butcher, M., “EVI arrives in town to go toe-to-toe with Siri,” Jan. 23, 2012, http://techcrunch.com/2012/01/23/evi-arrives-in-town-to-go-toe-to-toe-with-siri/, 2 pages.
Chen, Y., “Multimedia Siri Finds and Plays Whatever You Ask For,” Feb. 9, 2012, http://www.psfk.com/2012/02/multimedia-siri.html, 9 pages.
Cheyer, A. et al., “Spoken Language and Multimodal Applications for Electronic Realties,” © Springer-Verlag London Ltd, Virtual Reality 1999, 3:1-15, 15 pages.
Cutkosky, M. R. et al., “PACT: An Experiment in Integrating Concurrent Engineering Systems,” Journal, Computer, vol. 26 Issue 1, Jan. 1993, IEEE Computer Society Press Los Alamitos, CA, USA, http://dl.acm.org/citation.cfm?id=165320, 14 pages.
Elio, R. et al., “On Abstract Task Models and Conversation Policies,” http://webdocs.cs.ualberta.ca/˜ree/publications/papers2/ATS.AA99.pdf, May 1999, 10 pages.
Ericsson, S. et al., “Software illustrating a unified approach to multimodality and multilinguality in the in-home domain,” Dec. 22, 2006, Talk and Look: Tools for Ambient Linguistic Knowledge, http://www.talk-project.eurice.eu/fileadmin/talk/publications—public/deliverables—public/D1—6.pdf, 127 pages.
Evi, “Meet Evi: the one mobile app that provides solutions for your everyday problems,” Feb. 8, 2012, http://www.evi.com/, 3 pages.
Feigenbaum, E., et al., “Computer-assisted Semantic Annotation of Scientific Life Works,” 2007, http://tomgruber.org/writing/stanford-cs300.pdf, 22 pages.
Gannes, L., “Alfred App Gives Personalized Restaurant Recommendations,” allthingsd.com, Jul. 18, 2011, http://allthingsd.com/20110718/alfred-app-gives-personalized-restaurant-recommendations/, 3 pages.
Gautier, P. O., et al. “Generating Explanations of Device Behavior Using Compositional Modeling and Causal Ordering,” 1993, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.8394, 9 pages.
Gervasio, M. T., et al., Active Preference Learning for Personalized Calendar Scheduling Assistancae, Copyright © 2005, http://www.ai.sri.com/˜gervasio/pubs/gervasio-iui05.pdf, 8 pages.
Glass, A., “Explaining Preference Learning,” 2006, http://cs229.stanford.edu/proj2006/Glass-ExplainingPreferenceLearning.pdf, 5 pages.
Glass, J., et al., “Multilingual Spoken-Language Understanding in the MIT Voyager System,” Aug. 1995, http://groups.csail.mitedu/sls/publications/1995/speechcomm95-voyager.pdf, 29 pages.
Goddeau, D., et al., “A Form-Based Dialogue Manager for Spoken Language Applications,” Oct. 1996, http://phasedance.com/pdf/icslp96.pdf, 4 pages.
Goddeau, D., et al., “Galaxy: A Human-Language Interface to On-Line Travel Information,” 1994 International Conference on Spoken Language Processing, Sep. 18-22, 1994, Pacific Convention Plaza Yokohama, Japan, 6 pages.
Gruber, T. R., et al., “An Ontology for Engineering Mathematics,” In Jon Doyle, Piero Torasso, & Erik Sandewall, Eds., Fourth International Conference on Principles of Knowledge Representation and Reasoning, Gustav Stresemann Institut, Bonn, Germany, Morgan Kaufmann, 1994, http://www-ksl.stanford.edu/knowledge-sharing/papers/engmath.html, 22 pages.
Gruber, T. R., “A Translation Approach to Portable Ontology Specifications,” Knowledge Systems Laboratory, Stanford University, Sep. 1992, Technical Report KSL 92-71, Revised Apr. 1993, 27 pages.
Gruber, T. R., “Automated Knowledge Acquisition for Strategic Knowledge,” Knowledge Systems Laboratory, Machine Learning, 4, 293-336 (1989), 44 pages.
Gruber, T. R., “(Avoiding) the Travesty of the Commons,” Presentation at NPUC 2006, New Paradigms for User Computing, IBM Almaden Research Center, Jul. 24, 2006. http://tomgruber.org/writing/avoiding-travestry.htm, 52 pages.
Gruber, T. R., “Big Think Small Screen: How semantic computing in the cloud will revolutionize the consumer experience on the phone,” Keynote presentation at Web 3.0 conference, Jan. 27, 2010, http://tomgruber.org/writing/web30jan2010.htm, 41 pages.
Gruber, T. R., “Collaborating around Shared Content on the WWW,” W3C Workshop on WWW and Collaboration, Cambridge, MA, Sep. 11, 1995, http://www.w3.org/Collaboration/Workshop/Proceedings/P9.html, 1 page.
Gruber, T. R., “Collective Knowledge Systems: Where the Social Web meets the Semantic Web,” Web Semantics: Science, Services and Agents on the World Wide Web (2007), doi:10.1016/j.websem.2007.11.011, keynote presentation given at the 5th International Semantic Web Conference, Nov. 7, 2006, 19 pages.
Gruber, T. R., “Where the Social Web meets the Semantic Web,” Presentation at the 5th International Semantic Web Conference, Nov. 7, 2006, 38 pages.
Gruber, T. R., “Despite our Best Efforts, Ontologies are not the Problem,” AAAI Spring Symposium, Mar. 2008, http://tomgruber.org/writing/aaai-ss08.htm, 40 pages.
Gruber, T. R., “Enterprise Collaboration Management with Intraspect,” Intraspect Software, Inc., Instraspect Technical White Paper Jul. 2001, 24 pages.
Gruber, T. R., “Every ontology is a treaty—a social agreement—among people with some common motive in sharing,” Interview by Dr. Miltiadis D. Lytras, Official Quarterly Bulletin of AIS Special Interest Group on Semantic Web and Information Systems, vol. 1, Issue 3, 2004, http://www.sigsemis.org 1, 5 pages.
Gruber, T. R., et al., “Generative Design Rationale: Beyond the Record and Replay Paradigm,” Knowledge Systems Laboratory, Stanford University, Dec. 1991, Technical Report KSL 92-59, Updated Feb. 1993, 24 pages.
Gruber, T. R., “Helping Organizations Collaborate, Communicate, and Learn,” Presentation to NASA Ames Research, Mountain View, CA, Mar. 2003, http://tomgruber.org/writing/organizational-intelligence-talk.htm, 30 pages.
Gruber, T. R., “Intelligence at the Interface: Semantic Technology and the Consumer Internet Experience,” Presentation at Semantic Technologies conference (SemTech08), May 20, 2008, http://tomgruber.org/writing.htm, 40 pages.
Gruber, T. R., Interactive Acquisition of Justifications: Learning “Why” by Being Told “What” Knowledge Systems Laboratory, Stanford University, Oct. 1990, Technical Report KSL 91-17, Revised Feb. 1991, 24 pages.
Gruber, T. R., “It Is What It Does: The Pragmatics of Ontology for Knowledge Sharing,” (c) 2000, 2003, http://www.cidoc-crm.org/docs/symposium—presentations/gruber—cidoc-ontology-2003.pdf, 21 pages.
Gruber, T. R., et al., “Machine-generated Explanations of Engineering Models: A Compositional Modeling Approach,” (1993) In Proc. International Joint Conference on Artificial Intelligence, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.34.930, 7 pages.
Gruber, T. R., “2021: Mass Collaboration and the Really New Economy,” TNTY Futures, the newsletter of The Next Twenty Years series, vol. 1, Issue 6, Aug. 2001, http://www.tnty.com/newsletter/futures/archive/v01-05business.html, 5 pages.
Gruber, T. R., et al.,“NIKE: A National Infrastructure for Knowledge Exchange,” Oct. 1994, http://www.eit.com/papers/nike/nike.html and nike.ps, 10 pages.
Gruber, T. R., “Ontologies, Web 2.0 and Beyond,” Apr. 24, 2007, Ontology Summit 2007, http://tomgruber.org/writing/ontolog-social-web-keynote.pdf, 17 pages.
Gruber, T. R., “Ontology of Folksonomy: A Mash-up of Apples and Oranges,” Originally published to the web in 2005, Int'l Journal on Semantic Web & Information Systems, 3(2), 2007, 7 pages.
Gruber, T. R., “Siri, A Virtual Personal Assistant—Bringing Intelligence to the Interface,” Jun. 16, 2009, Keynote presentation at Semantic Technologies conference, Jun. 2009. http://tomgruber.org/writing/semtech09.htm, 22 pages.
Gruber, T. R., “TagOntology,” Presentation to Tag Camp, www.tagcamp.org, Oct. 29, 2005, 20 pages.
Gruber, T. R., et al., “Toward a Knowledge Medium for Collaborative Product Development,” In Artificial Intelligence in Design 1992, from Proceedings of the Second International Conference on Artificial Intelligence in Design, Pittsburgh, USA, Jun. 22-25, 1992, 19 pages.
Gruber, T. R., “Toward Principles for the Design of Ontologies Used for Knowledge Sharing,” In International Journal Human-Computer Studies 43, p. 907-928, substantial revision of paper presented at the International Workshop on Formal Ontology, Mar. 1993, Padova, Italy, available as Technical Report KSL 93-04, Knowledge Systems Laboratory, Stanford University, further revised Aug. 23, 1993, 23 pages.
Guzzoni, D., et al., “Active, A Platform for Building Intelligent Operating Rooms,” Surgetica 2007 Computer-Aided Medical Interventions: tools and applications, pp. 191-198, Paris, 2007, Sauramps Médical, http://lsro.epfl.ch/page-68384-en.html, 8 pages.
Guzzoni, D., et al., “Active, A Tool for Building Intelligent User Interfaces,” ASC 2007, Palma de Mallorca, http://lsro.epfl.ch/page-34241.html, 6 pages.
Guzzoni, D., et al., “Modeling Human-Agent Interaction with Active Ontologies,” 2007, AAAI Spring Symposium, Interaction Challenges for Intelligent Assistants, Stanford University, Palo Alto, California, 8 pages.
Hardawar, D., “Driving app Waze builds its own Siri for hands-free voice control,” Feb. 9, 2012, http://venturebeat.com/2012/02/09/driving-app-waze-builds-its-own-siri-for-hands-free-voice-control/, 4 pages.
Intraspect Software, “The Intraspect Knowledge Management Solution: Technical Overview,” http://tomgruber.org/writing/intraspect-whitepaper-1998.pdf, 18 pages.
Julia, L., et al., Un éditeur interactif de tableaux dessinés à main levée (An Interactive Editor for Hand-Sketched Tables), Traitement du Signal 1995, vol. 12, No. 6, 8 pages. No English Translation Available.
Karp, P. D., “A Generic Knowledge-Base Access Protocol,” May 12, 1994, http://lecture.cs.buu.ac.th/˜f50353/Document/gfp.pdf, 66 pages.
Lemon, O., et al., “Multithreaded Context for Robust Conversational Interfaces: Context-Sensitive Speech Recognition and Interpretation of Corrective Fragments,” Sep. 2004, ACM Transactions on Computer-Human Interaction, vol. 11, No. 3, 27 pages.
Leong, L., et al., “CASIS: A Context-Aware Speech Interface System,” IUI'05, Jan. 9-12, 2005, Proceedings of the 10th international conference on Intelligent user interfaces, San Diego, California, USA, 8 pages.
Lieberman, H., et al., “Out of context: Computer systems that adapt to, and learn from, context,” 2000, IBM Systems Journal, vol. 39, Nos. 3/4, 2000, 16 pages.
Lin, B., et al., “A Distributed Architecture for Cooperative Spoken Dialogue Agents with Coherent Dialogue State and History,” 1999, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.272, 4 pages.
McGuire, J., et al., “SHADE: Technology for Knowledge-Based Collaborative Engineering,” 1993, Journal of Concurrent Engineering: Applications and Research (CERA), 18 pages.
Meng, H., et al., “Wheels: A Conversational System in the Automobile Classified Domain,” Oct. 1996, httphttp://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.3022, 4 pages.
Milward, D., et al., “D2.2: Dynamic Multimodal Interface Reconfiguration,” Talk and Look: Tools for Ambient Linguistic Knowledge, Aug. 8, 2006, http://www.ihmc.us/users/nblaylock/Pubs/Files/talk—d2.2.pdf, 69 pages.
Mitra, P., et al., “A Graph-Oriented Model for Articulation of Ontology Interdependencies,” 2000, http://ilpubs.stanford.edu:8090/442/1/2000-20.pdf, 15 pages.
Moran, D. B., et al., “Multimodal User Interfaces in the Open Agent Architecture,” Proc. of the 1997 International Conference on Intelligent User Interfaces (IUI97), 8 pages.
Mozer, M., “An Intelligent Environment Must be Adaptive,” Mar./Apr. 1999, IEEE Intelligent Systems, 3 pages.
Mühlhäuser, M., “Context Aware Voice User Interfaces for Workflow Support,” Darmstadt 2007, http://tuprints.ulb.tu-darmstadt.de/876/1/PhD.pdf, 254 pages.
Naone, E., “TR10: Intelligent Software Assistant,” Mar.-Apr. 2009, Technology Review, http://www.technologyreview.com/printer—friendly—article.aspx?id=22117, 2 pages.
Neches, R., “Enabling Technology for Knowledge Sharing,” Fall 1991, AI Magazine, pp. 37-56, (21 pages).
Nöth, E., et al., “Verbmobil: The Use of Prosody in the Linguistic Components of a Speech Understanding System,” IEEE Transactions on Speech and Audio Processing, vol. 8, No. 5, Sep. 2000, 14 pages.
Phoenix Solutions, Inc. v. West Interactive Corp., Document 40, Declaration of Christopher Schmandt Regarding the MIT Galaxy System dated Jul. 2, 2010, 162 pages.
Rice, J., et al., “Monthly Program: Nov. 14, 1995,” The San Francisco Bay Area Chapter of ACM SIGCHI, http://www.baychi.org/calendar/19951114/, 2 pages.
Rice, J., et al., “Using the Web Instead of a Window System,” Knowledge Systems Laboratory, Stanford University, (http://tomgruber.org/writing/ksl-95-69.pdf, Sep. 1995.) CHI '96 Proceedings: Conference on Human Factors in Computing Systems, Apr. 13-18, 1996, Vancouver, BC, Canada, 14 pages.
Rivlin, Z., et al., “Maestro: Conductor of Multimedia Analysis Technologies,” 1999 SRI International, Communications of the Association for Computing Machinery (CACM), 7 pages.
Seneff, S., et al., “A New Restaurant Guide Conversational System: Issues in Rapid Prototyping for Specialized Domains,” Oct. 1996, citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.16...rep . . . , 4 pages.
Sheth, A., et al., “Relationships at the Heart of Semantic Web: Modeling, Discovering, and Exploiting Complex Semantic Relationships,” Oct. 13, 2002, Enhancing the Power of the Internet: Studies in Fuzziness and Soft Computing, SpringerVerlag, 38 pages.
Simonite, T., “One Easy Way to Make Siri Smarter,” Oct. 18, 2011, Technology Review, http://www.technologyreview.com/printer—friendly—article.aspx?id=38915, 2 pages.
Stent, A., et al., “The CommandTalk Spoken Dialogue System,” 1999, http://acl.ldc.upenn.edu/P/P99/P99-1024.pdf, 8 pages.
Tofel, K., et al., “SpeakTolt: A personal assistant for older iPhones, iPads,” Feb. 9, 2012, http://gigaom.com/apple/speaktoit-siri-for-older-iphones-ipads/, 7 pages.
Tucker, J., “Too lazy to grab your TV remote? Use Siri instead,” Nov. 30, 2011, http://www.engadget.com/2011/11/30/too-lazy-to-grab-your-tv-remote-use-siri-instead/, 8 pages.
Tur, G., et al., “The CALO Meeting Speech Recognition and Understanding System,” 2008, Proc. IEEE Spoken Language Technology Workshop, 4 pages.
Tur, G., et al., “The-CALO-Meeting-Assistant System,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 18, No. 6, Aug. 2010, 11 pages.
Vlingo InCar, “Distracted Driving Solution with Vlingo InCar,” 2:38 minute video uploaded to YouTube by Vlingo Voice on Oct. 6, 2010, http://www.youtube.com/watch?v=Vqs8XfXxgz4, 2 pages.
Vlingo, “Vlingo Launches Voice Enablement Application on Apple App Store,” Vlingo press release dated Dec. 3, 2008, 2 pages.
YouTube, “Knowledge Navigator,” 5:34 minute video uploaded to YouTube by Knownav on Apr. 29, 2008, http://www.youtube.com/watch?v=QRH8eimU—20, 1 page.
YouTube,“Send Text, Listen to and Send E-Mail 'By Voice' www.voiceassist.com,” 2:11 minute video uploaded to YouTube by VoiceAssist on Jul 30, 2009, http://www.youtube.com/watch?v=0tEU61nHHA4, 1 page.
YouTube,“Text'nDrive App Demo—Listen and Reply to your Messages by Voice while Driving!,” 1:57 minute video uploaded to YouTube by TextnDrive on Apr 27, 2010, http://www.youtube.com/watch?v=WaGfzoHsAMw, 1 page.
YouTube, “Voice On the Go (BlackBerry),” 2:51 minute video uploaded to YouTube by VoiceOnTheGo on Jul. 27, 2009, http://www.youtube.com/watch?v=pJqpWgQS98w, 1 page.
Zue, V., “Conversational Interfaces: Advances and Challenges,” Sep. 1997, http://www.cs.cmu.edu/˜dod/papers/zue97.pdf, 10 pages.
Zue, V. W., “Toward Systems that Understand Spoken Language,” Feb. 1994, ARPA Strategic Computing Institute, © 1994 IEEE, 9 pages.
International Search Report and Written Opinion dated Nov. 29, 2011, received in International Application No. PCT/US2011/20861, which corresponds to U.S. Appl. No. 12/987,982, 15 pages (Thomas Robert Gruber).
Agnäs, MS., et al., “Spoken Language Translator: First-Year Report,” Jan. 1994, SICS (ISSN 0283-3638), SRI and Telia Research AB, 161 pages.
Allen, J., “Natural Language Understanding,” 2nd Edition, Copyright © 1995 by The Benjamin/Cummings Publishing Company, Inc., 671 pages.
Alshawi, H., et al., “CLARE: A Contextual Reasoning and Cooperative Response Framework for the Core Language Engine,” Dec. 1992, SRI International, Cambridge Computer Science Research Centre, Cambridge, 273 pages.
Alshawi, H., et al., “Declarative Derivation of Database Queries from Meaning Representations,” Oct. 1991, Proceedings of the BANKAI Workshop on Intelligent Information Access, 12 pages.
Alshawi H., et al., “Logical Forms in the Core Language Engine,” 1989, Proceedings of the 27th Annual Meeting of the Association for Computational Linguistics, 8 pages.
Alshawi, H., et al., “Overview of the Core Language Engine,” Sep. 1988, Proceedings of Future Generation Computing Systems, Tokyo, 13 pages.
Alshawi, H., “Translation and Monotonic Interpretation/Generation,” Jul. 1992, SRI International, Cambridge Computer Science Research Centre, Cambridge, 18 pages, http://www.cam.sri.com/tr/crc024/paper.ps.Z—1992.
Appelt, D., et al., “Fastus: A Finite-state Processor for Information Extraction from Real-world Text,” 1993, Proceedings of IJCAI, 8 pages.
Appelt, D., et al., “SRI: Description of the JV-FASTUS System Used for MUC-5,” 1993, SRI International, Artificial Intelligence Center, 19 pages.
Appelt, D., et al., SRI International Fastus System MUC-6 Test Results and Analysis, 1995, SRI International, Menlo Park, California, 12 pages.
Archbold, A., et al., “A Team User's Guide,” Dec. 21, 1981, SRI International, 70 pages.
Bear, J., et al., “A System for Labeling Self-Repairs in Speech,” Feb. 22, 1993, SRI International, 9 pages.
Bear, J., et al., “Detection and Correction of Repairs in Human-Computer Dialog,” May 5, 1992, SRI International, 11 pages.
Bear, J., et al., “Integrating Multiple Knowledge Sources for Detection and Correction of Repairs in Human-Computer Dialog,” 1992, Proceedings of the 30th annual meeting on Association for Computational Linguistics (ACL), 8 pages.
Bear, J., et al., “Using Information Extraction to Improve Document Retrieval,” 1998, SRI International, Menlo Park, California, 11 pages.
Berry, P., et al., “Task Management under Change and Uncertainty Constraint Solving Experience with the CALO Project,” 2005, Proceedings of CP'05 Workshop on Constraint Solving under Change, 5 pages.
Bobrow, R. et al., “Knowledge Representation for Syntactic/Semantic Processing,” From: AAA-80 Proceedings. Copyright © 1980, AAAI, 8 pages.
Bouchou, B., et al., “Using Transducers in Natural Language Database Query,” Jun. 17-19, 1999, Proceedings of 4th International Conference on Applications of Natural Language to Information Systems, Austria, 17 pages.
Bratt, H., et al., “The SRI Telephone-based ATIS System,” 1995, Proceedings of ARPA Workshop on Spoken Language Technology, 3 pages.
Burke, R., et al., “Question Answering from Frequently Asked Question Files,” 1997, AI Magazine, vol. 18, No. 2, 10 pages.
Burns, A., et al., “Development of a Web-Based Intelligent Agent for the Fashion Selection and Purchasing Process via Electronic Commerce,” Dec. 31, 1998, Proceedings of the Americas Conference on Information system (AMCIS), 4 pages.
Carter, D., “Lexical Acquisition in the Core Language Engine,” 1989, Proceedings of the Fourth Conference of the European Chapter of the Association for Computational Linguistics, 8 pages.
Carter, D., et al., “The Speech-Language Interface in the Spoken Language Translator,” Nov. 23, 1994, SRI International, 9 pages.
Chaff, J., et al., “Comparative Evaluation of a Natural Language Dialog Based System and a Menu Driven System for Information Access: a Case Study,” Apr. 2000, Proceedings of the International Conference on Multimedia Information Retrieval (RIAO), Paris, 11 pages.
Cheyer, A., et al., “Multimodal Maps: An Agent-based Approach,” International Conference on Cooperative Multimodal Communication, 1995, 15 pages.
Cheyer, A., et al., “The Open Agent Architecture,” Autonomous Agents and Multi-Agent systems, vol. 4, Mar. 1, 2001, 6 pages.
Cheyer, A., et al., “The Open Agent Architecture: Building communities of distributed software agents” Feb. 21, 1998, Artificial Intelligence Center SRI International, Power Point presentation, downloaded from http://www.ai.sri.com/˜oaa/, 25 pages.
