Using data from a body worn sensor to modify monitored physiological data

Information

  • Patent Grant
  • 12102416
  • Patent Number
    12,102,416
  • Date Filed
    Thursday, June 25, 2020
    4 years ago
  • Date Issued
    Tuesday, October 1, 2024
    3 months ago
Abstract
The present specification describes methods and systems for monitoring changes in physiological data, such as electrocardiogram data, respiration data, and blood pressure data, as a consequence of a change in position or movement of a subject under observation. Embodiments of the present specification provide systems for detecting and processing motion data by utilizing an available physiological monitoring device, with minimal additions of cost and equipment. A connecting wire is used to add a motion sensor to an existing physiological monitoring device. The connecting wire provides a channel for powering the motion sensing device as well as communication of data to and from the motion sensing device. Preferably, the motion sensor is embedded into the wire.
Description
FIELD

The present specification relates generally to monitoring health-related parameters and more specifically to methods and systems for mounting sensors, such as a motion sensor, on the body of a person and using the sensors to provide activity and relative positional information about the person in order to correct, adjust, or otherwise modify physiological data. Additionally, the present specification relates to using a single-wire communication system for integrating the motion sensor with at least one other sensor.


BACKGROUND

Most monitors measure irregular heart-beats or any other irregular or abnormal physiological activity. An ambulatory electrocardiogram (AECG), which is consistently worn anywhere between 24 hours to a week or more, monitors electrocardiogram (ECG) data. Similarly, blood pressure (BP) monitors are used for hypertension management and cardiac monitoring. The monitors generate alarms, which may indicate an, or varying levels of, emergency in response to detection of an abnormal condition. However, often there are cases when a sensor detects what appears to be abnormal physiological activity due to a change in the patient's position or due to the patient's movement, yet the patient is actually healthy and his or her health status does not warrant an alarm. This may be especially true for ambulatory patients. For example, a person using a BP monitor may be exercising when the BP levels are detected as being abnormal. Similarly, an AECG monitor may falsely raise an alarm when the heart-beat of a wearer appears to be abnormal during exercising.


Even though exercise may skew physiological monitoring, low acuity patients need to be active to speed their recovery. Therefore, it may be desirable to be able to monitor their movements over a period of time. Some monitors combine information about different types of physiological data to conclude whether a wearer of the monitor(s) (or patient) is experiencing an abnormal health condition. For example, several models of BP monitors from various manufacturers have been developed with an added function of irregular heartbeat detection. However, these monitors are also prone to providing false positives when an otherwise healthy person is in motion. In addition to exercising, false positives may also be generated due to other external events, such as any other type of physical stress for example while lifting an object, work, fatigue, and changes in environmental conditions. Sometimes, even changing posture while sleeping may generate a false positive.


There is therefore a need to combine motion detection information, such as through motion sensors, to be able to effectively monitor physiological data and reduce or eliminate false positives generated by physiological monitors. There is also a need to correlate motion and/or positional information of a patient with any other physiological data, which may be monitored continuously, regularly, or in real time, so as to enhance the reliability and accuracy of physiological data monitors and improve diagnosis. Current physiological monitoring systems, such as AECG monitors, are unable to effectively integrate motion detection information. The monitoring systems fail to effectively combine a motion detector within existing components without having to introduce circuit-level changes or other forms of system-related modifications. Therefore, there is a need for a simple method and system that may be seamlessly integrated with existing monitoring systems, to add the capability of motion detection. It is also desirable to combine motion detection information with the physiological monitoring information to provide users with correlated data.


Many communication methods exist where one electronic device can communicate to another or several other devices over multiple wires. Communication methods are also needed to combine motion sensor data with devices for other purposes, in order to minimize the cost and apparatus needed for the combination. For some designs, however, it becomes more practical to minimize the number of wires necessary for communication. Devices are known to use a single-wire bus for bi-directional communication. The single wire connection used for bi-directional communication can interconnect two or more devices. A master device is known to be connected to one or more slave devices for communication of data and for slave device(s) to draw power from the master device. A system is needed that enables efficient, low-cost, and reliable communication between a motion detecting device and any other physiological monitoring device.