Codd, E. F., “Databases: Improving Usability and Responsiveness—‘How About Recently’,” Copyright © 1978, by Academic Press, Inc., 28 pages.
Cohen, P.R., et al., “An Open Agent Architecture,” 1994, 8 pages. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.480.
Coles, L. S., et al., “Chemistry Question-Answering,” Jun. 1969, SRI International, 15 pages.
Coles, L. S., “Techniques for Information Retrieval Using an Inferential Question-Answering System with Natural-Language Input,” Nov. 1972, SRI International, 198 Pages.
Coles, L. S., “The Application of Theorem Proving to Information Retrieval,” Jan. 1971, SRI International, 21 pages.
Constantinides, P., et al., “A Schema Based Approach to Dialog Control,” 1998, Proceedings of the International Conference on Spoken Language Processing, 4 pages.
Craig, J., et al., “Deacon: Direct English Access and Control,” Nov. 7-10, 1966 AFIPS Conference Proceedings, vol. 19, San Francisco, 18 pages.
Dar, S., et al., “DRL's DataSpot: Database Exploration Using Plain Language,” 1998 Proceedings of the 24th VLDB Conference, New York, 5 pages.
Decker, K., et al., “Designing Behaviors for Information Agents,” The Robotics Institute, Carnegie-Mellon University, paper, Jul. 6, 1996, 15 pages.
Decker, K., et al., “Matchmaking and Brokering,” The Robotics Institute, Carnegie-Mellon University, paper, May 16, 1996, 19 pages.
Dowding, J., et al., “Gemini: A Natural Language System for Spoken-Language Understanding,” 1993, Proceedings of the Thirty-First Annual Meeting of the Association for Computational Linguistics, 8 pages.
Dowding, J., et al., “Interleaving Syntax and Semantics in an Efficient Bottom-Up Parser,” 1994, Proceedings of the 32nd Annual Meeting of the Association for Computational Linguistics, 7 pages.
Epstein, M., et al., “Natural Language Access to a Melanoma Data Base,” Sep. 1978, SRI International, 7 pages.
Exhibit 1, “Natural Language Interface Using Constrained Intermediate Dictionary of Results,” Classes/Subclasses Manually Reviewed for the Search of U.S. Pat. No. 7,177,798, Mar. 22, 2013, 1 page.
Exhibit 1, “Natural Language Interface Using Constrained Intermediate Dictionary of Results,” List of Publications Manually reviewed for the Search of U.S. Pat. No. 7,177,798, Mar. 22, 2013, 1 page.
Ferguson, G., et al., “TRIPS: An Integrated Intelligent Problem-Solving Assistant,” 1998, Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI-98) and Tenth Conference on Innovative Applications of Artificial Intelligence (IAAI-98), 7 pages.
Fikes, R., et al., “A Network-based knowledge Representation and its Natural Deduction System,” Jul. 1977, SRI International, 43 pages.
Gambäck, B., et al., “The Swedish Core Language Engine,” 1992 NOTEX Conference, 17 pages.
Glass, J., et al., “Multilingual Language Generation Across Multiple Domains,” Sep. 18-22, 1994, International Conference on Spoken Language Processing, Japan, 5 pages.
Green, C. “The Application of Theorem Proving to Question-Answering Systems,” Jun. 1969, SRI Stanford Research Institute, Artificial Intelligence Group, 169 pages.
Gregg, D. G., “DSS Access on the WWW: An Intelligent Agent Prototype,” 1998 Proceedings of the Americas Conference on Information Systems—Association for Information Systems, 3 pages.
Grishman, R., “Computational Linguistics: An Introduction,” © Cambridge University Press 1986, 172 pages.
Grosz, B. et al., “Dialogic: A Core Natural-Language Processing System,” Nov. 9, 1982, SRI International, 17 pages.
Grosz, B. et al., “Research on Natural-Language Processing at SRI,” Nov. 1981, SRI International, 21 pages.
Grosz, B., et al., “TEAM: An Experiment in the Design of Transportable Natural-Language Interfaces,” Artificial Intelligence, vol. 32, 1987, 71 pages.
Grosz, B., “TEAM: A Transportable Natural-Language Interface System,” 1983, Proceedings of The First Conference on Applied Natural Language Processing, 7 pages.
Guida, G., et al., “NLI: A Robust Interface for Natural Language Person-Machine Communication,” Int. J. Man-Machine Studies, vol. 17, 1982, 17 pages.
Guzzoni, D., et al., “Active, A platform for Building Intelligent Software,” Computational Intelligence 2006, 5 pages. http://www.informatik.uni-trier.de/˜ley/pers/hd/g/Guzzoni:Didier.
Guzzoni, D., “Active: A unified platform for building intelligent assistant applications,” Oct. 25, 2007, 262 pages.
Guzzoni, D., et al., “Many Robots Make Short Work,” 1996 AAAI Robot Contest, SRI International, 9 pages.
Haas, N., et al., “An Approach to Acquiring and Applying Knowledge,” Nov. 1980, SRI International, 22 pages.
Hadidi, R., et al., “Students' Acceptance of Web-Based Course Offerings: An Empirical Assessment,” 1998 Proceedings of the Americas Conference on Information Systems (AMCIS), 4 pages.
Hawkins, J., et al., “Hierarchical Temporal Memory: Concepts, Theory, and Terminology,” Mar. 27, 2007, Numenta, Inc., 20 pages.
He, Q., et al., “Personal Security Agent: KQML-Based PKI,” The Robotics Institute, Carnegie-Mellon University, paper, Oct. 1, 1997, 14 pages.
Hendrix, G. et al., “Developing a Natural Language Interface to Complex Data,” ACM Transactions on Database Systems, vol. 3, No. 2, Jun. 1978, 43 pages.
Hendrix, G., “Human Engineering for Applied Natural Language Processing,” Feb. 1977, SRI International, 27 pages.
Hendrix, G., “Klaus: A System for Managing Information and Computational Resources,” Oct. 1980, SRI International, 34 pages.
Hendrix, G., “Lifer: A Natural Language Interface Facility,” Dec. 1976, SRI Stanford Research Institute, Artificial Intelligence Center, 9 pages.
Hendrix, G., “Natural-Language Interface,” Apr.-Jun. 1982, American Journal of Computational Linguistics, vol. 8, No. 2, 7 pages. Best Copy Available.
Hendrix, G., “The Lifer Manual: A Guide to Building Practical Natural Language Interfaces,” Feb. 1977, SRI International, 76 pages.
Hendrix, G., et al., “Transportable Natural-Language Interfaces to Databases,” Apr. 30, 1981, SRI International, 18 pages.
Hirschman, L., et al., “Multi-Site Data Collection and Evaluation in Spoken Language Understanding,” 1993, Proceedings of the workshop on Human Language Technology, 6 pages.
Hobbs, J., et al., “Fastus: A System for Extracting Information from Natural-Language Text,” Nov. 19, 1992, SRI International, Artificial Intelligence Center, 26 pages.
Hobbs, J., et al.,“Fastus: Extracting Information from Natural-Language Texts,” 1992, SRI International, Artificial Intelligence Center, 22 pages.
Hobbs, J., “Sublanguage and Knowledge,” Jun. 1984, SRI International, Artificial Intelligence Center, 30 pages.
Hodjat, B., et al., “Iterative Statistical Language Model Generation for Use with an Agent-Oriented Natural Language Interface,” vol. 4 of the Proceedings of HCI International 2003, 7 pages.
Huang, X., et al., “The SPHINX-II Speech Recognition System: An Overview,” Jan. 15, 1992, Computer, Speech and Language, 14 pages.
Issar, S., et al., “CMU's Robust Spoken Language Understanding System,” 1993, Proceedings of EUROSPEECH, 4 pages.
Issar, S., “Estimation of Language Models for New Spoken Language Applications,” Oct. 3-6, 1996, Proceedings of 4th International Conference on Spoken language Processing, Philadelphia, 4 pages.
Janas, J., “The Semantics-Based Natural Language Interface to Relational Databases,” © Springer-Verlag Berlin Heidelberg 1986, Germany, 48 pages.
Johnson, J., “A Data Management Strategy for Transportable Natural Language Interfaces,” Jun. 1989, doctoral thesis submitted to the Department of Computer Science, University of British Columbia, Canada, 285 pages.
Julia, L., et al., “http://www.speech.sri.com/demos/atis.html,” 1997, Proceedings of AAAI, Spring Symposium, 5 pages.
Kahn, M., et al., “CoABS Grid Scalability Experiments,” 2003, Autonomous Agents and Multi-Agent Systems, vol. 7, 8 pages.
Kamel, M., et al., “A Graph Based Knowledge Retrieval System,” © 1990 IEEE, 7 pages.
Katz, B., “Annotating the World Wide Web Using Natural Language,” 1997, Proceedings of the 5th RIAO Conference on Computer Assisted Information Searching on the Internet, 7 pages.
Katz, B., “A Three-Step Procedure for Language Generation,” Dec. 1980, Massachusetts Institute of Technology, Artificial Intelligence Laboratory, 42 pages.
Kats, B., et al., “Exploiting Lexical Regularities in Designing Natural Language Systems,” 1988, Proceedings of the 12th International Conference on Computational Linguistics, Coling'88, Budapest, Hungary, 22 pages.
Katz, B., et al., “REXTOR: A System for Generating Relations from Natural Language,” In Proceedings of the ACL Oct. 2000 Workshop on Natural Language Processing and Information Retrieval (NLP&IR), 11 pages.
Katz, B., “Using English for Indexing and Retrieving,” 1988 Proceedings of the 1st RIAO Conference on User-Oriented Content-Based Text and Image (RIAO'88), 19 pages.
Konolige, K., “A Framework for a Portable Natural-Language Interface to Large Data Bases,” Oct. 12, 1979, SRI International, Artificial Intelligence Center, 54 pages.
Laird, J., et al., “SOAR: An Architecture for General Intelligence,” 1987, Artificial Intelligence vol. 33, 64 pages.
Langly, P., et al.,“A Design for the Icarus Architechture,” SIGART Bulletin, vol. 2, No. 4, 6 pages.
Larks, “Intelligent Software Agents: Larks,” 2006, downloaded on Mar. 15, 2013 from http://www.cs.cmu.edu/larks.html, 2 pages.
Martin, D., et al., “Building Distributed Software Systems with the Open Agent Architecture,” Mar. 23-25, 1998, Proceedings of the Third International Conference on the Practical Application of Intelligent Agents and Multi-Agent Technology, 23 pages.
Martin, D., et al., “Development Tools for the Open Agent Architecture,” Apr. 1996, Proceedings of the International Conference on the Practical Application of Intelligent Agents and Multi-Agent Technology, 17 pages.
Martin, D., et al., “Information Brokering in an Agent Architecture,” Apr. 1997, Proceedings of the second International Conference on the Practical Application of Intelligent Agents and Multi-Agent Technology, 20 pages.
Martin, D., et al., “PAAM '98 Tutorial: Building and Using Practical Agent Applications,” 1998, SRI International, 78 pages.
Martin, P., et al., “Transportability and Generality in a Natural-Language Interface System,” Aug. 8-12, 1983, Proceedings of the Eight International Joint Conference on Artificial Intelligence, West Germany, 21 pages.
Matiasek, J., et al., “Tamic-P: A System for NL Access to Social Insurance Database,” Jun. 17-19, 1999, Proceeding of the 4th International Conference on Applications of Natural Language to Information Systems, Austria, 7 pages.
Michos, S.E., et al., “Towards an adaptive natural language interface to command languages,” Natural Language Engineering 2 (3), © 1994 Cambridge University Press, 19 pages. Best Copy Available.
Milstead, J., et al., “Metadata: Cataloging by Any Other Name . . . ” Jan. 1999, Online, Copyright © 1999 Information Today, Inc., 18 pages.
Minker, W., et al., “Hidden Understanding Models for Machine Translation,” 1999, Proceedings of ETRW on Interactive Dialogue in Multi-Modal Systems, 4 pages.
Modi, P. J., et al., “CMRadar: A Personal Assistant Agent for Calendar Management,” © 2004, American Association for Artificial Intelligence, Intelligent Systems Demonstrations, 2 pages.
Moore, R., et al., “Combining Linguistic and Statistical Knowledge Sources in Natural-Language Processing for ATIS,” 1995, SRI International, Artificial Intelligence Center, 4 pages.
Moore, R., “Handling Complex Queries in a Distributed Data Base,” Oct. 8, 1979, SRI International, Artificial Intelligence Center, 38 pages.
Moore, R., “Practical Natural-Language Processing by Computer,” Oct. 1981, SRI International, Artificial Intelligence Center, 34 pages.
Moore, R., et al., “SRI's Experience with the ATIS Evaluation,” Jun. 24-27, 1990, Proceedings of a workshop held at Hidden Valley, Pennsylvania, 4 pages. Best Copy Available.
Moore, et al., “The Information Warefare Advisor: An Architecture for Interacting with Intelligent Agents Across the Web,” Dec. 31, 1998 Proceedings of Americas Conference on Information Systems (AMCIS), 4 pages.
Moore, R., “The Role of Logic in Knowledge Representation and Commonsense Reasoning,” Jun. 1982, SRI International, Artificial Intelligence Center, 19 pages.
Moore, R., “Using Natural-Language Knowledge Sources in Speech Recognition,” Jan. 1999, SRI International, Artificial Intelligence Center, 24 pages.
Moran, D., et al., “Intelligent Agent-based User Interfaces,” Oct. 12-13, 1995, Proceedings of International Workshop on Human Interface Technology, University of Aizu, Japan, 4 pages. http://www.dougmoran.com/dmoran/PAPERS/oaa-iwhit1995.pdf.
Moran, D., “Quantifier Scoping in the SRI Core Language Engine,” 1988, Proceedings of the 26th annual meeting on Association for Computational Linguistics, 8 pages.
Motro, A., “Flex: A Tolerant and Cooperative User Interface to Databases,” IEEE Transactions on Knowledge and Data Engineering, vol. 2, No. 2, Jun. 1990, 16 pages.
Murveit, H., et al., “Speech Recognition in SRI's Resource Management and ATIS Systems,” 1991, Proceedings of the workshop on Speech and Natural Language (HTL'91), 7 pages.
OAA, “The Open Agent Architecture 1.0 Distribution Source Code,” Copyright 1999, SRI International, 2 pages.
Odubiyi, J., et al., “SAIRE—a scalable agent-based information retrieval engine,” 1997 Proceedings of the First International Conference on Autonomous Agents, 12 pages.
Owei, V., et al., “Natural Language Query Filtration in the Conceptual Query Language,” © 1997 IEEE, 11 pages.
Pannu, A., et al., “A Learning Personal Agent for Text Filtering and Notification,” 1996, The Robotics Institute School of Computer Science, Carnegie-Mellon University, 12 pages.
Pereira, “Logic for Natural Language Analysis,” Jan. 1983, SRI International, Artificial Intelligence Center, 194 pages.
Perrault, C.R., et al., “Natural-Language Interfaces,” Aug. 22, 1986, SRI International, 48 pages.
Pulman, S.G., et al., “Clare: A Combined Language and Reasoning Engine,” 1993, Proceedings of JFIT Conference, 8 pages. URL: http://www.cam.sri.com/tr/crc042/paper.ps.Z.
Singh, N., “Unifying Heterogeneous Information Models,” 1998 Communications of the ACM, 13 pages.
Starr, B., et al., “Knowledge-Intensive Query Processing,” May 31, 1998, Proceedings of the 5th KRDB Workshop, Seattle, 6 pages.
Stern, R., et al. “Multiple Approaches to Robust Speech Recognition,” 1992, Proceedings of Speech and Natural Language Workshop, 6 pages.
Stickel, “A Nonclausal Connection-Graph Resolution Theorem-Proving Program,” 1982, Proceedings of AAAI'82, 5 pages.
Sugumaran, V., “A Distributed Intelligent Agent-Based Spatial Decision Support System,” Dec. 31, 1998, Proceedings of the Americas Conference on Information systems (AMCIS), 4 pages.
Sycara, K., et al., “Coordination of Multiple Intelligent Software Agents,” International Journal of Cooperative Information Systems (IJCIS), vol. 5, Nos. 2 & 3, Jun. & Sep. 1996, 33 pages.
Sycara, K., et al., “Distributed Intelligent Agents,” IEEE Expert, vol. 11, No. 6, Dec. 1996, 32 pages.
Sycara, K., et al., “Dynamic Service Matchmaking Among Agents in Open Information Environments ,” 1999, SIGMOD Record, 7 pages.
Sycara, K., et al., “The RETSINA MAS Infrastructure,” 2003, Autonomous Agents and Multi-Agent Systems, vol. 7, 20 pages.
Tyson, M., et al., “Domain-Independent Task Specification in the TACITUS Natural Language System,” May 1990, SRI International, Artificial Intelligence Center, 16 pages.
Wahlster, W., et al., “Smartkom: multimodal communication with a life-like character,” 2001 EUROSPEECH—Scandinavia, 7th European Conference on Speech Communication and Technology, 5 pages.
Waldinger, R., et al., “Deductive Question Answering from Multiple Resources,” 2003, New Directions in Question Answering, published by AAAI, Menlo Park, 22 pages.
Walker, D., et al., “Natural Language Access to Medical Text,” Mar. 1981, SRI International, Artificial Intelligence Center, 23 pages.
Waltz, D., “An English Language Question Answering System for a Large Relational Database,” © 1978 ACM, vol. 21, No. 7, 14 pages.
Ward, W., et al., “A Class Based Language Model for Speech Recognition,” © 1996 IEEE, 3 pages.
Ward, W., et al., “Recent Improvements in the CMU Spoken Language Understanding System,” 1994, ARPA Human Language Technology Workshop, 4 pages.
Ward, W., “The CMU Air Travel Information Service: Understanding Spontaneous Speech,” 3 pages.
Warren, D.H.D., et al., “An Efficient Easily Adaptable System for Interpreting Natural Language Queries,” Jul.-Dec. 1982, American Journal of Computational Linguistics, vol. 8, No. 3-4, 11 pages. Best Copy Available.
Weizenbaum, J., “ELIZA—A Computer Program for the Study of Natural Language Communication Between Man and Machine,” Communications of the ACM, vol. 9, No. 1, Jan. 1966, 10 pages.
Winiwarter, W., “Adaptive Natural Language Interfaces to FAQ Knowledge Bases,” Jun. 17-19, 1999, Proceedings of 4th International Conference on Applications of Natural Language to Information Systems, Austria, 22 pages.
Wu, X. et al., “KDA: A Knowledge-based Database Assistant,” Data Engineering, Feb. 6-10, 1989, Proceeding of the Fifth International Conference on Engineering (IEEE Cat. No. 89CH2695-5), 8 pages.
Yang, J., et al., “Smart Sight: A Tourist Assistant System,” 1999 Proceedings of Third International Symposium on Wearable Computers, 6 pages.
Zeng, D., et al., “Cooperative Intelligent Software Agents,” The Robotics Institute, Carnegie-Mellon University, Mar. 1995, 13 pages.
Zhao, L., “Intelligent Agents for Flexible Workflow Systems,” Oct. 31, 1998 Proceedings of the Americas Conference on Information Systems (AMCIS), 4 pages.
Zue, V., et al., “From Interface to Content: Translingual Access and Delivery of On-Line Information,” 1997, EUROSPEECH, 4 pages.
Zue, V., et al., “Jupiter: A Telephone-Based Conversational Interface for Weather Information,” Jan. 2000, IEEE Transactions on Speech and Audio Processing, 13 pages.
Zue, V., et al., “Pegasus: A Spoken Dialogue Interface for On-Line Air Travel Planning,” 1994 Elsevier, Speech Communication 15 (1994), 10 pages.
Zue, V., et al., “The Voyager Speech Understanding System: Preliminary Development and Evaluation,” 1990, Proceedings of IEEE 1990 International Conference on Acoustics, Speech, and Signal Processing, 4 pages.
Extended European Search Report dated Jul. 16, 2013, received in Application No. 12186663.6-1910, which corresponds to U.S. Appl. No. 13/250,854, 8 pages (Gruber).
Australian Office Action dated Jul. 2, 2013 for Application No. 2011205426, 9 pages.
Certificate of Examination dated Apr. 29, 2013 for Australian Patent No. 2012101191, 4 pages.
Certificate of Examination dated May 21, 2013 for Australian Patent No. 2012101471, 5 pages.
Certificate of Examination dated May 10, 2013 for Australian Patent No. 2012101466, 4 pages.
Certificate of Examination dated May 9, 2013 for Australian Patent No. 2012101473, 4 pages.
Certificate of Examination dated May 6, 2013 for Australian Patent No. 2012101470, 5 pages.
Certificate of Examination dated May 2, 2013 for Australian Patent No. 2012101468, 5 pages.
Certificate of Examination dated May 6, 2013 for Australian Patent No. 2012101472, 5 pages.
Certificate of Examination dated May 6, 2013 for Australian Patent No. 2012101469, 4 pages.
Certificate of Examination dated May 13, 2013 for Australian Patent No. 2012101465, 5 pages.
Guzzoni, Didier, et al., “Modeling Human-Agent Interaction with Active Ontologies”, American Association for Artificial Intelligence, 2007, 8 pages.
Keleher, Erin, et al., “Vlingo Launches Voice Enablement Application of Apple App Store”, Cambridge, Mass., Dec. 3, 2008, www.vlingo.com. 2 pages.
Acero, A., et al., “Environmental Robustness in Automatic Speech Recognition,” International Conference on Acoustics, Speech, and Signal Processing (ICASSP'90), Apr. 3-6, 1990, 4 pages.
Acero, A., et al., “Robust Speech Recognition by Normalization of the Acoustic Space,” International Conference on Acoustics, Speech, and Signal Processing, 1991, 4 pages.
Ahlbom, G., et al., “Modeling Spectral Speech Transitions Using Temporal Decomposition Techniques,” IEEE International Conference of Acoustics, Speech, and Signal Processing (ICASSP'87), Apr. 1987, vol. 12, 4 pages.
Aikawa, K., “Speech Recognition Using Time-Warping Neural Networks,” Proceedings of the 1991 IEEE Workshop on Neural Networks for Signal Processing, Sep. 30 to Oct. 1, 1991, 10 pages.
Anastasakos, A., et al., “Duration Modeling in Large Vocabulary Speech Recognition,” International Conference on Acoustics, Speech, and Signal Processing (ICASSP'95), May 9-12, 1995, 4 pages.
Anderson, R. H., “Syntax-Directed Recognition of Hand-Printed Two-Dimensional Mathematics,” In Proceedings of Symposium on Interactive Systems for Experimental Applied Mathematics: Proceedings of the Association for Computing Machinery Inc. Symposium, © 1967, 12 pages.
Ansari, R., et al., “Pitch Modification of Speech using a Low-Sensitivity Inverse Filter Approach,” IEEE Signal Processing Letters, vol. 5, No. 3, Mar. 1998, 3 pages.