SUMMARY

The following embodiments and aspects thereof are described and illustrated in conjunction with systems, tools and methods, which are meant to be exemplary and illustrative, not limiting in scope.


The present specification discloses a physiological lead wire configured to monitor a motion of a person and to monitor a physiological parameter of the person, comprising: a connecting wire having a first end and an opposing second end; a connector plug attached to the first end, wherein the connector plug is configured to electrically connect the physiological lead wire with a physiological monitoring system; a receptacle at the second end, wherein the receptacle is configured to attach to the person; a motion detector integrated into the receptacle, wherein the motion detector is configured to acquire positional and movement information of the person and transmit the positional and movement information over the connecting wire; and a physiological sensor integrated into the receptacle, wherein the physiological sensor is configured to acquire physiological data of the person and transmit the physiological data over the connecting wire and wherein the physiological data comprises at least one of ECG data, respiration data, SpO2 data, or blood pressure data.


Optionally, the connecting wire is further adapted to channel power to the motion detector and to transmit data to and from the motion detector.


Optionally, the physiological sensor comprises an electrode configured to detect electrical signals generated by the person's cardiac activity. The electrode may be partially exposed outside the receptacle. The electrode may be configured to transmit the electrical signals generated by the person's cardiac activity through the connecting wire. Optionally, the electrode is positioned adjacent the motion detector and the motion detector comprises a printed circuit board having a power converter, a processor, a comparator and at least one of a three-axis accelerometer, a combination of a three-axis accelerometer and a gyroscope, or a combination of a three-axis accelerometer, a gyroscope, and a magnetometer integrated therein.


The present specification also discloses an electrocardiogram monitoring system configured to monitor a motion of a person and to monitor electrical signals generated by the person's heart, comprising: a monitoring device configured to receive data indicative of the electrical signals and data indicative of the motion of the person, wherein the monitoring device comprises at least two ports; a first electrocardiogram lead wire having a first end with a connector configured to connect to either of the at least two ports and having a second end with a receptacle, wherein the receptacle is configured to attach to the person and wherein the receptacle comprises an electrode and does not comprise a motion detector; and a second electrocardiogram lead wire having a first end with a connector configured to connect to either of the at least two ports and having a second end with a receptacle, wherein the receptacle is configured to attach to the person, wherein the receptacle comprises an electrode and a motion detector, and wherein the motion detector is configured to acquire positional and movement information of the person and transmit the positional and movement information over the second electrocardiogram lead wire.


Optionally, the second electrocardiogram lead wire is further adapted to channel power to the motion detector and to transmit data to and from the motion detector.


Optionally, in the first electrocardiogram lead wire, the electrode is partially exposed through the receptacle, is configured to detect the electrical signals, and is in electrical communication with the first electrocardiogram lead wire and, in the second electrocardiogram lead wire, the electrode is partially exposed through the receptacle, is configured to detect the electrical signals, and is in electrical communication with the first electrocardiogram lead wire.


Optionally, in the second electrocardiogram lead wire, the electrode is positioned adjacent the motion detector and the motion detector comprises a printed circuit board having a power converter, a processor, a comparator and at least one of a three-axis accelerometer, a combination of a three-axis accelerometer and a gyroscope, or a combination of a three-axis accelerometer, a gyroscope, and a magnetometer integrated therein.


Optionally, the monitoring device comprises a third port. Optionally, the electrocardiogram monitoring system further comprises a third electrocardiogram lead wire having a first end with a connector configured to connect to either of the at least two ports or the third port and having a second end with a receptacle, wherein the receptacle is configured to attach to the person and wherein the receptacle comprises an electrode and does not comprise a motion detector. Optionally, the monitoring device comprises a fourth port. Optionally, the electrocardiogram monitoring system further comprises a fourth electrocardiogram lead wire having a first end with a connector configured to connect to either of the at least two ports, the third port or the fourth port and having a second end with a receptacle, wherein the receptacle is configured to attach to the person and wherein the receptacle comprises an electrode and does not comprise a motion detector. Each of the at least two ports, the third port and the fourth port may be structurally equivalent and configured to receive a same shaped connector.