Anthony, N. J., et al., “Supervised Adaption for Signature Verification System,” Jun. 1, 1978, IBM Technical Disclosure, 3 pages.
Apple Computer, “Guide Maker User's Guide,” © Apple Computer, Inc., Apr. 27, 1994, 8 pages.
Apple Computer, “Introduction to Apple Guide,” © Apple Computer, Inc., Apr. 28, 1994, 20 pages.
Asanović, K., et al., “Experimental Determination of Precision Requirements for Back-Propagation Training of Artificial Neural Networks,” In Proceedings of the 2nd International Conference of Microelectronics for Neural Networks, 1991, www.ICSI.Berkeley.EDU, 7 pages.
Atal, B. S., “Efficient Coding of LPC Parameters by Temporal Decomposition,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'83), Apr. 1983, 4 pages.
Bahl, L. R., et al., “Acoustic Markov Models Used in the Tangora Speech Recognition System,” In Proceeding of International Conference on Acoustics, Speech, and Signal Processing (ICASSP'88), Apr. 11-14, 1988, vol. 1, 4 pages.
Bahl, L. R., et al., “A Maximum Likelihood Approach to Continuous Speech Recognition,” IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. PAMI-5, No. 2, Mar. 1983, 13 pages.
Bahl, L. R., et al., “A Tree-Based Statistical Language Model for Natural Language Speech Recognition,” IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 37, Issue 7, Jul. 1989, 8 pages.
Bahl, L. R., et al., “Large Vocabulary Natural Language Continuous Speech Recognition,” In Proceedings of 1989 International Conference on Acoustics, Speech, and Signal Processing, May 23-26, 1989, vol. 1, 6 pages.
Bahl, L. R., et al, “Multonic Markov Word Models for Large Vocabulary Continuous Speech Recognition,” IEEE Transactions on Speech and Audio Processing, vol. 1, No. 3, Jul. 1993, 11 pages.
Bahl, L. R., et al., “Speech Recognition with Continuous-Parameter Hidden Markov Models,” In Proceeding of International Conference on Acoustics, Speech, and Signal Processing (ICASSP'88), Apr. 11-14, 1988, vol. 1, 8 pages.
Banbrook, M., “Nonlinear Analysis of Speech from a Synthesis Perspective,” A thesis submitted for the degree of Doctor of Philosophy, The University of Edinburgh, Oct. 15, 1996, 35 pages.
Belaid, A., et al., “A Syntactic Approach for Handwritten Mathematical Formula Recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-6, No. 1, Jan. 1984, 7 pages.
Bellegarda, E. J., et al., “On-Line Handwriting Recognition Using Statistical Mixtures,” Advances in Handwriting and Drawings: A Multidisciplinary Approach, Europia, 6th International IGS Conference on Handwriting and Drawing, Paris—France, Jul. 1993, 11 pages.
Bellegarda, J. R., “A Latent Semantic Analysis Framework for Large-Span Language Modeling,” 5th European Conference on Speech, Communication and Technology, (EUROSPEECH'97), Sep. 22-25, 1997, 4 pages.
Bellegarda, J. R., “A Multispan Language Modeling Framework for Large Vocabulary Speech Recognition,” IEEE Transactions on Speech and Audio Processing, vol. 6, No. 5, Sep. 1998, 12 pages.
Bellegarda, J. R., et al., “A Novel Word Clustering Algorithm Based on Latent Semantic Analysis,” In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'96), vol. 1, 4 pages.
Bellegarda, J. R., et al., “Experiments Using Data Augmentation for Speaker Adaptation,” International Conference on Acoustics, Speech, and Signal Processing (ICASSP'95), May 9-12, 1995, 4 pages.
Bellegarda, J. R., “Exploiting Both Local and Global Constraints for Multi-Span Statistical Language Modeling,” Proceeding of the 1998 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'98), vol. 2, May 12-15, 1998, 5 pages.
Bellegarda, J. R., “Exploiting Latent Semantic Information in Statistical Language Modeling,” In Proceedings of the IEEE, Aug. 2000, vol. 88, No. 8, 18 pages.
Bellegarda, J. R., “Interaction-Driven Speech Input—A Data-Driven Approach to the Capture of Both Local and Global Language Constraints,” 1992, 7 pages, available at http://old.sigchi.org/bulletin/1998.2/bellegarda.html.
Bellegarda, J. R., “Large Vocabulary Speech Recognition with Multispan Statistical Language Models,” IEEE Transactions on Speech and Audio Processing, vol. 8, No. 1, Jan. 2000, 9 pages.
Bellegarda, J. R., et al., “Performance of the IBM Large Vocabulary Continuous Speech Recognition System on the ARPA Wall Street Journal Task,” Signal Processing VII: Theories and Applications, © 1994 European Association for Signal Processing, 4 pages.
Bellegarda, J. R., et al., “The Metamorphic Algorithm: A Speaker Mapping Approach to Data Augmentation,” IEEE Transactions on Speech and Audio Processing, vol. 2, No. 3, Jul. 1994, 8 pages.
Black, A. W., et al., “Automatically Clustering Similar Units for Unit Selection in Speech Synthesis,” In Proceedings of Eurospeech 1997, vol. 2, 4 pages.
Blair, D. C., et al., “An Evaluation of Retrieval Effectiveness for a Full-Text Document-Retrieval System,” Communications of the ACM, vol. 28, No. 3, Mar. 1985, 11 pages.
Briner, L. L., “Identifying Keywords in Text Data Processing,” In Zelkowitz, Marvin V., ED, Directions and Challenges,l5th Annual Technical Symposium, Jun. 17, 1976, Gaithersbury, Maryland, 7 pages.
Bulyko, I., et al., “Joint Prosody Prediction and Unit Selection for Concatenative Speech Synthesis,” Electrical Engineering Department, University of Washington, Seattle, 2001, 4 pages.
Bussey, H. E., et al., “Service Architecture, Prototype Description, and Network Implications of a Personalized Information Grazing Service,” INFOCOM'90, Ninth Annual Joint Conference of the IEEE Computer and Communication Societies, Jun. 3-7, 1990, http://slrohall.com/publications/, 8 pages.
Buzo, A., et al., “Speech Coding Based Upon Vector Quantization,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. Assp-28, No. 5, Oct. 1980, 13 pages.
Caminero-Gil, J., et al., “Data-Driven Discourse Modeling for Semantic Interpretation,” In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, May 7-10, 1996, 6 pages.
Cawley, G. C., “The Application of Neural Networks to Phonetic Modelling,” PhD Thesis, University of Essex, Mar. 1996, 13 pages.
Chang, S., et al., “A Segment-based Speech Recognition System for Isolated Mandarin Syllables,” Proceedings TENCON '93, IEEE Region 10 conference on Computer, Communication, Control and Power Engineering, Oct. 19-21, 1993, vol. 3, 6 pages.
Conklin, J., “Hypertext: An Introduction and Survey,” Computer Magazine, Sep. 1987, 25 pages.
Connolly, F. T., et al., “Fast Algorithms for Complex Matrix Multiplication Using Surrogates,” IEEE Transactions on Acoustics, Speech, and Signal Processing, Jun. 1989, vol. 37, No. 6, 13 pages.
Deerwester, S., et al., “Indexing by Latent Semantic Analysis,” Journal of the American Society for Information Science, vol. 41, No. 6, Sep. 1990, 19 pages.
Deller, Jr., J. R., et al., “Discrete-Time Processing of Speech Signals,” © 1987 Prentice Hall, ISBN: 0-02-328301-7, 14 pages.
Digital Equipment Corporation, “Open VMS Software Overview,” Dec. 1995, software manual, 159 pages.
Donovan, R. E., “A New Distance Measure for Costing Spectral Discontinuities in Concatenative Speech Synthesisers,” 2001, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.6398, 4 pages.
Frisse, M. E., “Searching for Information in a Hypertext Medical Handbook,” Communications of the ACM, vol. 31, No. 7, Jul. 1988, 8 pages.
Goldberg, D., et al., “Using Collaborative Filtering to Weave an Information Tapestry,” Communications of the ACM, vol. 35, No. 12, Dec. 1992, 10 pages.
Gorin, A. L., et al., “On Adaptive Acquisition of Language,” International Conference on Acoustics, Speech, and Signal Processing (ICASSP'90), vol. 1, Apr. 3-6, 1990, 5 pages.
Gotoh, Y., et al., “Document Space Models Using Latent Semantic Analysis,” In Proceedings of Eurospeech, 1997, 4 pages.
Gray, R. M., “Vector Quantization,” IEEE ASSP Magazine, Apr. 1984, 26 pages.
Harris, F. J., “On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform,” In Proceedings of the IEEE, vol. 66, No. 1, Jan. 1978, 34 pages.
Helm, R., et al., “Building Visual Language Parsers,” In Proceedings of CHI'91 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 8 pages.
Hermansky, H., “Perceptual Linear Predictive (PLP) Analysis of Speech,” Journal of the Acoustical Society of America, vol. 87, No. 4, Apr. 1990, 15 pages.
Hermansky, H., “Recognition of Speech in Additive and Convolutional Noise Based on Rasta Spectral Processing,” In proceedings of IEEE International Conference on Acoustics, speech, and Signal Processing (ICASSP'93), Apr. 27-30, 1993, 4 pages.
Hoehfeld M., et al., “Learning with Limited Numerical Precision Using the Cascade-Correlation Algorithm,” IEEE Transactions on Neural Networks, vol. 3, No. 4, Jul. 1992, 18 pages.
Holmes, J. N., “Speech Synthesis and Recognition—Stochastic Models for Word Recognition,” Speech Synthesis and Recognition, Published by Chapman & Hall, London, ISBN 0 412 534304, © 1998 J. N. Holmes, 7 pages.
Hon, H.W., et al., “CMU Robust Vocabulary-Independent Speech Recognition System,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP-91), Apr. 1417, 1991, 4 pages.
IBM Technical Disclosure Bulletin, “Speech Editor,” vol. 29, No. 10, Mar. 10, 1987, 3 pages.
IBM Technical Disclosure Bulletin, “Integrated Audio-Graphics User Interface,” vol. 33, No. 11, Apr. 1991, 4 pages.
IBM Technical Disclosure Bulletin, “Speech Recognition with Hidden Markov Models of Speech Waveforms,” vol. 34, No. 1, Jun. 1991, 10 pages.
Iowegian International, “FIR Filter Properties, dspGuro, Digital Signal Processing Central,” http://www.dspguru.com/dsp/taqs/fir/properties, downloaded on Jul. 28, 2010, 6 pages.
Jacobs, P. S., et al., “Scisor: Extracting Information from On-Line News,” Communications of the ACM, vol. 33, No. 11, Nov. 1990, 10 pages.
Jelinek, F., “Self-Organized Language Modeling for Speech Recognition,” Readings in Speech Recognition, edited by Alex Weibel and Kai-Fu Lee, May 15, 1990, © 1990 Morgan Kaufmann Publishers, Inc., ISBN: 1-55860-124-4, 63 pages.
Jennings, A., et al., “A Personal News Service Based on a User Model Neural Network,” IEICE Transactions on Information and Systems, vol. E75-D, No. 2, Mar. 1992, Tokyo, JP, 12 pages.
Ji, T., et al., “A Method for Chinese Syllables Recognition based upon Sub-syllable Hidden Markov Model,” 1994 International Symposium on Speech, Image Processing and Neural Networks, Apr. 13-16, 1994, Hong Kong, 4 pages.
Jones, J., “Speech Recognition for Cyclone,” Apple Computer, Inc., E.R.S., Revision 2.9, Sep. 10, 1992, 93 pages.
Katz, S. M., “Estimation of Probabilities from Sparse Data for the Language Model Component of a Speech Recognizer,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-35, No. 3, Mar. 1987, 3 pages.
Kitano, H., “PhiDM-Dialog, An Experimental Speech-to-Speech Dialog Translation System,” Jun. 1991 Computer, vol. 24, No. 6, 13 pages.
Klabbers, E., et al., “Reducing Audible Spectral Discontinuities,” IEEE Transactions on Speech and Audio Processing, vol. 9, No. 1, Jan. 2001, 13 pages.
Klatt, D. H., “Linguistic Uses of Segmental Duration in English: Acoustic and Perpetual Evidence,” Journal of the Acoustical Society of America, vol. 59, No. 5, May 1976, 16 pages.
Kominek, J., et al., “Impact of Durational Outlier Removal from Unit Selection Catalogs,” 5th ISCA Speech Synthesis Workshop, Jun. 14-16, 2004, 6 pages.
Kubala, F., et al., “Speaker Adaptation from a Speaker-Independent Training Corpus,” International Conference on Acoustics, Speech, and Signal Processing (ICASSP'90), Apr. 3-6, 1990, 4 pages.
Kubala, F., et al., “The Hub and Spoke Paradigm for CSR Evaluation,” Proceedings of the Spoken Language Technology Workshop, Mar. 6-8, 1994, 9 pages.
Lee, K.F., “Large-Vocabulary Speaker-Independent Continuous Speech Recognition: The SPHINX System,” Apr. 18, 1988, Partial fulfillment of the requirements for the degree of Doctor of Philosophy, Computer Science Department, Carnegie Mellon University, 195 pages.
Lee, L., et al., “A Real-Time Mandarin Dictation Machine for Chinese Language with Unlimited Texts and Very Large Vocabulary,” International Conference on Acoustics, Speech and Signal Processing, vol. 1, Apr. 3-6, 1990, 5 pages.
Lee, L, et al., “Golden Mandarin(II)—An Improved Single-Chip Real-Time Mandarin Dictation Machine for Chinese Language with Very Large Vocabulary,” 0-7803-0946-4/93 © 1993IEEE, 4 pages.
Lee, L, et al., “Golden Mandarin(II)—An Intelligent Mandarin Dictation Machine for Chinese Character Input with Adaptation/Learning Functions,” International Symposium on Speech, Image Processing and Neural Networks, Apr. 13-16, 1994, Hong Kong, 5 pages.
Lee, L., et al., “System Description of Golden Mandarin (I) Voice Input for Unlimited Chinese Characters,” International Conference on Computer Processing of Chinese & Oriental Languages, vol. 5, Nos. 3 & 4, Nov. 1991, 16 pages.
Lin, C.H., et al., “A New Framework for Recognition of Mandarin Syllables With Tones Using Sub-syllabic Unites,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP-93), Apr. 27-30, 1993, 4 pages.
Linde, Y., et al., “An Algorithm for Vector Quantizer Design,” IEEE Transactions on Communications, vol. 28, No. 1, Jan. 1980, 12 pages.
Liu, F.H., et al., “Efficient Joint Compensation of Speech for the Effects of Additive Noise and Linear Filtering,” IEEE International Conference of Acoustics, Speech, and Signal Processing, ICASSP-92, Mar. 23-26, 1992, 4 pages.
Logan, B., “Mel Frequency Cepstral Coefficients for Music Modeling,” In International Symposium on Music Information Retrieval, 2000, 2 pages.
Lowerre, B. T., “The-HARPY Speech Recognition System,” Doctoral Dissertation, Department of Computer Science, Carnegie Mellon University, Apr. 1976, 20 pages.
Maghbouleh, A., “An Empirical Comparison of Automatic Decision Tree and Linear Regression Models for Vowel Durations,” Revised version of a paper presented at the Computational Phonology in Speech Technology workshop, 1996 annual meeting of the Association for Computational Linguistics in Santa Cruz, California, 7 pages.
Markel, J. D., et al., “Linear Prediction of Speech,” Springer-Verlag, Berlin Heidelberg New York 1976, 12 pages.
Morgan, B., “Business Objects,” (Business Objects for Windows) Business Objects Inc., DBMS Sep. 1992, vol. 5, No. 10, 3 pages.
Mountford, S. J., et al., “Talking and Listening to Computers,” The Art of Human-Computer Interface Design, Copyright ® 1990 Apple Computer, Inc. Addison-Wesley Publishing Company, Inc., 17 pages.
Murty, K. S. R., et al., “Combining Evidence from Residual Phase and MFCC Features for Speaker Recognition,” IEEE Signal Processing Letters, vol. 13, No. 1, Jan. 2006, 4 pages.
Murveit H. et al., “Integrating Natural Language Constraints into HMM-based Speech Recognition,” 1990 International Conference on Acoustics, Speech, and Signal Processing, Apr. 3-6, 1990, 5 pages.
Nakagawa, S., et al., “Speaker Recognition by Combining MFCC and Phase Information,” IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), Mar. 14-19, 2010, 4 pages.
Niesler, T. R., et al., “A Variable-Length Category-Based N-Gram Language Model,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'96), vol. 1, May 7-10, 1996, 6 pages.
Papadimitriou, C. H., et al., “Latent Semantic Indexing: A Probabilistic Analysis,” Nov. 14, 1997, http://citeseerx.ist.psu.edu/messages/downloadsexceeded.html, 21 pages.
Parsons, T. W., “Voice and Speech Processing,” Linguistics and Technical Fundamentals, Articulatory Phonetics and Phonemics, © 1987 McGraw-Hill, Inc., ISBN: 0-07-0485541-0, 5 pages.
Parsons, T. W., “Voice and Speech Processing,” Pitch and Formant Estimation, © 1987 McGraw-Hill, Inc., ISBN: 0-07-0485541-0, 15 pages.
Picone, J., “Continuous Speech Recognition Using Hidden Markov Models,” IEEE ASSP Magazine, vol. 7, No. 3, Jul. 1990, 16 pages.
Rabiner, L. R., et al., “Fundamental of Speech Recognition,” © 1993 AT&T, Published by Prentice-Hall, Inc., ISBN: 0-13-285826-6, 17 pages.
Rabiner, L. R., et al., “Note on the Properties of a Vector Quantizer for LPC Coefficients,” The Bell System Technical Journal, vol. 62, No. 8, Oct. 1983, 9 pages.
Ratcliffe, M., “ClearAccess 2.0 allows SQL searches off-line,” (Structured Query Language), ClearAcess Corp., MacWeek Nov. 16, 1992, vol. 6, No. 41, 2 pages.
Remde, J. R., et al., “SuperBook: An Automatic Tool for Information Exploration-Hypertext?,” In Proceedings of Hypertext'87 papers, Nov. 13-15, 1987, 14 pages.
Reynolds, C. F., “On-Line Reviews: A New Application of the HICOM Conferencing System,” IEE Colloquium on Human Factors in Electronic Mail and Conferencing Systems, Feb. 3, 1989, 4 pages.
Rigoll, G., “Speaker Adaptation for Large Vocabulary Speech Recognition Systems Using Speaker Markov Models,” International Conference on Acoustics, Speech, and Signal Processing (ICASSP'89), May 23-26, 1989, 4 pages.
Riley, M. D., “Tree-Based Modelling of Segmental Durations,” Talking Machines Theories, Models, and Designs, 1992 © Elsevier Science Publishers B.V., North-Holland, ISBN: 08-444-89115.3, 15 pages.
Rivoira, S., et al., “Syntax and Semantics in a Word-Sequence Recognition System,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'79), Apr. 1979, 5 pages.
Rosenfeld, R., “A Maximum Entropy Approach to Adaptive Statistical Language Modelling,” Computer Speech and Language, vol. 10, No. 3, Jul. 1996, 25 pages.
Roszkiewicz, A., “Extending your Apple,” Back Talk—Lip Service, A+ Magazine, The Independent Guide for Apple Computing, vol. 2, No. 2, Feb. 1984, 5 pages.
Sakoe, H., et al., “Dynamic Programming Algorithm Optimization for Spoken Word Recognition,” IEEE Transactins on Acoustics, Speech, and Signal Processing, Feb. 1978, vol. ASSP-26 No. 1, 8 pages.
Salton, G., et al., “On the Application of Syntactic Methodologies in Automatic Text Analysis,” Information Processing and Management, vol. 26, No. 1, Great Britain 1990, 22 pages.
Savoy, J., “Searching Information in Hypertext Systems Using Multiple Sources of Evidence,” International Journal of Man-Machine Studies, vol. 38, No. 6, Jun. 1993, 15 pages.
Scagliola, C., “Language Models and Search Algorithms for Real-Time Speech Recognition,” International Journal of Man-Machine Studies, vol. 22, No. 5, 1985, 25 pages.
Schmandt, C., et al., “Augmenting a Window System with Speech Input,” IEEE Computer Society, Computer Aug. 1990, vol. 23, No. 8, 8 pages.
Schütze, H., “Dimensions of Meaning,” Proceedings of Supercomputing'92 Conference, Nov. 16-20, 1992, 10 pages.
Sheth B., et al., “Evolving Agents for Personalized Information Filtering,” In Proceedings of the Ninth Conference on Artificial Intelligence for Applications, Mar. 1-5, 1993, 9 pages.
Shikano, K., et al., “Speaker Adaptation Through Vector Quantization,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'86), vol. 11, Apr. 1986, 4 pages.
Sigurdsson, S., et al., “Mel Frequency Cepstral Coefficients: An Evaluation of Robustness of MP3 Encoded Music,” In Proceedings of the 7th International Conference on Music Information Retrieval (ISMIR), 2006, 4 pages.
Silverman, K. E. A., et al., “Using a Sigmoid Transformation for Improved Modeling of Phoneme Duration,” Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Mar. 15-19, 1999, 5 pages.
Tenenbaum, A.M., et al., “Data Structure Using Pascal,” 1981 Prentice-Hall, Inc., 34 pages.
Tsai, W.H., et al., “Attributed Grammar—A Tool for Combining Syntactic and Statistical Approaches to Pattern Recognition,” IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-10, No. 12, Dec. 1980, 13 pages.
Udell, J., “Computer Telephony,” BYTE, vol. 19, No. 7, Jul. 1, 1994, 9 pages.
van Santen, J. P. H., “Contextual Effects on Vowel Duration,” Journal Speech Communication, vol. 11, No. 6, Dec. 1992, 34 pages.
Vepa, J., et al., “New Objective Distance Measures for Spectral Discontinuities in Concatenative Speech Synthesis,” In Proceedings of the IEEE 2002 Workshop on Speech Synthesis, 4 pages.
Verschelde, J., “MATLAB Lecture 8. Special Matrices in MATLAB,” Nov. 23, 2005, UIC Dept. of Math., Stat.. & C.S., MCS 320, Introduction to Symbolic Computation, 4 pages.
Vingron, M. “Near-Optimal Sequence Alignment,” Deutsches Krebsforschungszentrum (DKFZ), Abteilung Theoretische Bioinformatik, Heidelberg, Germany, Jun. 1996, 20 pages.
Werner, S., et al., “Prosodic Aspects of Speech,” Université de Lausanne, Switzerland, 1994, Fundamentals of Speech Synthesis and Speech Recognition: Basic Concepts, State of the Art, and Future Challenges, 18 pages.
Wikipedia, “Mel Scale,” Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Mel—scale, 2 pages.
Wikipedia, “Minimum Phase,” Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Minimum—phase, 8 pages.