The present specification also discloses a respiration monitoring system configured to monitor a motion of a person and to monitor electrical signals generated by the person's respiration, comprising: a monitoring device configured to receive data indicative of the electrical signals and data indicative of the motion of the person, wherein the monitoring device comprises at least two ports; a first wire having a first end with a connector configured to connect to either of the at least two ports and having a second end with a receptacle, wherein the receptacle is configured to attach to the person and wherein the receptacle comprises a respiratory sensor and does not comprise a motion detector; and a second wire having a first end with a connector configured to connect to either of the at least two ports and having a second end with a receptacle, wherein the receptacle is configured to attach to the person, wherein the receptacle comprises a respiratory sensor and a motion detector, and wherein the motion detector is configured to acquire positional and movement information of the person and transmit the positional and movement information over the second wire.


Optionally, the second wire is further adapted to channel power to the motion detector and to transmit data to and from the motion detector.


The present specification also discloses an oxygen saturation monitoring system configured to monitor a motion of a person and to monitor electrical signals generated by the person's oxygen saturation, comprising: a monitoring device configured to receive data indicative of the electrical signals and data indicative of the motion of the person, wherein the monitoring device comprises at least two ports; a first wire having a first end with a connector configured to connect to either of the at least two ports and having a second end with a receptacle, wherein the receptacle is configured to attach to the person and wherein the receptacle comprises a blood oxygenation sensor and does not comprise a motion detector; and a second wire having a first end with a connector configured to connect to either of the at least two ports and having a second end with a receptacle, wherein the receptacle is configured to attach to the person, wherein the receptacle comprises a blood oxygenation sensor and a motion detector, and wherein the motion detector is configured to acquire positional and movement information of the person and transmit the positional and movement information over the second wire.


Optionally, the second wire is further adapted to channel power to the motion detector and to transmit data to and from the motion detector.


The present specification also discloses a method for monitoring a motion of a person and electrical signals generated by the person's heart, comprising: acquiring a monitoring device configured to receive data indicative of the electrical signals and data indicative of the motion of the person, wherein the monitoring device comprises at least two ports; connecting a first electrocardiogram lead wire to either of the at least two ports, wherein the first electrocardiogram lead wire comprises a first end with a connector configured to connect to either of the at least two ports and a second end with a receptacle, wherein the receptacle is configured to attach to the person and wherein the receptacle comprises an electrode and does not comprise a motion detector; attaching the electrode of first electrocardiogram lead wire to the person; connecting a second electrocardiogram lead wire to either of the at least two ports, wherein the second electrocardiogram lead wire has a first end with a connector configured to connect to either of the at least two ports and a second end with a receptacle, wherein the receptacle is configured to attach to the person, wherein the receptacle comprises an electrode and a motion detector, and wherein the motion detector is configured to acquire positional and movement information of the person and transmit the positional and movement information over the second electrocardiogram lead wire; attaching the electrode of second electrocardiogram lead wire to the person; activating the monitoring device; and recording data indicative of the electrical signals and data indicative of the motion of the person.


Optionally, the second electrocardiogram lead wire is further adapted to channel power to the motion detector and to transmit data to and from the motion detector.


Optionally, in the second electrocardiogram lead wire, the electrode is positioned adjacent the motion detector and wherein the motion detector comprises a printed circuit board having a power converter, a processor, a comparator and at least one of a three-axis accelerometer, a combination of a three-axis accelerometer and a gyroscope, or a combination of a three-axis accelerometer, a gyroscope, and a magnetometer integrated therein.


Optionally, the method further comprises connecting a third electrocardiogram lead wire to either of the at least two ports or a third port, wherein the third electrocardiogram lead wire has a first end with a connector configured to connect to either of the at least two ports or the third port and a second end with a receptacle, wherein the receptacle is configured to attach to the person, wherein the receptacle comprises an electrode and does not comprise a motion detector and attaching the electrode of the third electrocardiogram lead wire to the person. Optionally, the method further comprises connecting a fourth electrocardiogram lead wire to either of the at least two ports, the third port, or a fourth port, wherein the fourth electrocardiogram lead wire has a first end with a connector configured to connect to either of the at least two ports, the third port or the fourth port, and a second end with a receptacle, wherein the receptacle is configured to attach to the person, wherein the receptacle comprises an electrode and does not comprise a motion detector and attaching the electrode of the fourth electrocardiogram lead wire to the person. Each of the at least two ports, the third port and the fourth port may be structurally equivalent and configured to receive a same shaped connector.


The present specification also discloses a physiological monitoring system for monitoring a wearer of the system, comprising: at least one connecting wire, wherein each connecting wire comprises: a plug at a first end of the connecting wire; a receptacle at a second end of the connecting wire, wherein the first end is opposite to the second end of the connecting wire; and a motion sensor system in proximity to the receptacle, wherein the motion sensor system senses positional and movement information of the wearer and sends the information over the connecting wire; wherein the connecting wire provides a channel for power to power the motion sensor system and data communication to and from the motion sensor system.


Optionally, the plug comprises an interface to connect with a power source.


Optionally, the plug comprises an interface to connect with a data storage and processing system.


Optionally, the receptacle is a snap-connector receptacle that attaches with a body of the wearer.


Optionally, the receptacle attaches to a body of the wearer similarly to an Electrocardiogram (ECG) lead snap. The plug may interface with a physiological monitoring device. The physiological monitoring device may be an ECG monitoring device.


Optionally, the motion sensor system comprises: at least one motion sensor to detect the positional and movement information; and a processor to receive and process the detected information. The motion sensor may comprise at least one of a three-axis accelerometer; a combination of a three-axis accelerometer and a gyroscope; and a combination of a three-axis accelerometer, a gyroscope, and a magnetometer. The motion sensor may comprise an inclination detector. The motion sensor may be configured to provide movement indications in all directions. The motion sensor may be configured to provide angle indications in two axes.


Optionally, the motion sensor system communicates data to and from at least one other physiological monitoring device. The at least one other physiological monitoring device may be an ECG monitoring device, a respiration monitoring device, a blood pressure (BP) monitoring device, or a combination of two or more of an ECG monitoring device, a respiration monitoring device, and a blood pressure (BP) monitoring device.


The present specification also discloses a physiological monitoring system for monitoring a wearer of the system, comprising: at least one connecting wire, wherein each connecting wire comprises: a plug at a first end of the connecting wire; a receptacle at a second end of the connecting wire, wherein the first end is opposite to the second end of the connecting wire; and a motion sensor system in proximity to the receptacle, wherein the motion sensor system senses positional and movement information of the wearer and sends the information over the connecting wire; wherein the connecting wire provides a channel for power to power the motion sensor system and data communication to and from the motion sensor system.


Optionally, the plug comprises an interface to connect with a power source. Optionally, the plug comprises an interface to connect with a data storage and processing system.


Optionally, the receptacle is a snap-connector receptacle that attaches with a body of the wearer. Optionally, the receptacle attaches to a body of the wearer similarly to an Electrocardiogram (ECG) lead snap.


Optionally, the plug interfaces with a physiological monitoring device. The physiological monitoring device may be an ECG monitoring device.


Optionally, the motion sensor system comprises: at least one motion sensor to detect the positional and movement information; and a processor to receive and process the detected information. The motion sensor may comprise at least one of a three-axis accelerometer; a combination of a three-axis accelerometer and a gyroscope; and a combination of a three-axis accelerometer, a gyroscope, and a magnetometer. The motion sensor may comprise an inclination detector. The motion sensor may be configured to provide movement indications in all directions.


The motion sensor may be configured to provide angle indications in two axes.