Wolff, M., “Poststructuralism and the ARTFUL Database: Some Theoretical Considerations,” Information Technology and Libraries, vol. 13, No. 1, Mar. 1994, 10 pages.
Wu, M., “Digital Speech Processing and Coding,” ENEE408G Capstone-Multimedia Signal Processing, Spring 2003, Lecture-2 course presentation, University of Maryland, College Park, 8 pages.
Wu, M., “Speech Recognition, Synthesis, and H.C.I.,” ENEE408G Capstone-Multimedia Signal Processing, Spring 2003, Lecture-3 course presentation, University of Maryland, College Park, 11 pages.
Wyle, M. F., “A Wide Area Network Information Filter,” In Proceedings of First International Conference on Artificial Intelligence on Wall Street, Oct. 9-11, 1991, 6 pages.
Yankelovich, N., et al., “Intermedia: The Concept and the Construction of a Seamless Information Environment,” Computer Magazine, Jan. 1988, © 1988 IEEE, 16 pages.
Yoon, K., et al., “Letter-to-Sound Rules for Korean,” Department of Linguistics, The Ohio State University, 2002, 4 pages.
Zhao, Y., “An Acoustic-Phonetic-Based Speaker Adaptation Technique for Improving Speaker-Independent Continuous Speech Recognition,” IEEE Transactions on Speech and Audio Processing, vol. 2, No. 3, Jul. 1994, 15 pages.
Zovato, E., et al., “Towards Emotional Speech Synthesis: A Rule Based Approach,” 2 pages.
International Search Report dated Nov. 9, 1994, received in International Application No. PCT/US1993/12666, which corresponds to U.S. Appl. No. 07/999,302, 8 pages (Robert Don Strong).
International Preliminary Examination Report dated Mar. 1, 1995, received in International Application No. PCT/US1993/12666, which corresponds to U.S. Appl. No. 07/999,302, 5 pages (Robert Don Strong).
International Preliminary Examination Report dated Apr. 10, 1995, received in International Application No. PCT/US1993/12637, which corresponds to U.S. Appl. No. 07/999,354, 7 pages (Alejandro Acero).
International Search Report dated Feb. 8, 1995, received in International Application No. PCT/US1994/11011, which corresponds to U.S. Appl. No. 08/129,679, 7 pages (Yen-Lu Chow).
International Preliminary Examination Report dated Feb. 28, 1996, received in International Application No. PCT/US1994/11011, which corresponds to U.S. Appl. No. 08/129,679, 4 pages (Yen-Lu Chow).
Written Opinion dated Aug. 21, 1995, received in International Application No. PCT/US1994/11011, which corresponds to U.S. Appl. No. 08/129,679, 4 pages (Yen-Lu Chow).
International Search Report dated Nov. 8, 1995, received in International Application No. PCT/US1995/08369, which corresponds to U.S. Appl. No. 08/271,639, 6 pages (Peter V. De Souza).
International Preliminary Examination Report dated Oct. 9, 1996, received in International Application No. PCT/US1995/08369, which corresponds to U.S. Appl. No. 08/271,639, 4 pages (Peter V. De Souza).
Canadian Office Action dated Mar. 27, 2013 for Application No. 2,793,118, 3 pages.
Office Action dated Mar. 7, 2013, received in U.S. Appl. No. 13/492,809, 26 pages (Gruber).
Car Working Group, “Bluetooth Doc Hands-Free Profile 1.5 HFP1.5—SPEC,” Nov. 25, 2005, www.bluetooth.org, 84 pages.
Australian Office Action dated Nov. 27, 2012 for Application No. 2012101471, 6 pages.
Australian Office Action dated Nov. 22, 2012 for Application No. 2012101466, 6 pages.
Australian Office Action dated Nov. 14, 2012 for Application No. 2012101473, 6 pages.
Australian Office Action dated Nov. 19, 2012 for Application No. 2012101470, 5 pages.
Australian Office Action dated Nov. 28, 2012 for Application No. 2012101468, 5 pages.
Australian Office Action dated Nov. 19, 2012 for Application No. 2012101472, 5 pages.
Australian Office Action dated Nov. 19, 2012 for Application No. 2012101469, 6 pages.
Australian Office Action dated Nov. 15, 2012 for Application No. 2012101465, 6 pages.
Australian Office Action dated Nov. 30, 2012 for Application No. 2012101467, 6 pages.
Notice of Allowance dated Feb. 29, 2012, received in U.S. Appl. No. 11/518,292, 29 pages (Cheyer).
Final Office Action dated May 10, 2011, received in U.S. Appl. No. 11/518,292, 14 pages (Cheyer).
Office Action dated Nov. 24, 2010, received in U.S. Appl. No. 11/518,292, 12 pages (Cheyer).
Office Action dated Nov. 9, 2009, received in U.S. Appl. No. 11/518,292, 10 pages (Cheyer).
Office Action dated Mar. 27, 2013, received in U.S. Appl. No. 13/725,656, 22 pages (Gruber).
Office Action dated Mar. 14, 2013, received in U.S. Appl. No. 12/987,982, 59 pages (Gruber).
Russian Office Action dated Nov. 8, 2012 for Application No. 2012144647, 7 pages.
Russian Office Action dated Dec. 6, 2012 for Application No. 2012144605, 6 pages.
Mitra, Prasenjit, “A Graph-Oriented Model for Articulation of Ontology Interdependencies”, 2000.
Ericsson, Stina, et al., “Software illustrating a unified approach to multimodality and multilinguality in the in-home domain”, Dec. 22, 2006.
Milward, David, et al., “D2.2: Dynamic Multimodal Interface Reconfiguration”, Aug. 8, 2006.
Sheth, A. et al., “Relationships at the Heart of Semantic Web: Modeling, Discovering, and Exploiting Complex Semantic Relationships”, Oct. 13, 2002.
Bussler, C., et al., “Web Service Execution Environment (WSMX),” Jun. 3, 2005, W3C Member Submission, http://www.w3.org/Submission/WSMX, 29 pages.
Cheyer, A., “About Adam Cheyer,” Sep. 17, 2012, http://www.adam.cheyer.com/about.html, 2 pages.
Cheyer, A., “A Perspective on AI & Agent Technologies for SCM,” VerticalNet, 2001 presentation, 22 pages.
Cohen, Michael H., et al., “Voice User Interface Design,” excerpts from Chapter 1 and Chapter 10, Addison-Wesley ISBN:0-321-18576-5, 2004, 36 pages.
Domingue, J., et al., “Web Service Modeling Ontology (WSMO)—An Ontology for Semantic Web Services,” Jun. 9-10, 2005, position paper at the W3C Workshop on Frameworks for Semantics in Web Services, Innsbruck, Austria, 6 pages.
Gong, J., et al., “Guidelines for Handheld Mobile Device Interface Design,” Proceedings of DSI 2004 Annual Meeting, pp. 3751-3756.
Guzzoni, D., et al., “A Unified Platform for Building Intelligent Web Interaction Assistants,” Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Computer Society, 4 pages.
Horvitz, E., “Handsfree Decision Support: Toward a Non-invasive Human-Computer Interface,” Proceedings of the Symposium on Computer Applications in Medical Care, IEEE Computer Society Press, Nov. 1995, 1 page.
Horvitz, E., “In Pursuit of Effective Handsfree Decision Support: Coupling Bayesian Inference, Speech Understanding, and User Models,” 1995, 8 pages.
Roddy, D., et al., “Communication and Collaboration in a Landscape of B2B eMarketplaces,” VerticalNet Solutions, white paper, Jun. 15, 2000, 23 pages.
“Top 10 Best Practices for Voice User Interface Design,” Nov. 1, 2002, http://www.developer.com/voice/article.php/1567051/Top-10-Best-Practices-for-Voice-User-Interface-Design.htm, 4 pages.
Australian Office Action dated Dec. 7, 2012 for Application No. 2010254812, 8 pages.
Australian Office Action dated Nov. 13, 2012 for Application No. 2011205426, 7 pages.
Australian Office Action dated Oct. 31, 2012 for Application No. 2012101191, 6 pages.
EP Communication under Rule-161(2) and 162 EPC for Application No. 117079392.2-2201, 4 pages.
Current claims of PCT Application No. PCT/US11/20861 dated Jan. 11, 2011, 17 pages.
Final Office Action dated Jun. 19, 2012, received in U.S. Appl. No. 12/479,477, 46 pages (van Os).
Office Action dated Sep. 29, 2011, received in U.S. Appl. No. 12/479,477, 32 pages (van Os).
Office Action dated Nov. 8, 2012, received in U.S. Appl. No. 13/251,127, 35 pages (Gruber).
Office Action dated Nov. 28, 2012, received in U.S. Appl. No. 13/251,104, 49 pages (Gruber).
Office Action dated Dec. 7, 2012, received in U.S. Appl. No. 13/251,118, 52 pages (Gruber).
GB Patent Act 1977: Combined Search Report and Examination Report under Sections 17 and 18(3) for Application No. GB1009318.5, report dated Oct. 8, 2010, 5 pages.
International Search Report and Written Opinion dated Aug. 25, 2010, received in International Application No. PCT/US2010/037378, which corresponds to U.S. Appl. No. 12/479,477, 16 pages (Apple Inc.).
International Search Report and Written Opinion dated Nov. 16, 2012, received in International Application No. PCT/US2012/040571, which corresponds to U.S. Appl. No. 13/251,088 14 pages (Apple Inc.).
International Search Report and Written Opinion dated Dec. 20, 2012, received in International Application No. PCT/US2012/056382, which corresponds to U.S. Appl. No. 13/250,947, 11 pages (Gruber).
International Search Report and Written Opinion dated Nov. 29, 2011, received in International Application No. PCT/US2011/20861, which corresponds to U.S. Appl. No. 12/987,982, 15 pages (Apple Inc.).
Martin, D., et al., “The Open Agent Architecture: A Framework for building distributed software systems,” Jan.-Mar. 1999, Applied Artificial Intelligence: An International Journal, vol. 13, No. 1-2, http://adam.cheyer.com/papers/oaa.pdf, 38 pages.
GB Patent Act 1977: Combined Search Report and Examination Report under Sections 17 and 18(3) for Application No. GB1217449.6, report dated Jan. 17, 2013, 6 pages.
Office Action dated Jan. 31, 2013, received in U.S. Appl. No. 13/251,088, 38 pages (Gruber).
Sullivan, Danny, “How Google Instant's Autocomplete Suggestions Work”, available at <http://searchengineland.com/how-google-instant-autocomplete-suggestions-work-62592>, Apr. 6, 2011, 12 pages.
Summerfield et al., “ASIC Implementation of the Lyon Cochlea Model”, Proceedings of the 1992 International Conference on Acoustics, Speech and Signal Processing, IEEE, vol. V, 1992, pp. 673-676.
T3 Magazine, “Creative MuVo Tx 256MB”, available at <http://www.t3.co.uk/reviews/entertainment/mp3—player/creative—muvo—tx—256mb>, Aug. 17, 2004, 1 page.
TAOS, “TAOS, Inc. Announces Industry's First Ambient Light Sensor to Convert Light Intensity to Digital Signals”, News Release, available at <http://www.taosinc.com/presssrelease—090902.htm>, Sep. 16, 2002, 3 pages.
Apple Computer, Inc., “iTunes 2, Playlist Related Help Screens”, iTunes v2.0, 2000-2001, 8 pages.
Tello, Ernest R., “Natural-Language Systems”, Mastering AI Tools and Techniques, Howard W. Sams & Company, 1988.
TG3 Electronics, Inc., “BL82 Series Backlit Keyboards”, available at <http://www.tg3electronics.com/products/backlit/backlit.htm>, retrieved on Dec. 19, 2002, 2 pages.
The HP 150, “Hardware: Compact, Powerful, and Innovative”, vol. 8, No. 10, Oct. 1983, pp. 36-50.
Tidwell, Jenifer, “Animated Transition”, Designing Interfaces, Patterns for effective Interaction Design, Nov. 2005, First Edition, 4 pages.
Touch, Joseph, “Zoned Analog Personal Teleconferencing”, USC / Information Sciences Institute, 1993, pp. 1-19.
Toutanova et al., “Feature-Rich Part-of-Speech Tagging with a Cyclic Dependency Network”, Computer Science Dept., Stanford University, Stanford CA 94305-9040, 2003, 8 pages.
Trigg et al., “Hypertext Habitats: Experiences of Writers in NoteCards”, Hypertext '87 Papers; Intelligent Systems Laboratory, Xerox Palo Alto Research Center, 1987, pp. 89-108.
Trowbridge, David, “Using Andrew for Development of Educational Applications”, Center for Design of Educational Computing, Carnegie-Mellon University (CMU-ITC-85-065), Jun. 2, 1985, pp. 1-6.
Tsao et al., “Matrix Quantizer Design for LPC Speech Using the Generalized Lloyd Algorithm”, (IEEE Transactions on Acoustics, Speech and Signal Processing, Jun. 1985), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 237-245.
Turletti, Thierry, “The INRIA Videoconferencing System (IVS)”, Oct. 1994, pp. 1-7.
Uslan et al., “A Review of Henter-Joyce's MAGic for Windows NT”, Journal of Visual Impairment and Blindness, Dec. 1999, pp. 666-668.
Uslan et al., “A Review of Supernova Screen Magnification Program for Windows”, Journal of Visual Impairment & Blindness, Feb. 1999, pp. 108-110.
Uslan et al., “A Review of Two Screen Magnification Programs for Windows 95: Magnum 95 and LP-Windows”, Journal of Visual Impairment & Blindness, Sep.-Oct. 1997, pp. 9-13.
Veiga, Alex, “AT&T Wireless Launching Music Service”, available at <http://bizyahoo.com/ap/041005/at—t—mobile—music—5.html?printer=1>, Oct. 5, 2004, 2 pages.
Vogel et al., “Shift: A Technique for Operating Pen-Based Interfaces Using Touch”, CHI '07 Proceedings, Mobile Interaction Techniques I, Apr. 28-May 3, 2007, pp. 657-666.
W3C Working Draft, “Speech Synthesis Markup Language Specification for the Speech Interface Framework”, available at <http://www.w3org./TR/speech-synthesis>, retrieved on Dec. 14, 2000, 42 pages.
Wadlow, M. G., “The Role of Human Interface Guidelines in the Design of Multimedia Applications”, Carnegie Mellon University (To be Published in Current Psychology: Research and Reviews, Summer 1990 (CMU-ITC-91-101), 1990, pp. 1-22.
Walker et al., “The LOCUS Distributed Operating System 1”, University of California Los Angeles, 1983, pp. 49-70.
Wang et al., “An Initial Study on Large Vocabulary Continuous Mandarin Speech Recognition with Limited Training Data Based on Sub-Syllabic Models”, International Computer Symposium, vol. 2, 1994, pp. 1140-1145.
Wang et al., “Tone Recognition of Continuous Mandarin Speech Based on Hidden Markov Model”, International Journal of Pattern Recognition and Artificial Intelligence, vol. 8, 1994, pp. 233-245.
Ware et al., “The DragMag Image Magnifier”, CHI '95 Mosaic of Creativity, May 7-11, 1995, pp. 407-408.
Ware et al., “The DragMag Image Magnifier Prototype I”, Apple Inc., Video Clip, Marlon, on a CD, Applicant is not Certain about the Date for the Video Clip., 1995.
Watabe et al., “Distributed Multiparty Desktop Conferencing System: MERMAID”, CSCW 90 Proceedings, Oct. 1990, pp. 27-38.
White, George M., “Speech Recognition, Neural Nets, and Brains”, Jan. 1992, pp. 1-48.
Wikipedia, “Acoustic Model”, available at <http://en.wikipedia.org/wiki/AcousticModel>, retrieved on Sep. 14, 2011, 2 pages.
Wikipedia, “Language Model”, available at <http://en.wikipedia.org/wiki/Language—model>, retrieved on Sep. 14, 2011, 3 pages.
Wikipedia, “Speech Recognition”, available at <http://en.wikipedia.org/wiki/Speech—recognition>, retrieved on Sep. 14, 2011, 10 pages.
Wilensky et al., “Talking to UNIX in English: An Overview of UC”, Communications of the ACM, vol. 27, No. 6, Jun. 1984, pp. 574-593.
Wilson, Mark, “New iPod Shuffle Moves Buttons to Headphones, Adds Text to Speech”, available at <http://gizmodo.com/5167946/new-ipod-shuffle-moves-buttons-to-headphones-adds-text-to-speech>, Mar. 11, 2009, 13 pages.
Wirelessinfo, “SMS/MMS Ease of Use (8.0)”, available at <http://www.wirelessinfo.com/content/palm-Treo-750-Cell-Phone-Review/Messaging.htm>, Mar. 2007, 3 pages.
Wong et al., “An 800 Bit/s Vector Quantization LPC Vocoder”, (IEEE Transactions on Acoustics, Speech and Signal Processing, Oct. 1982), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 222-232.
Wong et al., “Very Low Data Rate Speech Compression with LPC Vector and Matrix Quantization”, (Proceedings of the IEEE Int'l Acoustics, Speech and Signal Processing Conference, Apr. 1983), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 233-236.
Wu et al., “Automatic Generation of Synthesis Units and Prosodic Information for Chinese Concatenative Synthesis”, Speech Communication, vol. 35, No. 3-4, Oct. 2001, pp. 219-237.
Yang et al., “Auditory Representations of Acoustic Signals”, IEEE Transactions of Information Theory, vol. 38, No. 2, Mar. 1992, pp. 824-839.
Yang et al., “Hidden Markov Model for Mandarin Lexical Tone Recognition”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 36, No. 7, Jul. 1988, pp. 988-992.
Yiourgalis et al., “Text-to-Speech system for Greek”, ICASSP 91, vol. 1, May 14-17, 1991., pp. 525-528.
Zainab, “Google Input Tools Shows Onscreen Keyboard in Multiple Languages [Chrome]”, available at <http://www.addictivetips.com/internet-tips/google-input-tools-shows-multiple-language-onscreen-keyboards-chrome/>, Jan. 3, 2012, 3 pages.
Zelig, “A Review of the Palm Treo 750v”, available at <http://www.mtekk.com.au/Articles/tabid/54/articleType/ArticleView/articleId/769/A-Review-of-the-Palm-Treo-750v.aspx>, Feb. 5, 2007, 3 pages.
Zhang et al., “Research of Text Classification Model Based on Latent Semantic Analysis and Improved HS-SVM”, Intelligent Systems and Applications (ISA), 2010 2nd International Workshop, May 22-23, 2010, 5 pages.
Ziegler, K, “A Distributed Information System Study”, IBM Systems Journal, vol. 18, No. 3, 1979, pp. 374-401.
Zipnick et al., “U.S. Appl. No. 10/859,661, filed Jun. 2, 2004”.
“2004 Chrysler Pacifica: U-Connect Hands-Free Communication System”, The Best and Brightest of 2004, Brief Article, Automotive Industries, Sep. 2003, 1 page.
“2007 Lexus GS 450h 4dr Sedan (3.5L 6cyl Gas/Electric Hybrid CVT)”, available at <http://review.cnet.com/4505-10865—16-31833144.html>, retrieved on Aug. 3, 2006, 10 pages.
“All Music Website”, available at <http://www.allmusic.com/>, retrieved on Mar. 19, 2007, 2 pages.
“BluePhoneElite: About”, available at <http://www.reelintelligence.com/BluePhoneElite>, retrieved on Sep. 25, 2006, 2 pages.
“BluePhoneElite: Features”, available at <http://www.reelintelligence.com/BluePhoneElite/features.shtml,>, retrieved on Sep. 25, 2006, 2 pages.
“Digital Audio in the New Era”, Electronic Design and Application, No. 6, Jun. 30, 2003, 3 pages.
“Mobile Speech Solutions, Mobile Accessibility”, SVOX AG Product Information Sheet, available at <http://www.svox.com/site/bra840604/con782768/mob965831936.aSQ?osLang=1>, Sep. 27, 2012, 1 page.
“N200 Hands-Free Bluetooth Car Kit”, available at <www.wirelessground.com>, retrieved on Mar. 19, 2007, 3 pages.
“PhatNoise”, Voice Index on Tap, Kenwood Music Keg, available at <http://www. phatnoise.com/kenwood/kenwoodssamail.html>, retrieved on Jul. 13, 2006, 1 page.
“What is Fuzzy Logic?”, available at <http://www.cs.cmu.edu>, retrieved on Apr. 15, 1993, 5 pages.
“Windows XP: A Big Surprise!—Experiencing Amazement from Windows XP”, New Computer, No. 2, Feb. 28, 2002, 8 pages.
Aikawa et al., “Generation for Multilingual MT”, available at <http://mtarchive.info/MTS-2001-Aikawa.pdf>, retrieved on Sep. 18, 2001, 6 pages.
Anhui USTC Ifl Ytek Co. Ltd., “Flytek Research Center Information Datasheet”, available at <http://www.iflttek.com/english/Research—htm>, retrieved on Oct. 15, 2004, 3 pages.
Borden IV, G.R., “An Aural User Interface for Ubiquitous Computing”, Proceedings of the 6th International Symposium on Wearable Computers, IEEE, 2002, 2 pages.
Brain, Marshall, “How MP3 Files Work”, available at <http://www.howstuffworks.com>, retrieved on Mar. 19, 2007, 4 pages.
Busemann et al., “Natural Language Diaglogue Service for Appointment Scheduling Agents”, Technical Report RR-97-02, Deutsches Forschungszentrum fur Kunstliche Intelligenz GmbH, 1997, 8 pages.
Dusan et al., “Multimodal Interaction on PDA's Integrating Speech and Pen Inputs”, Eurospeech Geneva, 2003, 4 pages.
Lamel et al., “Generation and synthesis of Broadcast Messages”, Proceedings of ESCA-NATO Workshop: Applications of Speech Technology, Sep. 1, 1993, 4 pages.
Lyons et al., “Augmenting Conversations Using Dual-Purpose Speech”, Proceedings of the 17th Annual ACM Symposium on User interface Software and Technology, 2004, 10 pages.
Macsimum News, “Apple Files Patent for an Audio Interface for the iPod”, available at <http://www.macsimumnews.com/index.php/archive/apple—files—patent—for—an—audio—interface—for—the—ipod>, retrieved on Jul. 13, 2006, 8 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2004/016519, dated Nov. 3, 2005, 6 pages.
Invitation to Pay Additional Fees and Partial International Search Report received for PCT Patent Application No. PCT/US2004/016519, dated Aug. 4, 2005, 6 pages.
International Search Report received for PCT Patent Application No. PCT/US2011/037014, dated Oct. 4, 2011, 6 pages.
Invitation to Pay Additional Search Fees received for PCT Application No. PCT/US2011/037014, dated Aug. 2, 2011, 6 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/043098, dated Nov. 14, 2012, 9 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/040971, dated Nov. 12, 2013, 11 pages.
Quazza et al., “Actor: A Multilingual Unit-Selection Speech Synthesis System”, Proceedings of 4th ISCA Tutorial and Research Workshop on Speech Synthesis, Jan. 1, 2001, 6 pages.