Optionally, the motion sensor system communicates data to and from at least one other physiological monitoring device. The at least one other physiological monitoring device may be an ECG monitoring device, a respiration monitoring device, a blood pressure (BP) monitoring device, or a combination of two or more of an ECG monitoring device, a respiration monitoring device, and a blood pressure (BP) monitoring device.


The present specification also discloses a physiological monitoring system for monitoring a wearer of the system, comprising: at least one connecting wire, wherein each connecting wire comprises: a plug at a first end of the connecting wire, wherein the plug is configured to interface with a receptacle on the physiological monitoring system; a housing at a second end of the connecting wire, wherein the first end is opposite to the second end of the connecting wire; and a motion sensor system in the housing, wherein the motion sensor system senses positional and movement information of the wearer and sends the information over the connecting wire, wherein the motion sensor system comprises a power converter for converting power from the power source. The connecting wire provides a channel to transmit power from a power source in the physiological monitoring system to the motion sensor system and communicate positional and movement information from the motion sensor system.


Optionally, the receptacle on the physiological monitoring system is one of a plurality of receptacles. A shape of the receptacle may be different from the rest of the plurality of receptacles, or may be same as the rest of the plurality of receptacles.


The aforementioned and other embodiments of the present specification shall be described in greater depth in the drawings and detailed description provided below.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages of the present specification will be appreciated, as they become better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:



FIG. 1A illustrates a connecting wire comprising a motion sensor, in accordance with some embodiments of the present specification;



FIG. 1B illustrates an adapter cable to connect a connecting wire of FIG. 1A, in accordance with some embodiments of the present specification;



FIG. 1C illustrates an alternative embodiment of a physiological monitoring device comprising a separate connector for interfacing a motion sensing system, in accordance with some embodiments of the present specification;



FIG. 1D is a flow chart showing steps for an exemplary process for monitoring both a motion of a person and electrical signals generated by the person's heart, in accordance with some embodiments of the present specification;



FIG. 2 illustrates an orthographic view of a receptacle shown in FIG. 1, in accordance with some embodiments of the present specification;



FIG. 3A illustrates a first portion of a PCB configured to carry components of motion sensor system shown in FIG. 2, in accordance with some embodiments of the present specification;



FIG. 3B illustrates a second portion of a PCB, which is on a side opposite to the side of first portion, configured to carry components of motion sensor system shown in FIG. 2, in accordance with some embodiments of the present specification;



FIG. 4 is a block diagram illustrating components of two devices that share power and communication over a single wire, in accordance with some embodiments of the present specification;



FIG. 5 is an exemplary simulation circuit that implements single wire communication in accordance with some embodiments of the present specification;



FIG. 6A illustrates a sample of data transmission from a first device to a second device using the simulation circuit of FIG. 5, in accordance with some embodiments of the present specification;



FIG. 6B illustrates a sample of data transmission from the second device to the first device using the simulation circuit of FIG. 5, in accordance with some embodiments of the present specification;



FIG. 7A is a photograph of a plug portion of a wire, in accordance with some embodiments of the present specification;



FIG. 7B is a line drawing of the plug portion of the wire shown in FIG. 7A, including a cross-sectional view of its housing;



FIG. 7C is a schematic drawing of the plug portion of the wire, shown in FIG. 7A, along with dimensions of its components;



FIG. 8A illustrates a top view of a receptacle portion of a wire, in accordance with some embodiments of the present specification;



FIG. 8B illustrates a side view of the receptacle portion of the wire, shown in FIG. 8A;



FIG. 8C illustrates a cross-sectional side view of the receptacle portion of the wire, shown in FIG. 8A; and



FIG. 8D illustrates a bottom view of the receptacle portion of the wire, shown in FIG. 8A.





DETAILED DESCRIPTION

In various embodiments, the present specification provides methods and systems to seamlessly integrate a motion detection system with existing physiological monitoring system. The motion detection system monitors changes in position and/or movement of a wearer of the physiological monitoring system. The monitored changes may be correlated with other physiological monitoring data to identify physiological abnormalities and aid in improving diagnosis. A single wire communication system enables interfacing between the position and/or movement sensing device and an existing or conventional physiological monitor.


Embodiments of the present specification provide a motion sensor system that can be embedded within a connecting wire that has the form and structure of an ECG lead wire. The connecting wire is compatible with a monitoring device, such as an ECG monitoring device. The connecting wire is connected similar to and in addition to other ECG lead wires that measure cardiac signals, to a physiological monitoring device. The connecting wire is used for providing power to the motion sensor system, which is integrated into the distal body of the ECG lead wire, and supporting bi-directional communication between the motion sensor system and the monitoring device. In alternative embodiments, the connecting wire with motion sensor system is compatible with any other physiological monitoring device, in addition to an ECG monitoring device. In embodiments, the motion sensor information is combined with information from one or more other physiological sensors to identify abnormalities and improve diagnosis.


The present specification is directed towards multiple embodiments. The following disclosure is provided in order to enable a person having ordinary skill in the art to practice the invention. Language used in this specification should not be interpreted as a general disavowal of any one specific embodiment or used to limit the claims beyond the meaning of the terms used therein. The general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the invention. Also, the terminology and phraseology used is for the purpose of describing exemplary embodiments and should not be considered limiting. Thus, the present invention is to be accorded the widest scope encompassing numerous alternatives, modifications and equivalents consistent with the principles and features disclosed. For purpose of clarity, details relating to technical material that is known in the technical fields related to the invention have not been described in detail so as not to unnecessarily obscure the present invention.


In the description and claims of the application, each of the words “comprise” “include” and “have”, and forms thereof, are not necessarily limited to members in a list with which the words may be associated. It should be noted herein that any feature or component described in association with a specific embodiment may be used and implemented with any other embodiment unless clearly indicated otherwise.


Embodiments of the present specification provide a connecting wire capable of connecting to a physiological monitoring device, such as an ECG monitor, also termed herein as ECG device or ECG monitoring device. Embodiments of the connecting wire are described below with respect to FIGS. 4, 5, 6A, and 6B. In an embodiment, the ECG device is a system that senses and analyses ECG signals by recording electrical activity of the heart. The monitoring is performed over a period of time using electrodes that are placed on the skin of a subject/person, such as a patient or other individual. In embodiments, the person is a patient or any other living being that is under observation for monitoring by the systems of the present specification. The ECG device typically interfaces with the electrodes through a connecting lead wire (ECG lead wire). The lead wire comprises an attachment mechanism at one end (proximal) for connection to the electrode(s) that are positioned on the subject's skin. The opposite end (distal) of the lead wire comprises a plug that interfaces with the ECG device. The heart muscle's electrophysiological pattern of depolarizing and repolarizing is measured and viewed in the form of a graph of voltage versus time (electrocardiogram). The electrocardiogram can be viewed on a screen attached to the ECG device, and/or can be printed on paper.


Ambulatory ECG devices use a small monitoring device worn by the subject which transmits monitored data from the device to a distant monitoring station using wireless communication. The device itself records, analyses, and communicates ECG data. Hardware components in the device enable sensing and storage, while software elements enable processing of data.


Sometimes hemodynamic monitoring is performed simultaneously with cardiac monitoring. Hemodynamic monitoring is usually performed using hydraulic circuits that monitor properties of blood flow. Some monitors combine respiration monitoring with ECG monitoring and/or hemodynamic monitoring, or just blood pressure (BP) monitoring. Respiration monitoring devices indicate respiration data like respiration rate, amplitude, and other characteristics. Most of these and other physiological monitoring devices receive the data concerning their objective, but also tend to receive noise that may arise due to motion of the subject. The motion data, when combined with other physiological monitoring data provides crucial diagnostic information about the subject.