Ricker, Thomas, “Apple Patents Audio User Interface”, Engadget, available at <http://www.engadget.com/2006/05/04/apple-patents-audio-user-interface/>, May 4, 2006, 6 pages.
Santaholma, Marianne E., “Grammar Sharing Techniques for Rule-based Multilingual NLP Systems”, Proceedings of the 16th Nordic Conference of Computational Linguistics, NODALIDA 2007, May 25, 2007, 8 pages.
Taylor et al., “Speech Synthesis by Phonological Structure Matching”, International Speech Communication Association, vol. 2, Section 3, 1999, 4 pages.
Xu et al., “Speech-Based Interactive Games for Language Learning: Reading, Translation, and Question-Answering”, Computational Linguistics and Chinese Language Processing, vol. 14, No. 2, Jun. 2009, pp. 133-160.
Yunker, John, “Beyond Borders: Web Globalization Strategies”, New Riders, Aug. 22, 2002, 11 pages.
Pearl, Amy, “System Support for Integrated Desktop Video Conferencing”, Sunmicrosystems Laboratories, Dec. 1992, pp. 1-15.
Penn et al., “Ale for Speech: A Translation Prototype”, Bell Laboratories, 1999, 4 pages.
Phillipps, Ben, “Touchscreens are Changing the Face of Computers—Today's Users Have Five Types of Touchscreens to Choose from, Each with its Own Unique Characteristics”, Electronic Products, Nov. 1994, pp. 63-70.
Phillips, Dick, “The Multi-Media Workstation”, SIGGRAPH '89 Panel Proceedings, 1989, pp. 93-109.
Pickering, J. A., “Touch-Sensitive Screens: The Technologies and Their Application”, International Journal of Man Machine Studies, vol. 25, No. 3, Sep. 1986, pp. 249-269.
Pingali et al., “Audio-Visual Tracking for Natural Interactivity”, ACM Multimedia, Oct. 1999, pp. 373-382.
Plaisant et al., “Touchscreen Interfaces for Alphanumeric Data Entry”, Proceedings of the Human Factors and Ergonomics Society 36th Annual Meeting, 1992, pp. 293-297.
Plaisant et al., “Touchscreen Toggle Design”, CHI'92, May 3-7, 1992, pp. 667-668.
Poly-Optical Products, Inc., “Poly-Optical Fiber Optic Membrane Switch Backlighting”, available at <http://www.poly-optical.com/membrane—switches.html>, retrieved on Dec. 19, 2002, 3 pages.
Poor, Alfred, “Microsoft Publisher”, PC Magazine, vol. 10, No. 20, Nov. 26, 1991, 1 page.
Potter et al., “An Experimental Evaluation of Three Touch Screen Strategies within a Hypertext Database”, International Journal of Human-Computer Interaction, vol. 1, No. 1, 1989, pp. 41-52.
Potter et al., “Improving the Accuracy of Touch Screens: An Experimental Evaluation of Three Strategies”, CHI '88 ACM, 1988, pp. 27-32.
Public Safety Technologies, “Tracer 2000 Computer”, available at <http://www.pst911.com/tracer.html>, retrieved on Dec. 19, 2002, 3 pages.
Apple Computer, Inc., “Apple Announces iTunes 2”, Press Release, Oct. 23, 2001, 2 pages.
Rabiner et al., “Digital Processing of Speech Signals”, Prentice Hall, 1978, pp. 274-277.
Rampe et al., “SmartForm Designer and SmartForm Assistant”, News release, Claris Corp., Jan. 9, 1989, 1 page.
Rao et al., “Exploring Large Tables with the Table Lens”, Apple Inc., Video Clip, Xerox Corp., on a CD, 1994.
Rao et al., “Exploring Large Tables with the Table Lens”, CHI'95 Mosaic of Creativity, ACM, May 7-11, 1995, pp. 403-404.
Rao et al., “The Table Lens: Merging Graphical and Symbolic Representations in an Interactive Focus+Context Visualization for Tabular Information”, Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, Apr. 1994, pp. 1-7.
Raper, Larry K. ,“The C-MU PC Server Project”, (CMU-ITC-86-051), Dec. 1986, pp. 1-30.
Ratcliffe et al., “Intelligent Agents Take U.S. Bows”, MacWeek, vol. 6, No. 9, Mar. 2, 1992, 1 page.
Reddy, D. R., “Speech Recognition by Machine: A Review”, Proceedings of the IEEE, Apr. 1976, pp. 501-531.
Reininger et al., “Speech and Speaker Independent Codebook Design in VQ Coding Schemes”, (Proceedings of the IEEE International Acoustics, Speech and Signal Processing Conference, Mar. 1985), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 271-273.
Ren et al., “Efficient Strategies for Selecting Small Targets on Pen-Based Systems: An Evaluation Experiment for Selection Strategies and Strategy Classifications”, Proceedings of the IFIP TC2/TC13 WG2.7/WG13.4 Seventh Working Conference on Engineering for Human-Computer Interaction, vol. 150, 1998, pp. 19-37.
Ren et al., “Improving Selection Performance on Pen-Based Systems: A Study of Pen-Based Interaction for Selection Tasks”, ACM Transactions on Computer-Human Interaction, vol. 7, No. 3, Sep. 2000, pp. 384-416.
Ren et al., “The Best among Six Strategies for Selecting a Minute Target and the Determination of the Minute Maximum Size of the Targets on a Pen-Based Computer”, Human-Computer Interaction INTERACT, 1997, pp. 85-92.
Apple Computer, Inc., “Apple Introduces iTunes—World's Best and Easiest to Use Jukebox Software”, Macworld Expo, Jan. 9, 2001, 2 pages.
Riecken, R D., “Adaptive Direct Manipulation”, IEEE Xplore, 1991, pp. 1115-1120.
Rioport, “Rio 500: Getting Started Guide”, available at <http://ec1.images-amazon.com/media/i3d/01/A/man-migrate/MANUAL000023453.pdf>, 1999, 2 pages.
Robbin et al., “MP3 Player and Encoder for Macintosh!”, SoundJam MP Plus, Version 2.0, 2000, 76 pages.
Robertson et al., “Information Visualization Using 3D Interactive Animation”, Communications of the ACM, vol. 36, No. 4, Apr. 1993, pp. 57-71.
Robertson et al., “The Document Lens”, UIST'93, Nov. 3-5, 1993, pp. 101-108.
Root, Robert, “Design of a Multi-Media Vehicle for Social Browsing”, Bell Communications Research, 1988, pp. 25-38.
Roseberry, Catherine, “How to Pair a Bluetooth Headset & Cell Phone”, available at <http://mobileoffice.about.com/od/usingyourphone/ht/blueheadset—p.htm>, retrieved on Apr. 29, 2006, 2 pages.
Rosenberg et al., “An Overview of the Andrew Message System”, Information Technology Center Carnegie-Mellon University, Jul. 1987, pp. 99-108.
Rosner et al., “In Touch: A Graphical User Interface Development Tool”, IEEE Colloquium on Software Tools for Interface Design, Nov. 8, 1990, pp. 12/1-12/7.
Rossfrank, “Konstenlose Sprachmitteilungins Festnetz”, XP002234425, Dec. 10, 2000, pp. 1-4.
Roucos et al., “A Segment Vocoder at 150 B/S”, (Proceedings of the IEEE International Acoustics, Speech and Signal Processing Conference, Apr. 1983), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 246-249.
Roucos et al., “High Quality Time-Scale Modification for Speech”, Proceedings of the 1985 IEEE Conference on Acoustics, Speech and Signal Processing, 1985, pp. 493-496.
Sabin et al., “Product Code Vector Quantizers for Waveform and Voice Coding”, (IEEE Transactions on Acoustics, Speech and Signal Processing, Jun. 1984), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 274-288.
Apple Computer, Inc., “Apple's iPod Available in Stores Tomorrow”, Press Release, Nov. 9, 2001, 1 page.
Santen, Jan P., “Assignment of Segmental Duration in Text-to-Speech Synthesis”, Computer Speech and Language, vol. 8, No. 2, Apr. 1994, pp. 95-128.
Sarawagi, Sunita, “CRF Package Page”, available at <http://crf.sourceforge.net/>, retrieved on Apr. 6, 2011, 2 pages.
Sarkar et al., “Graphical Fisheye Views”, Communications of the ACM, vol. 37, No. 12, Dec. 1994, pp. 73-83.
Sarkar et al., “Graphical Fisheye Views of Graphs”, Systems Research Center, Digital Equipment Corporation Mar. 17, 1992, 31 pages.
Sarkar et al., “Graphical Fisheye Views of Graphs”, CHI '92 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, May 3-7, 1992, pp. 83-91.
Sarkar et al., “Stretching the Rubber Sheet: A Metaphor for Viewing Large Layouts on Small Screens”, UIST'93, ACM, Nov. 3-5, 1993, pp. 81-91.
Sastry, Ravindra W., “A Need for Speed: A New Speedometer for Runners”, submitted to the Department of Electrical Engineering and Computer Science at the Massachusetts Institute of Technology, 1999, pp. 1-42.
Schafer et al., “Digital Representations of Speech Signals”, Proceedings of the IEEE, vol. 63, No. 4, Apr. 1975, pp. 662-677.
Schaffer et al., “Navigating Hierarchically Clustered Networks through Fisheye and Full-Zoom Methods”, ACM Transactions on Computer-Human Interaction, vol. 3, No. 2, Jun. 1996, pp. 162-188.
Scheifler, R. W., “The X Window System”, MIT Laboratory for Computer Science and Gettys, Jim Digital Equipment Corporation and MIT Project Athena; ACM Transactions on Graphics, vol. 5, No. 2, Apr. 1986, pp. 79-109.
Schluter et al., “Using Phase Spectrum Information for Improved Speech Recognition Performance”, IEEE International Conference on Acoustics, Speech, and Signal Processing, 2001, pp. 133-136.
Schmandt et al., “A Conversational Telephone Messaging System”, IEEE Transactions on Consumer Electronics, vol. CE-30, Aug. 1984, pp. xxi-xxiv.
Schmandt et al., “Phone Slave: A Graphical Telecommunications Interface”, Society for Information Display, International Symposium Digest of Technical Papers, Jun. 1984, 4 pages.
Schmandt et al., “Phone Slave: A Graphical Telecommunications Interface”, Proceedings of the SID, vol. 26, No. 1, 1985, pp. 79-82.
Schmid, H., “Part-of-speech tagging with neural networks”, COLING '94 Proceedings of the 15th conference on Computational linguistics—vol. 1, 1994, pp. 172-176.
Schooler et al., “A Packet-switched Multimedia Conferencing System”, by Eve Schooler, et al; ACM SIGOIS Bulletin, vol. I, No. 1, Jan. 1989, pp. 12-22.
Schooler et al., “An Architecture for Multimedia Connection Management”, Proceedings IEEE 4th Comsoc International Workshop on Multimedia Communications, Apr. 1992, pp. 271-274.
Schooler et al., “Multimedia Conferencing: Has it Come of Age?”, Proceedings 24th Hawaii International Conference on System Sciences, vol. 3, Jan. 1991, pp. 707-716.
Schooler et al., “The Connection Control Protocol: Architecture Overview”, USC/Information Sciences Institute, Jan. 28, 1992, pp. 1-6.
Schooler, Eve, “A Distributed Architecture for Multimedia Conference Control”, ISI Research Report, Nov. 1991, pp. 1-18.
Schooler, Eve M., “Case Study: Multimedia Conference Control in a Packet-Switched Teleconferencing System”, Journal of Internetworking: Research and Experience, vol. 4, No. 2, Jun. 1993, pp. 99-120.
Schooler, Eve M., “The Impact of Scaling on a Multimedia Connection Architecture”, Multimedia Systems, vol. 1, No. 1, 1993, pp. 2-9.
Schütze, H., “Distributional part-of-speech tagging”, EACL '95 Proceedings of the seventh conference on European chapter of the Association for Computational Linguistics, 1995, pp. 141-148.
Schütze, Hinrich, “Part-of-speech induction from scratch”, ACL '93 Proceedings of the 31st annual meeting on Association for Computational Linguistics, 1993, pp. 251-258.
Schwartz et al., “Context-Dependent Modeling for Acoustic-Phonetic Recognition of Continuous Speech”, IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 10, Apr. 1985, pp. 1205-1208.
Schwartz et al., “Improved Hidden Markov Modeling of Phonemes for Continuous Speech Recognition”, IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 9, 1984, pp. 21-24.
Schwartz et al., “The N-Best Algorithm: An Efficient and Exact Procedure for Finding the N Most Likely Sentence Hypotheses”, IEEE, 1990, pp. 81-84.
Scott et al., “Designing Touch Screen Numeric Keypads: Effects of Finger Size, Key Size, and Key Spacing”, Proceedings of the Human Factors and Ergonomics Society 41st Annual Meeting, Oct. 1997, pp. 360-364.
Seagrave, Jim, “A Faster Way to Search Text”, EXE, vol. 5, No. 3, Aug. 1990, pp. 50-52.
Sears et al., “High Precision Touchscreens: Design Strategies and Comparisons with a Mouse”, International Journal of Man-Machine Studies, vol. 34, No. 4, Apr. 1991, pp. 593-613.
Sears et al., “Investigating Touchscreen Typing: The Effect of Keyboard Size on Typing Speed”, Behavior & Information Technology, vol. 12, No. 1, 1993, pp. 17-22.
Sears et al., “Touchscreen Keyboards”, Apple Inc., Video Clip, Human-Computer Interaction Laboratory, on a CD, Apr. 1991.
Seide et al., “Improving Speech Understanding by Incorporating Database Constraints and Dialogue History”, Proceedings of Fourth International Conference on Philadelphia 1996, pp. 1017-1020.
Shiraki et al., “LPC Speech Coding Based on Variable-Length Segment Quantization”, (IEEE Transactions on Acoustics, Speech and Signal Processing, Sep. 1988), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 250-257.
Shneiderman, Ben, “Designing the User Interface: Strategies for Effective Human-Computer Interaction”, Second Edition, 1992, 599 pages.
Shneiderman, Ben, “Designing the User Interface: Strategies for Effective Human-Computer Interaction”, Third Edition, 1998, 669 pages.
Shneiderman, Ben, “Direct Manipulation for Comprehensible, Predictable and Controllable User Interfaces”, Proceedings of the 2nd International Conference on Intelligent User Interfaces, 1997, pp. 33-39.
Shneiderman, Ben, “Sparks of Innovation in Human-Computer Interaction”, 1993, (Table of Contents, Title Page, Ch. 4, Ch. 6 and List of References).
Shneiderman, Ben, “The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations”, IEEE Proceedings of Symposium on Visual Languages, 1996, pp. 336-343.
Shneiderman, Ben, “Touch Screens Now Offer Compelling Uses”, IEEE Software, Mar. 1991, pp. 93-94.
Shoham et al., “Efficient Bit and Allocation for an Arbitrary Set of Quantizers”, (IEEE Transactions on Acoustics, Speech, and Signal Processing, Sep. 1988) as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 289-296.
Simkovitz, Daniel, “LP-DOS Magnifies the PC Screen”, IEEE, 1992, pp. 203-204.
Singh et al., “Automatic Generation of Phone Sets and Lexical Transcriptions”, Acoustics, Speech and Signal Processing (ICASSP'00), 2000, 1 page.
Sinitsyn, Alexander, “A Synchronization Framework for Personal Mobile Servers”, Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications Workshops, Piscataway, 2004, pp. 1, 3 and 5.
Slaney et al., “On the Importance of Time—A Temporal Representation of Sound”, Visual Representation of Speech Signals, 1993, pp. 95-116.
Smeaton, Alan F., “Natural Language Processing and Information Retrieval”, Information Processing and Management, vol. 26, No. 1, 1990, pp. 19-20.
Smith et al., “Guidelines for Designing User Interface Software”, User Lab, Inc., Aug. 1986, pp. 1-384.
Smith et al., “Relating Distortion to Performance in Distortion Oriented Displays”, Proceedings of Sixth Australian Conference on Computer-Human Interaction, Nov. 1996, pp. 6-11.
Sony Eiicsson Corporate, “Sony Ericsson to introduce Auto pairing.TM. to Improve Bluetooth.TM. Connectivity Between Headsets and Phones”, Press Release, available at <http://www.sonyericsson.com/spg.jsp?cc=global&lc=en&ver=4001&template=pc3—1— 1&z . . . >, Sep. 28, 2005, 2 pages.
Soong et al., “A High Quality Subband Speech Coder with Backward Adaptive Predictor and Optimal Time-Frequency Bit Assignment”, (Proceedings of the IEEE International Acoustics, Speech, and Signal Processing Conference, Apr. 1986), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 316-319.
Spiller, Karen, “Low-Decibel Earbuds Keep Noise at a Reasonable Level”, available at <http://www.nashuatelegraph.com/apps/pbcs.dll/article?Date=20060813&Cate . . . >, Aug. 13, 2006, 3 pages.
Apple Computer, Inc., “Inside Macintosh”, vol. VI, 1985.
Srinivas et al., “Monet: A Multi-Media System for Conferencing and Application Sharing in Distributed Systems”, CERC Technical Report Series Research Note, Feb. 1992.
Stealth Computer Corporation, “Peripherals for Industrial Keyboards & Pointing Devices”, available at <http://www.stealthcomputer.com/peripherals—oem.htm>, retrieved on Dec. 19, 2002, 6 pages.
Steinberg, Gene, “Sonicblue Rio Car (10 GB, Reviewed: 6 GB)”, available at <http://electronics.cnet.com/electronics/0-6342420-1304-4098389.htrnl>, Dec. 12, 2000, 2 pages.
Stent et al., “Geo-Centric Language Models for Local Business Voice Search”, AT&T Labs—Research, 2009, pp. 389-396.
Stone et al., “The Movable Filter as a User Interface Tool”, CHI '94 Human Factors in Computing Systems, 1994, pp. 306-312.
Su et al., “A Review of ZoomText Xtra Screen Magnification Program for Windows 95”, Journal of Visual Impairment & Blindness, Feb. 1998, pp. 116-119.
Su, Joseph C., “A Review of Telesensory's Vista PCI Screen Magnification System”, Journal of Visual Impairment & Blindness, Oct. 1998, pp. 705, 707-710.
Omologo et al., “Microphone Array Based Speech Recognition with Different Talker-Array Positions”, IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 1, Apr. 21-24, 1997, pp. 227-230.
Oregon Scientific, “512MB Waterproof MP3 Player with FM Radio & Built-in Pedometer”, available at <http://www2.oregonscientific.com/shop/product.asp?cid=4&scid=11&pid=581>, retrieved on Jul. 31, 2006, 2 pages.
Oregon Scientific, “Waterproof Music Player with FM Radio and Pedometer (MP121)—User Manual”, 2005, 24 pages.
Padilla, Alfredo, “Palm Treo 750 Cell Phone Review—Messaging”, available at <http://www.wirelessinfo.com/content/palm-Treo-750-Cell-Phone-Review/Messaging.htm>, Mar. 17, 2007, 6 pages.
Palay et al., “The Andrew Toolkit: An Overview”, Information Technology Center, Carnegie-Mellon University, 1988, pp. 1-15.
Palm, Inc., “User Guide : Your Palm® Treo.TM. 755p Smartphone”, 2005-2007, 304 pages.
Panasonic, “Toughbook 28: Powerful, Rugged and Wireless”, Panasonic: Toughbook Models, available at <http://www.panasonic.com/computer/notebook/html/01a—s8.htm>, retrieved on Dec. 19, 2002, 3 pages.
Parks et al., “Classification of Whale and Ice Sounds with a cochlear Model”, IEEE, Mar. 1992.
Patterson et al., “Rendezvous: An Architecture for Synchronous Multi-User Applications”, CSCW '90 Proceedings, 1990, pp. 317-328.
International Search Report received for PCT Patent Application No. PCT/US2002/033330, dated Feb. 4, 2003, 6 pages.
Ahmed et al., “Intelligent Natural Language Query Processor”, TENCON '89, Fourth IEEE Region 10 International Conference, Nov. 22-24, 1989, pp. 47-49.
Ahuja et al., “A Comparison of Application Sharing Mechanisms in Real-Time Desktop Conferencing Systems”, AT&T Bell Laboratories, 1990, pp. 238-248.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2005/038819, dated Apr. 5, 2006, 12 pages.
International Search Report received for PCT Patent Application No. PCT/US2005/046797, dated Nov. 24, 2006, 6 pages.
Invitation to Pay Additional Fees and Partial Search Report received for PCT Application No. PCT/US2005/046797, dated Jul. 3, 2006, 6 pages.
Written Opinion received for PCT Patent Application No. PCT/US2005/046797, dated Nov. 24, 2006, 9 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2006/048669, dated Jul. 2, 2007, 12 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2006/048670, dated May 21, 2007, 11 pages.
Invitation to Pay Addition Fees and Partial International Search Report received for PCT Patent Application No. PCT/US2006/048738, dated Jul. 10, 2007, 4 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2006/048753, dated Jun. 19, 2007, 15 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2007/026243, dated Mar. 31, 2008, 10 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2007/077424, dated Jun. 19, 2008, 13 pages.
Invitation to Pay Additional Fees received for PCT Application No. PCT/US2007/077424, dated Apr. 29, 2008, 6 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2007/077443, dated Feb. 21, 2008, 8 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2007/088872, dated May 8, 2008, 8 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2007/088873, dated May 8, 2008, 7 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000032, dated Jun. 12, 2008, 7 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000042, dated May 21, 2008, 7 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000043, dated Oct. 10, 2008, 12 pages.
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2008/000043, dated Jun. 27, 2008, 4 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000045, dated Jun. 12, 2008, 7 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000047, dated Sep. 11, 2008, 12 pages.
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2008/000047, dated Jul. 4, 2008, 4 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000059, dated Sep. 19, 2008, 18 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000061, dated Jul. 1, 2008, 13 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/050083, dated Jul. 4, 2008, 9 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2011/020350, dated Jun. 30, 2011, 17 pages.
Invitation to Pay Additional Fees and Partial International Search Report received for PCT Patent Application No. PCT/US2011/020350, dated Apr. 14, 2011, 5 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2011/020861, dated Aug. 2, 2012, 11 pages.
Aikawa, K. “Time-Warping Neural Network for Phoneme Recognition”, IEEE International Joint Conference on Neural Networks, vol. 3, Nov. 18-21, 1991, pp. 2122-2127.
Allen et al., “Automated Natural Spoken Dialog”, Computer, vol. 35, No. 4, Apr. 2002, pp. 51-56.
Alleva et al., “Applying SPHINX-II to DARPA Wall Street Journal CSR Task”, Proceedings of Speech and Natural Language Workshop, Feb. 1992, pp. 393-398.
Amrel Corporation, “Rocky Matrix BackLit Keyboard”, available at <http://www.amrel.com/asi—matrixkeyboard.html>, retrieved on Dec. 19, 2002, 1 page.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/034028, dated Jun. 11, 2012, 9 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/040931, dated Feb. 1, 2013, 4 pages (International Search Report only).
Apple, “VoiceOver”, available at <http://www.apple.com/accessibility/voiceover/>, Feb. 2009, 5 pages.
Apple Computer, Inc., “Apple—iPod—Technical Specifications, iPod 20GB and 60GB Mac + PC”, available at <http://www.apple.com/ipod/color/specs—html>, 2005, 3 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/041225, dated Aug. 23, 2013, 3 pages (International Search Report only).
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2013/047659, dated Feb. 27, 2014, 7 pages.
Invitation to Pay Additional Fees received for PCT Application No. PCT/US2013/052558, dated Nov. 7, 2013, 6 pages.
Apple Computer, Inc., “iTunes 2: Specification Sheet”, 2001, 2 pages.
Apple Computer, Inc., “iTunes, Playlist Related Help Screens”, iTunes v1.0, 2000-2001, 8 pages.
Apple Computer, Inc., “QuickTime Movie Playback Programming Guide”, Aug. 11, 2005, pp. 1-58.
Apple Computer, Inc., “QuickTime Overview”, Aug. 11, 2005, pp. 1-34.
Apple Computer, Inc., “Welcome to Tiger”, available at <http://www.maths.dundee.ac.uk/software/Welcome—to—Mac—OS—X—v10.4—Tiger.pdf>, 2005, pp. 1-32.
“Corporate Ladder”, BLOC Publishing Corporation, 1991, 1 page.
Arango et al., “Touring Machine: A Software Platform for Distributed Multimedia Applications”, 1992 IFIP International Conference on Upper Layer Protocols, Architectures, and Applications, May 1992, pp. 1-11.
Arons, Barry M., “The Audio-Graphical Interface to a Personal Integrated Telecommunications System”, Thesis Submitted to the Department of Architecture at the Massachusetts Institute of Technology, Jun. 1984, 88 pages.
Badino et al., “Language Independent Phoneme Mapping for Foreign TTS”, 5th ISCA Speech Synthesis Workshop, Pittsburgh, PA, Jun. 14-16, 2004, 2 pages.
Baechtle et al., “Adjustable Audio Indicator”, IBM Technical Disclosure Bulletin, Jul. 1, 1984, 2 pages.
Baeza-Yates, Ricardo, “Visualization of Large Answers in Text Databases”, AVI '96 Proceedings of the Workshop on Advanced Visual Interfaces, 1996, pp. 101-107.
Bahl et al., “Recognition of a Continuously Read Natural Corpus”, IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 3, Apr. 1978, pp. 422-424.
Bajarin, Tim, “With Low End Launched, Apple Turns to Portable Future”, PC Week, vol. 7, Oct. 1990, p. 153 (1).
Barthel, B., “Information Access for Visually Impaired Persons: Do We Still Keep a “Document” in “Documentation”?”, Professional Communication Conference, Sep. 1995, pp. 62-66.
Baudel et al., “2 Techniques for Improved HC Interaction: Toolglass & Magic Lenses: The See-Through Interface”, Apple Inc., Video Clip, CHI'94 Video Program on a CD, 1994.
Beck et al., “Integrating Natural Language, Query Processing, and Semantic Data Models”, COMCON Spring '90. IEEE Computer Society International Conference, 1990, Feb. 26-Mar. 2, 1990, pp. 538-543.
Bederson et al., “Pad++: A Zooming Graphical Interface for Exploring Alternate Interface Physics”, UIST' 94 Proceedings of the 7th Annual ACM symposium on User Interface Software and Technology, Nov. 1994, pp. 17-26.
Bederson et al., “The Craft of Information Visualization”, Elsevier Science, Inc., 2003, 435 pages.
“Diagrammaker”, Action Software, 1989.
“Diagram-Master”, Ashton-Tate, 1989.
Benel et al., “Optimal Size and Spacing of Touchscreen Input Areas”, Human-Computer Interaction—INTERACT, 1987, pp. 581-585.
Beringer et al., “Operator Behavioral Biases Using High-Resolution Touch Input Devices”, Proceedings of the Human Factors and Ergonomics Society 33rd Annual Meeting, 1989, 3 pages.
Beringer, Dennis B., “Target Size, Location, Sampling Point and Instruction Set: More Effects on Touch Panel Operation”, Proceedings of the Human Factors and Ergonomics Society 34th Annual Meeting, 1990, 5 pages.
Bernabei et al., “Graphical I/O Devices for Medical Users”, 14th Annual International Conference of the IEEE on Engineering in Medicine and Biology Society, vol. 3, 1992, pp. 834-836.
Bernstein, Macrophone, “Speech Corpus”, IEEE/ICASSP, Apr. 22, 1994, pp. 1-81 to 1-84.
Berry et al., “Symantec”, New version of MORE.TM, Apr. 10, 1990, 1 page.
Best Buy, “When it Comes to Selecting a Projection TV, Toshiba Makes Everything Perfectly Clear”, Previews of New Releases, available at <http://www.bestbuy.com/HomeAudioVideo/Specials/ToshibaTVFeatures.asp>, retrieved on Jan. 23, 2003, 5 pages.
Betts et al., “Goals and Objectives for User Interface Software”, Computer Graphics, vol. 21, No. 2, Apr. 1987, pp. 73-78.
Biemann, Chris, “Unsupervised Part-of-Speech Tagging Employing Efficient Graph Clustering”, Proceeding Coling ACL '06 Proceedings of the 21st International Conference on computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop, 2006, pp. 7-12.
Bier et al., “Toolglass and Magic Lenses: The See-Through Interface”, Computer Graphics (SIGGRAPH '93 Proceedings), vol. 27, 1993, pp. 73-80.
Birrell, Andrew, “Personal Jukebox (PJB)”, available at <http://birrell.org/andrew/talks/pjb-overview.ppt>, Oct. 13, 2000, 6 pages.
Black et al., “Multilingual Text-to-Speech Synthesis”, Acoustics, Speech and Signal Processing (ICASSP'04) Proceedings of the IEEE International Conference, vol. 3, May 17-21, 2004, 4 pages.
Bleher et al., “A Graphic Interactive Application Monitor”, IBM Systems Journal, vol. 19, No. 3, Sep. 1980, pp. 382-402.
Bluetooth PC Headsets, “‘Connecting’ Your Bluetooth Headset with Your Computer”, Enjoy Wireless VoIP Conversations, available at <http://www.bluetoothpcheadsets.com/connect.htm>, retrieved on Apr. 29, 2006, 4 pages.
Bocchieri et al., “Use of Geographical Meta-Data in ASR Language and Acoustic Models”, IEEE International Conference on Acoustics Speech and Signal Processing, 2010, pp. 5118-5121.
Bociurkiw, Michael, “Product Guide: Vanessa Matz”, available at <http://www.forbes.com/asap/2000/1127/vmartz—print.html>, retrieved on Jan. 23, 2003, 2 pages.
“Glossary of Adaptive Technologies: Word Prediction”, available at <http://www.utoronto.ca/atrc/reference/techwordpred.html>, retrieved on Dec. 6, 2005, 5 pages.
Borenstein, Nathaniel S., “Cooperative Work in the Andrew Message System”, Information Technology Center and Computer Science Department, Carnegie Mellon University; Thyberg, Chris A. Academic Computing, Carnegie Mellon University, 1988, pp. 306-323.
Boy, Guy A., “Intelligent Assistant Systems”, Harcourt Brace Jovanovicy, 1991, 1 page.
“iAP Sports Lingo 0×09 Protocol V1.00”, May 1, 2006, 17 pages.
Brown et al., “Browing Graphs Using a Fisheye View”, Apple Inc., Video Clip, Systems Research Center, CHI '92 Continued Proceedings on a CD, 1992.
Brown et al., “Browsing Graphs Using a Fisheye View”, CHI '93 Proceedings of the INTERACT '93 and CHI '93 Conference on Human Factors in Computing Systems, 1993, p. 516.
Burger, D., “Improved Access to Computers for the Visually Handicapped: New Prospects and Principles”, IEEE Transactions on Rehabilitation Engineering, vol. 2, No. 3, Sep. 1994, pp. 111-118.
“IEEE 1394 (Redirected from Firewire”, Wikipedia, The Free Encyclopedia, available at <http://www.wikipedia.org/wiki/Firewire>, retrieved on Jun. 8, 2003, 2 pages.
Butler, Travis, “Archos Jukebox 6000 Challenges Nomad Jukebox”, available at <http://tidbits.com/article/6521>, Aug. 13, 2001, 5 pages.
Butler, Travis, “Portable MP3: The Nomad Jukebox”, available at <http://tidbits.com/article/6261>, Jan. 8, 2001, 4 pages.
Buxton et al., “EuroPARC's Integrated Interactive Intermedia Facility (IIIF): Early Experiences”, Proceedings of the IFIP WG 8.4 Conference on Multi-User Interfaces and Applications, 1990, pp. 11-34.
Call Centre, “Word Prediction”, The CALL Centre & Scottish Executive Education Dept., 1999, pp. 63-73.
Campbell et al., “An Expandable Error-Protected 4800 BPS CELP Coder (U.S. Federal Standard 4800 BPS Voice Coder)”, (Proceedings of IEEE Int'l Acoustics, Speech, and Signal Processing Conference, May 1983), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 328-330.
Card et al., “Readings in Information Visualization Using Vision to Think”, Interactive Technologies, 1999, 712 pages.
Mactech, “KeyStrokes 3.5 for Mac OS X Boosts Word Prediction”, available at <http://www.mactech.com/news/?p=1007129>, retrieved on Jan. 7, 2008, 3 pages.
Mahedero et al., “Natural Language Processing of Lyrics”, In Proceedings of the 13th Annual ACM International Conference on Multimedia, ACM, Nov. 6-11, 2005, 4 pages.
Marcus et al., “Building a Large Annotated Corpus of English: The Penn Treebank”, Computational Linguistics, vol. 19, No. 2, 1993, pp. 313-330.
Markel et al., “Linear Production of Speech”, Reviews, 1976, pp. xii, 288.
Masui, Toshiyuki, “POBox: An Efficient Text Input Method for Handheld and Ubiquitous Computers”, Proceedings of the 1st International Symposium on Handheld and Ubiquitous Computing, 1999, 12 pages.
Matsui et al., “Speaker Adaptation of Tied-Mixture-Based Phoneme Models for Text-Prompted Speaker Recognition”, 1994 IEEE International Conference on Acoustics, Speech and Signal Processing, Apr. 19-22, 1994, 1-125-1-128.
Matsuzawa, A, “Low-Voltage and Low-Power Circuit Design for Mixed Analog/Digital Systems in Portable Equipment”, IEEE Journal of Solid-State Circuits, vol. 29, No. 4, 1994, pp. 470-480.
Mellinger, David K., “Feature-Map Methods for Extracting Sound Frequency Modulation”, IEEE Computer Society Press, 1991, pp. 795-799.
Menico, Costas, “Faster String Searches”, Dr. Dobb's Journal, vol. 14, No. 7, Jul. 1989, pp. 74-77.
Menta, Richard, “1200 Song MP3 Portable is a Milestone Player”, available at <http://www.mp3newswire.net/stories/personaljuke.html>, Jan. 11, 2000, 4 pages.
Meyer, Mike, “A Shell for Modern Personal Computers”, University of California, Aug. 1987, pp. 13-19.
Meyrowitz et al., “Bruwin: An Adaptable Design Strategy for Window Manager/Virtual Terminal Systems”, Department of Computer Science, Brown University, 1981, pp. 180-189.
Miastkowski, Stan, “PaperWorks Makes Paper Intelligent”, Byte Magazine, Jun. 1992.
Microsoft, “Turn On and Use Magnifier”, available at <http://www.microsoft.com/windowsxp/using/accessibility/magnifierturnon.mspx>, retrieved on Jun. 6, 2009.
Microsoft Corporation, Microsoft Office Word 2003 (SP2), Microsoft Corporation, SP3 as of 2005, pp. MSWord 2003 Figures 1-5, 1983-2003.
Microsoft Corporation, “Microsoft MS-DOS Operating System User's Guide”, Microsoft Corporation, 1982, pp. 4-1 to 4-16, 5-1 to 5-19.
Microsoft Press, “Microsoft Windows User's Guide for the Windows Graphical Environment”, version 3.0, 1985-1990, pp. 33-41 & 70-74.
Microsoft Windows XP, “Magnifier Utility”, Oct. 25, 2001, 2 pages.
Microsoft Word 2000 Microsoft Corporation, pages MSWord Figures 1-5, 1999.
Microsoft/Ford, “Basic Sync Commands”, www.SyncMyRide.com, Sep. 14, 2007, 1 page.
Milner, N. P., “A Review of Human Performance and Preferences with Different Input Devices to Computer Systems”, Proceedings of the Fourth Conference of the British Computer Society on People and Computers, Sep. 5-9, 1988, pp. 341-352.
Miniman, Jared, “Applian Software's Replay Radio and Player v1.02”, pocketnow.com—Review, available at <http://www.pocketnow.com/reviews/replay/replay.htm>, Jul. 31, 2001, 16 pages.
Moberg et al., “Cross-Lingual Phoneme Mapping for Multilingual Synthesis Systems”, Proceedings of the 8th International Conference on Spoken Language Processing, Jeju Island, Korea, INTERSPEECH 2004, Oct. 4-8, 2004, 4 pages.
Moberg, M., “Contributions to Multilingual Low-Footprint TTS System for Hand-Held Devices”, Doctoral Thesis, Tampere University of Technology, Aug. 17, 2007, 82 pages.
Mobile Tech News, “T9 Text Input Software Updated”, available at <http://www.mobiletechnews.com/info/2004/11/23/122155.html>, Nov. 23, 2004, 4 pages.
Mok et al., “Media Searching on Mobile Devices”, IEEE EIT 2007 Proceedings, 2007, pp. 126-129.
Morland, D. V., “Human Factors Guidelines for Terminal Interface Design”, Communications ofthe ACM vol. 26, No. 7, Jul. 1983, pp. 484-494.
Morris et al., “Andrew: A Distributed Personal Computing Environment”, Communications of the ACM, (Mar. 1986); vol. 29 No. 3 Mar. 1986, pp. 184-201.
Muller et al., “CSCW'92 Demonstrations”, 1992, pp. 11-14.
Musicmatch, “Musicmatch and Xing Technology Introduce Musicmatch Jukebox”, Press Releases, available at <http://www.musicmatch.com/info/company/press/releases/?year= 1998&release=2>, May 18, 1998, 2 pages.
Muthesamy et al., “Speaker-Independent Vowel Recognition: Spectograms versus Cochleagrams”, IEEE, Apr. 1990.
My Cool Aids, “What's New”, available at <http://www.mycoolaids.com/>, 2012, 1 page.
Myers, Brad A., “Shortcutter for Palm”, available at <http://www.cs.cmu.edu/˜pebbles/v5/shortcutter/palm/index.html>, retrieved on Jun. 18, 2014, 10 pages.
Nadoli et al., “Intelligent Agents in the Simulation of Manufacturing Systems”, Proceedings of the SCS Multiconference on AI and Simulation, 1989, 1 page.
Nakagawa et al., “Unknown Word Guessing and Part-of-Speech Tagging Using Support Vector Machines”, Proceedings of the 6th NLPRS, 2001, pp. 325-331.
Ahlstrom et al., “Overcoming Touchscreen User Fatigue by Workplace Design”, CHI '92 Posters and Short Talks of the 1992 SIGCHI Conference on Human Factors in Computing Systems, 1992, pp. 101-102.
NCIP, “NCIP Library: Word Prediction Collection”, available at <http://www2.edc.org/ncip/library/wp/toc.htm>, 1998, 4 pages.
NCIP, “What is Word Prediction?”, available at <http://www2.edc.org/NCIP/library/wp/what—is.htm>, 1998, 2 pages.
NCIP Staff, “Magnification Technology”, available at <http://www2.edc.org/ncip/library/vi/magnifi.htm>, 1994, 6 pages.
Newton, Harry, “Newton's Telecom Dictionary”, Mar. 1998, pp. 62, 155, 610-611, 771.
Nguyen et al., “Generic Manager for Spoken Dialogue Systems”, In DiaBruck: 7th Workshop on the Semantics and Pragmatics of Dialogue, Proceedings, 2003, 2 pages.
Nilsson, B. A., “Microsoft Publisher is an Honorable Start for DTP Beginners”, Computer Shopper, Feb. 1, 1992, 2 pages.
Noik, Emanuel G., “Layout-Independent Fisheye Views of Nested Graphs”, IEEE Proceedings of Symposium on Visual Languages, 1993, 6 pages.
Nonhoff-Arps et al., “StraBenmusik: Portable MP3-Spieler mit USB Anschluss”, CT Magazin Fuer Computer Technik, Verlag Heinz Heise GMBH, Hannover DE, No. 25, 2000, pp. 166-175.
Northern Telecom, “Meridian Mail PC User Guide”, 1988, 17 Pages.
Notenboom, Leo A., “Can I Retrieve Old MSN Messenger Conversations?”, available at <http://ask-leo.com/can—i—retrieve—old—msn—messenger—conversations.html>, Mar. 11, 2004, 23 pages.
O'Connor, Rory J., “Apple Banking on Newton's Brain”, San Jose Mercury News, Apr. 22, 1991.
Ohsawa et al., “A computational Model of an Intelligent Agent Who Talks with a Person”, Research Reports on Information Sciences, Series C, No. 92, Apr. 1989, pp. 1-18.
Ohtomo et al., “Two-Stage Recognition Method of Hand-Written Chinese Characters Using an Integrated Neural Network Model”, Denshi Joohoo Tsuushin Gakkai Ronbunshi, D-II, vol. J74, Feb. 1991, pp. 158-165.
Okazaki et al., “Multi-Fisheye Transformation Method for Large-Scale Network Maps”, IEEE Japan, vol. 44, No. 6, 1995, pp. 495-500.
Jabra, “Bluetooth Introduction”, 2004, 15 pages.
Jabra Corporation, “FreeSpeak: BT200 User Manual”, 2002, 42 pages.
Jaybird, “Everything Wrong with AIM: Because We've All Thought About It”, available at <http://www.psychonoble.com/archives/articles/82.html>, May 24, 2006, 3 pages.
Jeffay et al., “Kernel Support for Live Digital Audio and Video”, In Proc. of the Second Intl. Workshop on Network and Operating System Support for Digital Audio and Video, vol. 614, Nov. 1991, pp. 10-21.
Jelinek et al., “Interpolated Estimation of Markov Source Parameters from Sparse Data”, In Proceedings of the Workshop on Pattern Recognition in Practice May 1980, pp. 381-397.
Johnson, Jeff A., “A Comparison of User Interfaces for Panning on a Touch-Controlled Display”, CHI '95 Proceedings, 1995, 8 pages.
Kaeppner et al., “Architecture of HeiPhone: A Testbed for Audio/Video Teleconferencing”, IBM European Networking Center, 1993.
Kamba et al., “Using Small Screen Space More Efficiently”, CHI '96 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Apr. 13-18, 1996, pp. 383-390.
Kang et al., “Quality Improvement of LPC-Processed Noisy Speech by Using Spectral Subtraction”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 37, No. 6, Jun. 1989, pp. 939-942.
Keahey et al., “Non-Linear Image Magnification”, Apr. 24, 1996, 11 pages.
Keahey et al., “Nonlinear Magnification Fields”, Proceedings of the 1997 IEEE Symposium on Information Visualization, 1997, 12 pages.
Keahey et al., “Techniques for Non-Linear Magnification Transformations”, IEEE Proceedings of Symposium on Information Visualization, Oct. 1996, pp. 38-45.
Keahey et al., “Viewing Text With Non-Linear Magnification: An Experimental Study”, Department of Computer Science, Indiana University, Apr. 24, 1996, pp. 1-9.
Kennedy, P. J., “Digital Data Storage Using Video Disc”, IBM Technical Disclosure Bulletin, vol. 24, No. 2, Jul. 1981, p. 1171.
Kerr, “An Incremental String Search in C: This Data Matching Algorithm Narrows the Search Space with each Keystroke”, Computer Language, vol. 6, No. 12, Dec. 1989, pp. 35-39.
Abut et al., “Vector Quantization of Speech and Speech-Like Waveforms”, (IEEE Transactions on Acoustics, Speech, and Signal Processing, Jun. 1982), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 258-270.
Kim, E.A. S., “The Structure and Processing of Fundamental Frequency Contours”, University of Cambridge, Doctoral Thesis, Apr. 1987, 378 pages.
Kirstein et al., “Piloting of Multimedia Integrated Communications for European Researchers”, Proc. INET '93, 1993, pp. 1-12.
Kjelldahl et al., “Multimedia—Principles, Systems, and Applications”, Proceedings of the 1991 Eurographics Workshop on Multimedia Systems, Applications, and Interaction, Apr. 1991.
Kline et al., “Improving GUI Accessibility for People with Low Vision”, CHI '95 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, May 7-11, 1995, pp. 114-121.
Kline et al., “UnWindows 1.0: X Windows Tools for Low Vision Users”, ACM SIGCAPH Computers and the Physically Handicapped, No. 49, Mar. 1994, pp. 1-5.
Knight et al., “Heuristic Search”, Production Systems, Artificial Intelligence, 2nd ed., McGraw-Hill, Inc., 1983-1991.
Kroon et al., “Quantization Procedures for the Excitation in CELP Coders”, (Proceedings of IEEE International Acoustics, Speech, and Signal Processing Conference, Apr. 1987), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 320-323.
Kuo et al., “A Radical-Partitioned coded Block Adaptive Neural Network Structure for Large-Volume Chinese Characters Recognition”, International Joint Conference on Neural Networks, vol. 3, Jun. 1992, pp. 597-601.
Kuo et al., “A Radical-Partitioned Neural Network System Using a Modified Sigmoid Function and a Weight-Dotted Radical Selector for Large-Volume Chinese Character Recognition VLSI”, IEEE Int. Symp. Circuits and Systems, Jun. 1994, pp. 3862-3865.
Kurlander et al., “Comic Chat”, [Online], 1996 [Retrieved on: Feb. 4, 2013], SIGGRAPH '96 Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, [Retrieved from: http://delivery.acm.org/10.1145/240000/237260/p225-kurlander.pdf], 1996, pp. 225-236.
Laface et al., “A Fast Segmental Viterbi Algorithm for Large Vocabulary Recognition”, International Conference on Acoustics, Speech, and Signal Processing, vol. 1, May 1995, pp. 560-563.
Lafferty et al., “Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data”, Proceedings of the 18th International Conference on Machine Learning, 2001, 9 pages.
Adium, “AboutAdium—Adium X—Trac”, available at <http://web.archive.org/web/20070819113247/http://trac.adiumx.com/wiki/AboutAdium>, retrieved on Nov. 25, 2011, 2 pages.
Lamping et al., “Laying Out and Visualizing Large Trees Using a Hyperbolic Space”, Proceedings of the ACM Symposium on User Interface Software and Technology, Nov. 1994, pp. 13-14.
Lamping et al., “Visualizing Large Trees Using the Hyperbolic Browser”, Apple Inc., Video Clip, MIT Media Library, on a CD, 1995.
Lantz et al., “Towards a Universal Directory Service”, Departments of Computer Science and Electrical Engineering, Stanford University, 1985, pp. 250-260.
Lantz, Keith, “An Experiment in Integrated Multimedia Conferencing”, 1986, pp. 267-275.
Lauwers et al., “Collaboration Awareness in Support of Collaboration Transparency: Requirements for the Next Generation of Shared Window Systems”, CHI'90 Proceedings, 1990, pp. 303-311.
Lauwers et al., “Replicated Architectures for Shared Window Systems: A Critique”, COCS '90 Proceedings of the ACM SIGOIS and IEEE CS TC-OA conference on Office information systems, ACM SIGOIS Bulletin, 1990, pp. 249-260.
Lazzaro, Joseph J., “Adapting Desktop Computers to Meet the Needs of Disabled Workers is Easier Than You Might Think”, Computers for the Disabled, BYTE Magazine, Jun. 1993, 4 pages.
Leahy et al., “Effect of Touch Screen Target Location on User Accuracy”, Proceedings of the Human Factors Society 34th Annual Meeting, 1990, 5 pages.
Lee, Kai-Fu, “Automatic Speech Recognition”, 1989, 14 pages (Table of Contents).
Leung et al., “A Review and Taxonomy of Distortion-Oriented Presentation Techniques”, ACM Transactions on Computer-Human Interaction (TOCHI), vol. 1, No. 2, Jun. 1994, pp. 126-160.
Levinson et al., “Speech synthesis in telecommunications”, IEEE Communications Magazine, vol. 31, No. 11, Nov. 1993, pp. 46-53.
Lewis, “Speech synthesis in a computer aided learning environment”, UK IT, Mar. 19-22, 1990, pp. 294-298.
Lewis, Peter, “Two New Ways to Buy Your Bits”, CNN Money, available at <http://money.cnn.com/2003/12/30/commentary/ontechnology/download/>,, Dec. 31, 2003, 4 pages.
Lieberman, Henry, “A Multi-Scale, Multi-Layer, Translucent Virtual Space”, Proceedings of IEEE Conference on Information Visualization, Aug. 1997, pp. 124-131.
Lieberman, Henry, “Powers of Ten Thousand: Navigating in Large Information Spaces”, Proceedings of the ACM Symposium on User Interface Software and Technology, Nov. 1994, pp. 1-2.
Lyon, R., “A Computational Model of Binaural Localization and Separation”, Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Apr. 1983, pp. 1148-1151.
Ahlberg et al., “The Alphaslider: A Compact and Rapid Selector”, CHI '94 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Apr. 1994, pp. 365-371.
Lyons, Richard F., “CCD Correlators for Auditory Models”, Proceedings of the Twenty-Fifth Asilomar Conference on Signals, Systems and Computers, Nov. 4-6, 1991, pp. 785-789.
MacKenzie et al., “Alphanumeric Entry on Pen-Based Computers”, International Journal of Human-Computer Studies, vol. 41, 1994, pp. 775-792.
MacKinlay et al., “The Perspective Wall: Detail and Context Smoothly Integrated”, ACM, 1991, pp. 173-179.
Ahlberg et al., “Visual Information Seeking: Tight Coupling of Dynamic Query Filters with Starfield Displays”, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Apr. 24-28, 1994, pp. 313-317.
Eslambolchilar et al., “Making Sense of Fisheye Views”, Second Dynamics and Interaction Workshop at University of Glasgow, Aug. 2005, 6 pages.
Eslambolchilar et al., “Multimodal Feedback for Tilt Controlled Speed Dependent Automatic Zooming”, UIST'04, Oct. 24-27, 2004, 2 pages.
Fanty et al., “A Comparison of DFT, PLP and Cochleagram for Alphabet Recognition”, IEEE, Nov. 1991.
Findlater et al., “Beyond QWERTY: Augmenting Touch-Screen Keyboards with Multi-Touch Gestures for Non Alphanumeric Input”, CHI '12, Austin, Texas, USA, May 5-10, 2012, 4 pages.
Fisher et al., “Virtual Environment Display System”, Interactive 3D Graphics, Oct. 23-24, 1986, pp. 77-87.
Forsdick, Harry, “Explorations into Real-Time Multimedia Conferencing”, Proceedings of the Ifip Tc 6 International Symposium on Computer Message Systems, 1986, 331 pages.
Furnas et al., “Space-Scale Diagrams: Understanding Multiscale Interfaces”, CHI '95 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 1995, pp. 234-241.
Furnas, George W., “Effective View Navigation”, Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, Mar. 1997, pp. 367-374.
Furnas, George W., “Generalized Fisheye Views”, CHI '86 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, vol. 17, No. 4, Apr. 1986, pp. 16-23.
Furnas, George W., “The Fisheye Calendar System”, Bellcore Technical Memorandum, Nov. 19, 1991.
Gardner, Jr., P. C., “A System for the Automated Office Environment”, IBM Systems Journal, vol. 20, No. 3, 1981, pp. 321-345.
Garretson, R., “IBM Adds ‘Drawing Assistant’ Design Tool to Graphic Series”, PC Week, vol. 2, No. 32, Aug. 13, 1985, 1 page.
Gaver et al., “One is Not Enough: Multiple Views in a Media Space”, INTERCHI, Apr. 24-29, 1993, pp. 335-341.
Gaver et al., “Realizing a Video Environment: EuroPARC's RAVE System”, Rank Xerox Cambridge EuroPARC, 1992, pp. 27-35.
Giachin et al., “Word Juncture Modeling Using Inter-Word Context-Dependent Phone-Like Units”, Cselt Technical Reports, vol. 20, No. 1, Mar. 1992, pp. 43-47.
Gillespie, Kelly, “Adventures in Integration”, Data Based Advisor, vol. 9, No. 9, Sep. 1991, pp. 90-92.
Gillespie, Kelly, “Internationalize Your Applications with Unicode”, Data Based Advisor, vol. 10, No. 10, Oct. 1992, pp. 136-137.
Gilloire et al., “Innovative Speech Processing for Mobile Terminals: An Annotated Bibliography”, Signal Processing, vol. 80, No. 7, Jul. 2000, pp. 1149-1166.
Glinert-Stevens, Susan, “Microsoft Publisher: Desktop Wizardry”, PC Sources, vol. 3, No. 2, Feb. 1992, 1 page.
Gmail, “About Group Chat”, available at <http://mail.google.com/support/bin/answer.py?answer=81090>, Nov. 26, 2007, 2 pages.
Goldberg, Cheryl, “IBM Drawing Assistant: Graphics for the EGA”, PC Magazine, vol. 4, No. 26, Dec. 24, 1985, 1 page.
Good et al., “Building a User-Derived Interface”, Communications of the ACM; (Oct. 1984) vol. 27, No. 10, Oct. 1984, pp. 1032-1043.
Gray et al., “Rate Distortion Speech Coding with a Minimum Discrimination Information Distortion Measure”, (IEEE Transactions on Information Theory, Nov. 1981), as reprinted in Vector Quantization (IEEE Press), 1990, pp. 208-221.
Greenberg, Saul, “A Fisheye Text Editor for Relaxed-WYSIWIS Groupware”, CHI '96 Companion, Vancouver, Canada, Apr. 13-18, 1996, 2 pages.
Griffin et al., “Signal Estimation From Modified Short-Time Fourier Transform”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-32, No. 2, Apr. 1984, pp. 236-243.
Gruhn et al., “A Research Perspective on Computer-Assisted Office Work”, IBM Systems Journal, vol. 18, No. 3, 1979, pp. 432-456.
Hain et al., “The Papageno TTS System”, Siemens AG, Corporate Technology, Munich, Germany TC-STAR Workshop, 2006, 6 pages.
Halbert, D. C., “Programming by Example”, Dept. Electrical Engineering and Comp. Sciences, University of California, Berkley, Nov. 1984, pp. 1-76.
Hall, William S., “Adapt Your Program for Worldwide Use with Windows.TM. Internationalization Support”, Microsoft Systems Journal, vol. 6, No. 6, Nov./Dec. 1991, pp. 29-58.
Haoui et al., “Embedded Coding of Speech: A Vector Quantization Approach”, (Proceedings of the IEEE International Acoustics, Speech and Signal Processing Conference, Mar. 1985), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 297-299.
Hartson et al., “Advances in Human-Computer Interaction”, Chapters 1, 5, and 6, vol. 3, 1992, 121 pages.
Heger et al., “KNOWBOT: An Adaptive Data Base Interface”, Nuclear Science and Engineering, V. 107, No. 2, Feb. 1991, pp. 142-157.
Hendrix et al., “The Intelligent Assistant: Technical Considerations Involved in Designing Q&A's Natural-Language Interface”, Byte Magazine, Issue 14, Dec. 1987, 1 page.
Heyer et al., “Exploring Expression Data: Identification and Analysis of Coexpressed Genes”, Genome Research, vol. 9, 1999, pp. 1106-1115.
Hill, R. D., “Some Important Features and Issues in User Interface Management System”, Dynamic Graphics Project, University of Toronto, CSRI, vol. 21, No. 2, Apr. 1987, pp. 116-120.
Hinckley et al., “A Survey of Design Issues in Spatial Input”, UIST '94 Proceedings of the 7th Annual ACM Symposium on User Interface Software and Technology, 1994, pp. 213-222.
Hiroshi, “TeamWork Station: Towards a Seamless Shared Workspace”, NTT Human Interface Laboratories, CSCW 90 Proceedings, Oct. 1990, pp. 13-26.
Holmes, “Speech System and Research”, 1955, pp. 129-135, 152-153.
Hon et al., “Towards Large Vocabulary Mandarin Chinese Speech Recognition”, Conference on Acoustics, Speech, and Signal Processing, ICASSP-94, IEEE International, vol. 1, Apr. 1994, pp. 545-548.
Hopper, Andy, “Pandora—An Experimental System for Multimedia Applications”, Olivetti Research Laboratory, Apr. 1990, pp. 19-34.
Howard, John H., “(Abstract) An Overview of the Andrew File System”, Information Technology Center, Carnegie Mellon University; (CMU-ITC-88-062) to Appear in a future issue of the ACM Transactions on Computer Systems, 1988, pp. 1-6.
Huang et al., “Real-Time Software-Based Video Coder for Multimedia Communication Systems”, Department of Computer Science and Information Engineering, 1993, 10 pages.
Hukin, R. W., “Testing an Auditory Model by Resynthesis”, European Conference on Speech Communication and Technology, Sep. 26-29, 1989, pp. 243-246.
Hunt, “Unit Selection in a Concatenative Speech Synthesis System Using a Large Speech Database”, Copyright 1996 IEEE. “To appear in Proc. ICASSP-96, May 7-10, Atlanta, GA” ATR Interpreting Telecommunications Research Labs, Kyoto Japan, 1996, pp. 373-376.
IBM, “Why Buy: ThinkPad”, available at <http://www.pc.ibm.com/us/thinkpad/easeofuse.html>, retrieved on Dec. 19, 2002, 2 pages.
IBM Corporation, “Simon Says Here's How”, Users Manual, 1994, 3 pages.
IChat AV, “Video Conferencing for the Rest of Us”, Apple—Mac OS X—iChat AV, available at <http://www.apple.com/macosx/features/ichat/>, retrieved on Apr. 13, 2006, 3 pages.
IPhone Hacks, “Native iPhone MMS Application Released”, available at <http://www.iphonehacks.com/2007/12/iphone-mms-app.html>, retrieved on Dec. 25, 2007, 5 pages.
IPhonechat, “iChat for iPhone in JavaScript”, available at <http://www.publictivity.com/iPhoneChat/>, retrieved on Dec. 25, 2007, 2 pages.
Jabra, “Bluetooth Headset: User Manual”, 2005, 17 pages.
Interactive Voice, available online at <http://www.helloivee.com/company/> retrieved from Internet on Feb. 10, 2014, 2 pages.
Meet Ivee Your Wi-Fi Voice Activated Assistant, available online at <http://www.helloivee.com/> retrieved from internet on Feb. 10, 2014, 8 pages.
Anonymous, “Speaker Recognition”, Wikipedia, The Free Enclyclopedia, Nov. 2, 2010, 3 pages.
Apple Computer, “Knowledge Navigator”, available online at <http://www.youtube.com/watch?v=QRH8eimU—20>, Uploaded on Apr. 29, 2008, 7 pages.
Applebaum et al., “Enhancing the Discrimination of Speaker Independent Hidden Markov Models with Corrective Training”, International Conference on Acoustics, Speech, and Signal Processing, May 23, 1989, pp. 302-305.
Bellegarda et al., “Tied Mixture Continuous Parameter Modeling for Speech Recognition”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 38, No. 12, Dec. 1990, pp. 2033-2045.
Bellegarda, Jerome R., “Latent Semantic Mapping”, IEEE Signal Processing Magazine, vol. 22, No. 5, Sep. 2005, pp. 70-80.
Chang et al., “Discriminative Training of Dynamic Programming based Speech Recognizers”, IEEE Transactions on Speech and Audio Processing, vol. 1, No. 2, Apr. 1993, pp. 135-143.
Cheyer et al., “Demonstration Video of Multimodal Maps Using an Agent Architecture”, available online at <http://www.youtube.com/watch?v=x3TptMGT9EQ&feature=youtu.be>, published on 1996, 6 pages.
Cheyer et al., “Demonstration Video of Multimodal Maps Using an Open-Agent Architecture”, available online at <http://www.youtube.com/watch?v=JUxaKnyZyM&feature=youtu.be>, published on 1996, 6 pages.
Cheyer, A., “Demonstration Video of Vanguard Mobile Portal”, available online at <http://www.youtube.com/watch?v=ZTMsvg—0oLQ&feature=youtu.be>, published on 2004, 10 pages.
Choi et al., “Acoustic and Visual Signal based Context Awareness System for Mobile Application”, IEEE Transactions on Consumer Electronics, vol. 57, No. 2, May 2011, pp. 738-746.
Kickstarter, “ivee Sleek: Wi-Fi Voice-Activated Assistant”, available online at <https://www.kickstarter.com/projects/ivee/ivee-sleek-wi-fi-voice-activated-assistant> retrieved from Internet on Feb. 10, 2014, 13 pages.
Navigli, Roberto, “Word Sense Disambiguation: A Survey”, ACM Computing Surveys, vol. 41, No. 2, Article 10, Feb. 2009, 70 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/029810, dated Oct. 3, 2013, 9 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/029810, dated Aug. 17, 2012, 11 pages.
Office Action received for German Patent Application No. 102012019178.2, dated Dec. 16, 2013, 14 pages (4 pages of English Translation and 10 pages of Official Copy).
Extended European Search Report and Search Opinion received for European Patent Application No. 12185276.8, dated Dec. 18, 2012, 4 pages.
Office Action received for Australian Patent Application No. 2012232977, dated Sep. 23, 2013, 3 pages.
Bulyko et al., “Error-Correction Detection and Response Generation in a Spoken Dialogue System”, Speech Communication, vol. 45, 2005, pp. 271-288.
Cox et al., “Speech and Language Processing for Next-Millennium Communications Services”, Proceedings of the IEEE, vol. 88, No. 8, Aug. 2000, pp. 1314-1337.
Davis et al., “A Personal Handheld Multi-Modal Shopping Assistant”, IEEE, 2006, 9 pages.
Gruber, Tom, “2021: Mass Collaboration and the Really New Economy”, TNTY Futures, vol. 1, No. 6, available online at <http://tomgruber.org/writing/tnty2001.htm>, Aug. 2001, 5 pages.
SRI2009, “SRI Speech: Products: Software Development Kits: EduSpeak”, available online at <http://web.archive.org/web/20090828084033/http://www.speechatsri.com/products/eduspeak.shtml.>, retrieved on Jun. 20, 2013, 2 pages.
Carpendale et al., “3-Dimensional Pliable Surfaces: For the Effective Presentation of Visual Information”, UIST '95 Proceedings of the 8th Annual ACM Symposium on User Interface and Software Technology, Nov. 14-17, 1995, pp. 217-226.
Carpendale et al., “Extending Distortion Viewing from 2D to 3D”, IEEE Computer Graphics and Applications, Jul./Aug. 1997, pp. 42-51.
Carpendale et al., “Making Distortions Comprehensible”, IEEE Proceedings of Symposium on Visual Languages, 1997, 10 pages.
Casner et al., “N-Way Conferencing with Packet Video”, The Third International Workshop on Packet Video, Mar. 22-23, 1990, pp. 1-6.
Chakarova et al., “Digital Still Cameras—Downloading Images to a Computer”, Multimedia Reporting and Convergence, available at <http://journalism.berkeley.edu/multimedia/tutorials/stillcams/downloading.html>, retrieved on May 9, 2005, 2 pages.
Chartier, David, “Using Multi-Network Meebo Chat Service on Your iPhone”, available at <http://www.tuaw.com/2007/07/04/using-multi-network-meebo-chat-service-on-your-iphone/>, Jul. 4, 2007, 5 pages.
Extended European Search Report (includes European Search Report and European Search Opinion) received for European Patent Application No. 06256215.2, dated Feb. 20, 2007, 6 pages.
Extended European Search Report (includes Supplementary European Search Report and Search Opinion) received for European Patent Application No. 07863218.9, dated Dec. 9, 2010, 7 pages.
Extended European Search Report (includes European Search Report and European Search Opinion) received for European Patent Application No. 12186113.2, dated Apr. 28, 2014, 14 pages.
Extended European Search Report (includes European Search Report and European Search Opinion) received for European Patent Application No. 13155688.8, dated Aug. 22, 2013, 11 pages.
Abcom Pty. Ltd. “12.1″ 925 Candela Mobile PC”, LCDHardware.com, available at <http://www.lcdhardware.com/panel/12—1—panel/default.asp.>, retrieved on Dec. 19, 2002, 2 pages.
Cisco Systems, Inc., “Cisco Unity Unified Messaging User Guide”, Release 4.0(5), Apr. 14, 2005, 152 pages.
Cisco Systems, Inc., “Installation Guide for Cisco Unity Unified Messaging with Microsoft Exchange 2003/2000 (With Failover Configured)”, Release 4.0(5), Apr. 14, 2005, 152 pages.
Cisco Systems, Inc., “Operations Manager Tutorial, Cisco's IPC Management Solution”, 2006, 256 pages.
Coleman, David W., “Meridian Mail Voice Mail System Integrates Voice Processing and Personal Computing”, Speech Technology, vol. 4, No. 2, Mar./Apr. 1988, pp. 84-87.
Compaq, “Personal Jukebox”, available at <http://research.compaq.com/SRC/pjb/>, 2001, 3 pages.
Compaq Inspiration Technology, “Personal Jukebox (PJB)—Systems Research Center and PAAD”, Oct. 13, 2000, 25 pages.
Conkie et al., “Preselection of Candidate Units in a Unit Selection-Based Text-to-Speech Synthesis System”, ISCA, 2000, 4 pages.
Conklin, Jeffrey, “A Survey of Hypertext”, MCC Software Technology Program, Dec. 1987, 40 pages.
Copperi et al., “CELP Coding for High Quality Speech at 8 kbits/s”, Proceedings of IEEE International Acoustics, Speech and Signal Processing Conference, Apr. 1986), as reprinted in Vector Quantization (IEEE Press), 1990, pp. 324-327.
Corr, Paul, “Macintosh Utilities for Special Needs Users”, available at <http://homepage.mac.com/corrp/macsupt/columns/specneeds.html>, Feb. 1994 (content updated Sep. 19, 1999), 4 pages.
Creative, “Creative NOMAD MuVo”, available at <http://web.archive.org/web/20041024075901/www.creative.com/products/product.asp?category=213&subcategory=216&product=4983>, retrieved on Jun. 7, 2006, 1 page.
Creative, “Creative NOMAD MuVo TX”, available at <http://web.archive.org/web/20041024175952/www.creative.com/products/pfriendly.asp?product=9672>, retrieved on Jun. 6, 2006, 1 page.
Creative, “Digital MP3 Player”, available at <http://web.archive.org/web/20041024074823/www.creative. com/products/product.asp?category=213&subcategory=216&product=4983, 2004, 1 page.
Creative Technology Ltd., “Creative NOMAD®: Digital Audio Player: User Guide (On-Line Version)”, available at <http://ec1.images-amazon.com/media/i3d/01/A/man-migrate/MANUAL000010757.pdf>, Jun. 1999, 40 pages.
Creative Technology Ltd., “Creative NOMAD® II: Getting Started—User Guide (On Line Version)”, available at <http://ec1.images-amazon.com/media/i3d/01/A/man-migrate/MANUAL000026434.pdf>, Apr. 2000, 46 pages.
Creative Technology Ltd., “Nomad Jukebox”, User Guide, Version 1.0, Aug. 2000, 52 pages.
Croft et al., “Task Support in an Office System”, Proceedings of the Second ACM-SIGOA Conference on Office Information Systems, 1984, pp. 22-24.
Crowley et al., “MMConf: An Infrastructure for Building Shared Multimedia Applications”, CSCW 90 Proceedings, Oct. 1990, pp. 329-342.
Cuperman et al., “Vector Predictive Coding of Speech at 16 kbit s/s”, (IEEE Transactions on Communications, Jul. 1985), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 300-311.
ABF Software, “Lens—Magnifying Glass 1.5”, available at <http://download.com/3000-2437-10262078.html?tag=1st-0-1>, retrieved on Feb. 11, 2004, 1 page.
Davis et al., “Stone Soup Translation”, Department of Linguistics, Ohio State University, 2001, 11 pages.
De Herrera, Chris, “Microsoft ActiveSync 3.1”, Version 1.02, available at <http://www.cewindows.net/wce/activesync3.1.htm>, Oct. 13, 2000, 8 pages.
Degani et al., “‘Soft’ Controls for Hard Displays: Still a Challenge”, Proceedings of the 36th Annual Meeting of the Human Factors Society, 1992, pp. 52-56.
Del Strother, Jonathan, “Coverflow”, available at <http://www.steelskies.com/coverflow>, retrieved on Jun. 15, 2006, 14 pages.
Diamond Multimedia Systems, Inc., “Rio PMP300: User's Guide”, available at <http://ec1.images-amazon.com/media/i3d/01/A/man-migrate/MANUAL000022854.pdf>, 1998, 28 pages.
Dickinson et al., “Palmtips: Tiny Containers for All Your Data”, PC Magazine, vol. 9, Mar. 1990, p. 218(3).
Digital Equipment Corporation, “OpenVMS RTL DECtalk (DTK$) Manual”, May 1993, 56 pages.
Donahue et al., “Whiteboards: A Graphical Database Tool”, ACM Transactions on Office Information Systems, vol. 4, No. 1, Jan. 1986, pp. 24-41.
Dourish et al., “Portholes: Supporting Awareness in a Distributed Work Group”, CHI 1992;, May 1992, pp. 541-547.
Abut et al., “Low-Rate Speech Encoding Using Vector Quantization and Subband Coding”, (Proceedings of the IEEE International Acoustics, Speech and Signal Processing Conference, Apr. 1986), as reprinted in Vector Quantization IEEE Press, 1990, pp. 312-315.
dyslexic.com, “AlphaSmart 3000 with CoWriter SmartApplet: Don Johnston Special Needs”, available at <http://www.dyslexic.com/procuts.php?catid- 2&pid=465&PHPSESSID=2511b800000f7da>, retrieved on Dec. 6, 2005, 13 pages.
Edwards, John R., “Q&A: Integrated Software with Macros and an Intelligent Assistant”, Byte Magazine, vol. 11, No. 1, Jan. 1986, pp. 120-122.
Egido, Carmen, “Video Conferencing as a Technology to Support Group Work: A Review of its Failures”, Bell Communications Research, 1988, pp. 13-24.
Elliot, Chip, “High-Quality Multimedia Conferencing Through a Long-Haul Packet Network”, BBN Systems and Technologies, 1993, pp. 91-98.
Elliott et al., “Annotation Suggestion and Search for Personal Multimedia Objects on the Web”, CIVR, Jul. 7-9, 2008, pp. 75-84.
Elofson et al., “Delegation Technologies: Environmental Scanning with Intelligent Agents”, Jour. of Management Info. Systems, Summer 1991, vol. 8, No. 1, 1991, pp. 37-62.
Eluminx, “Illuminated Keyboard”, available at <http://www.elumix.com/>, retrieved on Dec. 19, 2002, 1 page.
Engst, Adam C., “SoundJam Keeps on Jammin”, available at <http://db.tidbits.com/getbits.acgi?tbart=05988>, Jun. 19, 2000, 3 pages.
Ericsson Inc., “Cellular Phone with Integrated MP3 Player”, Research Disclosure Journal No. 41815, Feb. 1999, 2 pages.
“AppleEvent Manager”, which is described in the publication Inside Macintosh vol. VI, available from Addison-Wesley Publishing Company, 1985.
Dual Rate Speech Coder for Multimedia Communications Transmitting at 5.3 and 6.3 kbit/s, International Telecommunication Union Recommendation G.723, 7 pages.
“N200 Hands-Free Bluetooth Car Kit”, available at www.wirelessground.com, retrieved on Mar. 19, 2007, 3 pages.
“Quick Search Algorithm”, Communications of the ACM, 33(8), 1990, pp. 132-142.
“Worldwide Character Encoding”, Version 2.0, vols. 1, 2 by Unicode, Inc., 12 pages.
Extended European Search Report (includes Partial European Search Report and European Search Opinion) received for European Patent Application No. 13169672.6, dated Aug. 14, 2013, 11 pages.
Young, S. J., “The HTK Book”, Available at <http://htk.eng.cam.ac.uk>, 4 pages.
Barrett et al., “How to Personalize the Web”, 1997 In proceddings of the ACM SIGCHI Conference on Human Factors in Computer Systems, Mar. 22-27, 1997, pp. 75-82.
Biemann et al., “Disentangling from Babylonian Confusion—Unsupervised Language Identification”, CICLing'05 Proceedings of the 6th international conference on Computational Linguistics and Intelligent Text Processing, vol. 3406, 2005, pp. 773-784.
Boyer et al., “A Fast String Searching Algorithm”, Communications of the ACM, vol. 20, 1977, pp. 762-772.
Cao et al., “Adapting Ranking SVM to Document Retrieval”, SIGIR '06, Seattle, WA, Aug. 6-11, 2006, 8 pages.
Chomsky et al., “The Sound Pattern of English”, New York, Harper and Row, 1968, 242 pages.
Choularton et al., “User Responses to Speech Recognition Errors: Consistency of Behaviour Across Domains”, Proceedings of the 10th Australian International Conference on Speech Science & Technology, Dec. 8-10, 2004, pp. 457-462.
Church, Kenneth W., “Phonological Parsing in Speech Recognition”, Kluwer Academic Publishers, 1987.
Cucerzan et al., “Bootstrapping a Multilingual Part-of-Speech Tagger in One Person-Day”, In Proceedings of the 6th Conference on Natural Language Learning, vol. 20, 2002, pp. 1-7.
Erol et al., “Multimedia Clip Generation From Documents for Browsing on Mobile Devices”, IEEE Transactions on Multimiedia, vol. 10, No. 5, Aug. 2008, 13 pages.
Evermann, Gunnar, “Posterior Probability Decoding, Confidence Estimation and System Combination”, Proceedings Speech Transcription Workshop, 2000, 4 pages.
Fiscus, J. G., “A Post-Processing System to Yield Reduced Word Error Rates: Recognizer Output Voting Error Reduction (ROVER)”, IEEE Proceedings, Automatic Speech Recognition and Understanding, Dec. 14-17, 1997, pp. 347-354.
Gonnet et al., “Handbook of Algorithms and Data Structures: in Pascal and C. (2nd ed.)”, Addison-Wesley Longman Publishing Co., 1991, 17 pages.
Gruber et al., U.S. Appl. No. 61/493,201, filed Jun. 3, 2011 titled “Generating and Processing Data Items That Represent Tasks to Perform”, 68 pages.
Gruber et al., U.S. Appl. No. 61/186,414, filed Jun. 12, 2009 titled “System and Method for Semantic Auto-Completion”, 13 pages.
Gruber et al., U.S. Appl. No. 61/657,744, filed Jun. 9, 2012 titled “Automatically Adapting User Interfaces for Hands-Free Interaction”, 40 pages.
Gruber et al., U.S. Appl. No. 07/976,970, filed Nov. 16, 1992 titled “Status Bar for Application Windows”.
Guim, Mark, “How to Set a Person-Based Reminder with Cortana”, available at <http://www.wpcentral.com/how-to-person-based-reminder-cortana>, Apr. 26, 2014, 15 pages.
Haitsma et al., “A highly Robust Audio Fingerprinting System”, In Proceedings of the International Symposium on Music Information Retreval (ISMIR), 2002, 9 pages.
Hendrickson, Bruce, “Latent Semantic Analysis and Fiedler Retrieval”, Discrete Algorithms and Mathematics Department, Sandia National Labs, Albuquerque, NM, Sep. 21, 2006, 12 pages.
Henrich et al., “Language Identification for the Automatic Grapheme-To-Phoneme Conversion of Foreign Words in a German Text-To-Speech System”, Proceedings of the European Conference on Speech Communication and Technology, vol. 2, Sep. 1989, pp. 220-223.
id3.org, “id3v2.4.0-Frames”, available at <http://id3.org/id3v2.4.0-frames?action=print>, retrieved on Jan. 22, 2015, 41 pages.
Jawaid et al., “Machine Translation with Significant Word Reordering and Rich Target-Side Morphology”, WDS'11 Proceedings of Contributed Papers, Part I, 2011, pp. 161-166.
Jiang et al., “A Syllable-based Name Transliteration System”, Proceedings of the 2009 Named Entities Workshop, Aug. 7, 2009, pp. 96-99.
Kane et al., “Slide Rule: Making Mobile Touch Screens Accessible to Blind People Using Multi-Touch Interaction Techniques”, ASSETS, Oct. 13-15, 2008, pp. 73-80.
Kazemzadeh et al., “Acoustic Correlates of User Response to Error in Human-Computer Dialogues”, Automatic Speech Recognition and Understanding, 2003, pp. 215-220.
Kikui, Gen-Itiro, “Identifying the Coding System and Language of On-Line Documents on the Internet”, COLING '96, Proceedings of the 16th conference on Computational linguistics—vol. 2, 1996, pp. 652-657.
Kohler, Joachim, “Multilingual Phone Models for Vocabulary-Independent Speech Recognition Tasks”, Speech Communication, vol. 35, No. 1-2, Aug. 2001, pp. 21-30.
Kroon et al., “Pitch Predictors with High Temporal Resolution”, IEEE, vol. 2, 1990, pp. 661-664.
Ladefoged, Peter, “A Course in Phonetics,” New York, Harcourt, Brace, Jovanovich, Second Edition, 1982.
Lau et al., “Trigger-Based Language Models: a Maximum Entropy Approach”, ICASSP'93 Proceedings of the 1993 IEEE international conference on Acoustics, speech, and signal processing: speech processing—vol. II, 1993, pp. 45-48.
Lee et al., “On URL Normalization”, Proceedings of the International Conference on Computational Science and its Applications, ICCSA 2005, pp. 1076-1085.
Leveseque et al., “A Fundamental Tradeoff in Knowledge Representation and Reasoning”, Readings in Knowledge Representation, 1985, 30 pages.
Mangu et al., “Finding Consensus in Speech Recognition: Word Error Minimization and Other Applications of Confusion Networks”, Computer Speech and Language, vol. 14, No. 4, 2000, pp. 291-294.
Manning et al., “Foundations of Statistical Natural Language Processing”, The MIT Press, Cambridge Massachusetts, 1999, pp. 10-11.
Meng et al., “Generating Phonetic Cognates to Handle Named Entities in English-Chinese Cross-Language Spoken Document Retrieval”, Automatic Speech Recognition and Understanding, 2001, pp. 311-314.
Miller, Chance, “Google Keyboard Updated with New Personalized Suggestions Feature”, available at <http://9to5google.com/2014/03/19/google-keyboard-updated-with-new-personalized-suggestions-feature/>, Mar. 19, 2014, 4 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/GB2009/051684, dated Jun. 23, 2011, 10 pages.
International Search Report received for PCT Patent Application No. PCT/GB2009/051684, dated Mar. 12, 2010, 4 pages.
International Preliminary Examination Report on received for PCT Patent Application No. PCT/US1993/12637, dated Apr. 10, 1995, 7 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2009/051954, dated Mar. 24, 2011, 8 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2009/051954, dated Oct. 30, 2009, 9 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/043100, dated Nov. 15, 2012, 8 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/056382, dated Apr. 10, 2014, 9 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/028412, dated Sep. 12, 2014, 12 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/028412, dated Sep. 26, 2013, 17 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/028920, dated Sep. 18, 2014, 11 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/028920, dated Jun. 27, 2013, 14 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/029156, dated Sep. 18, 2014, 7 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/029156, dated Jul. 15, 2013, 9 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/041233, dated Nov. 18, 2014, 8 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/058916, dated Sep. 8, 2014, 10 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/015418, dated Aug. 26, 2014, 17 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/029050, dated Jul. 31, 2014, 9 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/029562, dated Sep. 18, 2014, 21 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/040401, dated Sep. 4, 2014, 10 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/040403, dated Sep. 23, 2014, 9 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/041159, dated Sep. 26, 2014, 10 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/041173, dated Sep. 10, 2014, 11 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/049568, dated Nov. 14, 2014, 12 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/023822, dated Sep. 25, 2014, 14 pages.
Reddi, “The Parser”.
Roddy et al., “Interface Issues in Text Based Chat Rooms”, SIGCHI Bulletin, vol. 30, No. 2, Apr. 1998, pp. 119-123.
Rose et al., “Inside Macintosh”, vols. I, II, and III, Addison-Wesley Publishing Company, Inc., Jul. 1988, 1284 pages.
Russo et al., “Urgency is a Non-Monotonic Function of Pulse Rate”, Journal of the Acoustical Society of America, vol. 122, No. 5, Nov. 2007, pp. EL185-EL190.
Sankar, Ananth, “Bayesian Model Combination (BAYCOM) for Improved Recognition”, IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Mar. 18-23, 2005, pp. 845-848.
Schone et al., “Knowledge-Free Induction of Morphology Using Latent Semantic Analysis”, Proceedings of the 2nd Workshop on Learning Language in Logic and the 4th Conference on Computational Natural Language Learning, vol. 7, 2000, pp. 67-72.
Sethy et al., “A Syllable Based Approach for Improved Recognition of Spoken Names”, ITRW on Pronunciation Modeling and Lexicon Adaptation for Spoken language Technology (PMLA2002), Seo, 14-15, 2002, pp. 30-35.
Stifleman, L., “Not Just Another Voice Mail System”, Proceedings of 1991 Conference, American Voice, Sep. 24-26, 1991, pp. 21-26.
Strom et al., “Intelligent Barge-In in Conversational Systems”, Proceedings ICSLP, 2000, 4 pages.
Stuker et al., “Cross-System Adaptation and Combination for Continuous Speech Recognition: The Influence of Phoneme Set and Acoustic Front-End”, Influence of Phoneme Set and Acoustic Front-End, Interspeech, Sep. 17-21, 2006, pp. 521-524.
Sundaram et al., “Latent Perceptual Mapping with Data-Driven Variable-Length Acoustic Units for Template-Based Speech Recognition”, ICASSP 2012, Mar. 2012, pp. 4125-4128.
Viegas et al., “Chat Circles”, SIGCHI Conference on Human Factors in Computing Systems, May 15-20, 1999, pp. 9-16.
Wang et al., “An Industrial-Strength Audio Search Algorithm”, In Proceedings of the International Conference on Music Information Retrieval (ISMIR), 2003, 7 pages.
Extended European Search Report (includes Supplementary European Search Report and Search Opinion) received for European Patent Application No. 12727027.0, dated Sep. 26, 2014, 7 pages.
Guay, Matthew, “Location-Driven Productivity with Task Ave”, available at <http://iphone.appstorm.net/reviews/productivity/location-driven-productivity-with-task-ave/>, Feb. 19, 2011, 7 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/040571, dated Dec. 19, 2013, 10 pages.
International Search Report received for PCT Patent Application No. PCT/US2013/041233, dated Nov. 22, 2013, 3 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/028785, dated Oct. 17, 2014, 23 pages.
Waibel, Alex, “Interactive Translation of Conversational Speech”, Computer, vol. 29, No. 7, Jul. 1996, pp. 41-48.
Extended European Search Report (inclusive of the Partial European Search Report and European Search Opinion) received for European Patent Application No. 12729332.2, dated Oct. 31, 2014, 6 pages.
Non Final Office Action received for U.S. Appl. No. 14/165,520, dated Oct. 10, 2014, 6 pages.
adobe.com, “Reading PDF Documents with Adobe Reader 6.0 A Guide for People with Disabilities”, Available online at “https://www.adobe.com/enterprise/accessibility/pdfs/acro6—cg—ue.pdf”, Jan. 2004, 76 pages.
Amano, Junko, “A User-Friendly Authoring System for Digital Talking Books”, IEICE Technical Report, The Institute of Electronics, Information and Communication Engineers, vol. 103 No. 418, Nov. 6, 2003, pp. 33-40.
Amano et al., “A User-friendly Multimedia Book Authoring System”, The Institute of Electronics, Information and Communication Engineers Technical Report, vol. 103, No. 416, Nov. 2003, pp. 33-40.
Bertulucci, Jeff, “Google Adds Voice Search to Chrome Browser”, PC World, Jun. 14, 2011.
Dobrisek et al., “Evolution of the Information-Retrieval System for Blind and Visually-Impaired People”, International Journal of Speech Technology, Kluwer Academic Publishers, Bo, vol. 6, No. 3, pp. 301-309.
Lee et al., “A Multi-Touch Three Dimensional Touch-Sensitive Tablet”, CHI '85 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Apr. 1985, pp. 21-25.
Martins et al., “Extracting and Exploring the Geo-Temporal Semantics of Textual Resources”, Semantic Computing, IEEE International Conference, Aug. 2008, pp. 1-9.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2005/030234, dated Mar. 20, 2007, 9 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2005/030234, dated Mar. 17, 2006, 11 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2007/077443, dated Mar. 10, 2009, 6 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2009/055577, completed on Aug. 6, 2010, 12 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2009/055577, dated Jan. 26, 2010, 9 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/040801, dated Dec. 19, 2013, 16 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/040801, dated Oct. 22, 2012, 20 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/041225, dated Nov. 27, 2014, 9 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/047668, dated Jan. 8, 2015, 13 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/052558, dated Feb. 12, 2015, 12 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/058916, dated Mar. 19, 2015, 8 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/060121, dated Apr. 2, 2015, 6 pages.
Rubine, Dean, “Combining Gestures and Direct Manipulation”, CHI '92, May 3-7, 1992, pp. 659-660.
Rubine, Dean Harris., “The Automatic Recognition of Gestures”, CMU-CS-91-202, Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Computer Science at Carnegie Mellon University, Dec. 1991, 285 pages.
Sen et al., “Indian Accent Text-to-Speech System for Web Browsing”, Sadhana, vol. 27, No. 1, Feb. 2002, pp. 113-126.
Tombros et al., “Users' Perception of Relevance of Spoken Documents”, Journal of the American Society for Information Science, New York, Aug. 2000, pp. 929-939.
Westerman, Wayne, “Hand Tracking, Finger Identification and Chordic Manipulation on a Multi-Touch Surface”, Doctoral Dissertation, 1999, 363 pages.
Youtube, “New bar search for Facebook”, Available at “https ://www.youtube.com/watch?v=vwgN1WbvCas”, 1 page.
API.AI, “Android App Review—Speaktoit Assistant”, Online Available at https://www.youtube.com/watch?v=myE498nyfGw, Mar. 30, 2011, 3 pages.
Morton, Philip, “Checking If an Element is Hidden”, StackOverflow, Available at <http://stackoverflow.com/questions/178325/checking-if-an-element-is-hidden>, Oct. 7, 2008, 12 pages.
Powell, Josh, “Now You See Me . . . Show/Hide Performance”, Online Available at <http://www.learningjquery.com/2010/05/now-you-see-me-showhide-performance>, May 4, 2010, 3 pages.
Extended European Search Report received for European Patent Application No. 16195814.5, dated Jul. 5, 2017, 13 pages.
Ravishankar, “Efficient Algorithms for Speech Recognition,” May 15, 1996, Doctoral Thesis submitted to School of Computer Science, Computer Science Division, Carnegie Mellon University, Pittsburg, 146 pages.
Rayner, M., et al., “Adapting the Core Language Engine to French and Spanish,” May 10, 1996, Cornell University Library, 9 pages. http://arxiv.org/abs/cmp-lg/9605015.
Rayner, M., “Abductive Equivalential Translation and its application to Natural Language Database Interfacing,” Sep. 1993 Dissertation paper, SRI International, 163 pages.
Rayner, M., et al., “Deriving Database Queries from Logical Forms by Abductive Definition Expansion,” 1992, Proceedings of the Third Conference on Applied Natural Language Processing, ANLC'92, 8 pages.
Rayner, M., “Linguistic Domain Theories: Natural-Language Database Interfacing from First Principles,” 1993, SRI International, Cambridge, 11 pages.
Rayner, M., et al., “Spoken Language Translation With Mid-90's Technology: A Case Study,” 1993, EUROSPEECH, ISCA, 4 pages. http://dblp.uni-trier.de/db/conf/interspeech/eurospeech1993.html#RaynerBCCDGKKLPPS93.
Rudnicky, A.I., et al., “Creating Natural Dialogs in the Carnegie Mellon Communicator System.”
Russell, S., et al., “Artificial Intelligence, A Modern Approach,” © 1995 Prentice Hall, Inc., 121 pages.
Sacerdoti, E., et al., “A Ladder User's Guide (Revised),” Mar. 1980, SRI International, Artificial Intelligence Center, 39 pages.
Sagalowicz, D., “A D-Ladder User's Guide,” Sep. 1980, SRI International, 42 pages.
Sameshima, Y., et al., “Authorization with security attributes and privilege delegation Access control beyond the ACL,” Computer Communications, vol. 20, 1997, 9 pages.
San-Segundo, R., et al., “Confidence Measures for Dialogue Management in the CU Communicator System,” Jun. 5-9, 2000, Proceedings of Acoustics, Speech, and Signal Processing (ICASSP'00), 4 pages.
Sato, H., “A Data Model, Knowledge Base, and Natural Language Processing for Sharing a Large Statistical Database,” 1989, Statistical and Scientific Database Management, Lecture Notes in Computer Science, vol. 339, 20 pages.
Schnelle, D., “Context Aware Voice User Interfaces for Workflow Support,” Aug. 27, 2007, Dissertation paper, 254 pages.
Sharoff, S., et al., “Register-domain Separation as a Methodology for Development of Natural Language Interfaces to Databases,” 1999, Proceedings of Human-Computer Interaction (INTERACT'99), 7 pages.
Shimazu, H., et al., “CAPIT: Natural Language Interface Design Tool with Keyword Analyzer and Case-Based Parser,” NEC Research & Development, vol. 33, No. 4, Oct. 1992, 11 pages.
Shinkle, L., “Team User's Guide,” Nov. 1984, SRI International, Artificial Intelligence Center, 78 pages.
Shklar, L., et al., “Info Harness: Use of Automatically Generated Metadata for Search and Retrieval of Heterogeneous Information,” 1995 Proceedings of CAiSE'95, Finland, Certificate of Examination dated May 13, 2013 for Australian Patent No. 2012101467, 5 pages.
Notice of Allowance dated Jul. 10, 2013, received in U.S. Appl. No. 13/725,656, 14 pages (Gruber).
Notice of Allowance dated Jun. 12, 2013, received in U.S. Appl. No. 11/518,292, 16 pages (Cheyer).
Office Action dated Jul. 26, 2013, received in U.S. Appl. No. 13/725,512, 36 pages (Gruber).
Office Action dated Jul. 11, 2013, received in U.S. Appl. No. 13/784,707, 29 pages (Cheyer).
Office Action dated Jul. 5, 2013, received in U.S. Appl. No. 13/725,713, 34 pages (Guzzoni).
Office Action dated Jul. 2, 2013, received in U.S. Appl. No. 13/725,761,14 pages (Gruber).
Office Action dated Jun. 28, 2013, received in U.S. Appl. No. 13/725,616, 29 pages (Cheyer).
Office Action dated Jun. 27, 2013, received in U.S. Appl. No. 13/725,742, 29 pages (Cheyer).
Office Action dated Apr. 16, 2013, received in U.S. Appl. No. 13/725,550, 8 pages (Cheyer).
Office Action dated Mar. 7, 2013, received in U.S. Appl. No. 13/492,809, 26 pages (Gruber).no.
Office Action dated Jul. 5, 2013, received in U.S. Appl. No. 13/725,481, 26 pages (Gruber).
Related Publications (1)
Number Date Country
20120265528 A1 Oct 2012 US
Provisional Applications (2)
Number Date Country
61295774 Jan 2010 US
61493201 Jun 2011 US
Continuation in Parts (2)
Number Date Country
Parent 12479477 Jun 2009 US
Child 13250854 US
Parent 12987982 Jan 2011 US
Child 12479477 US