Embodiments of the present specification can be configured to interface with an ECG device, a respiration monitoring device, a BP monitoring device, any other physiological monitoring device, or a combination of two or more of these devices. For instance, embodiments could be used on a patient who is wearing a Non-Invasive BP (NIBP) cuff or an SpO2 sensor. The motion information derived from embodiments of the present specification would be used to provide more context to the collected NIBP or SpO2 data, such as whether the patient is sitting up or active at the time of the reading. While some embodiments of systems of the present specification are described in the context of an ECG device (as the systems attach similarly to ECG electrodes and can be attached to a monitor in the same manner as an ECG lead wire, such as through a combiner (Yoke) cable or directly to the monitor), the systems of the present specification do not rely on any of the ECG components to operate. Embodiments of the present specification provide a low cost, portable option to additionally monitor position and movement-related data of a subject over a single wire for power and data, and combine the motion data with the other physiological data, in order to improve medical diagnosis as well as determine health or fitness levels.



FIG. 1A illustrates a connecting wire 102 comprising a motion sensing system, in accordance with some embodiments of the present specification. Wire 102 has two opposing ends including a connector/plug 104 at a first (distal) end and a receptacle 106 at a second (proximal) end. In one implementation, plug 104 is similar to the plug of an ECG lead wire 108 and therefore compatible with a conventional ECG monitor. Additionally, plug 104 can interface with a device 110. In one embodiment device 110 is an ECG device, and plug 104 connects to the ECG device similarly to the manner in which an ECG lead wire 108 interfaces with device 110. Accordingly, the present invention is directed toward a lead wire having a connector at one end that is compatible with a connection port of a conventional ECG monitoring device, a connection port of a conventional respiration monitoring device, a connection port of a conventional SpO2 monitoring device, or a connection port of a conventional BP monitoring device such that the connector is structurally similar to a connector of a conventional ECG lead wire, a connector of a conventional respiration sensor, a connector of a conventional SpO2 sensor, or a connector of a conventional blood pressure cuff, none of which have a motion sensor integrated therein.


The electrocardiogram monitoring system of FIG. 1A, according to embodiments of the present specification is configured to monitor a motion of a person and to monitor electrical signals generated by the person's heart. The ECG monitoring device 110 receives data indicative of the electrical signals from one or more ECG lead wires, including but not limited to lead wire 108 and motion sensor lead 102. Additionally, the motion sensor lead 102 provides data indicative of the motion of the person. Device 110 includes multiple ports 120 where at least one of the ports is used to connect to the motion sensor lead 102. The receptacle 106, positioned at the second (proximal) end of the motion sensor lead 102, attaches to the patient and includes an electrode and a motion detector to acquire positional and movement information of the patient and transmit the information over the motion sensor lead 102. One or more of the other remaining ports 120 on device 110 connect to one or more lead wires 108, which do not include a motion detector.


In one implementation receptacle 106 is configured similar to a snap-attach receptacle of ECG lead wire 108. A snap connector, also known as a pinch clip connector, may be attached to the body of a subject. The subject could be a patient, or any other being who is a wearer of the monitoring system and is to be monitored by the various embodiments of the present specification. Receptacle 106 may use the ECG adhesive snaps as a way to attach to the patient's body. In embodiments, the position or placement of receptacle 106 on the patient's body is independent of the placement of any ECG electrode. In some embodiments, optimal locations for placement of receptacle 106 are suggested to the patient, which allow for better detection of respiration activity (used to verify respiratory data or to signal breathing difficulty or stress).


In one embodiment, ECG adhesive pads are used to attach receptacle 106 to the subject. In various embodiments, receptacle 106 is configured in a manner similar to any type of an ECG electrode connector, such as but not limited to a wire dumbbell connector, a locking slot connector, or a keyhole connector. In embodiments, at least one motion sensor system is embedded in proximity to receptacle 106, and preferably within the housing of the receptacle 106. In one embodiment, a housing at the second end of wire 102 a motion sensor positioned within the receptacle 106. Connecting wire 102 is uniquely configured to communicate motion detection data from receptacle 106 to plug 104, which may be further recorded and/or processed by separate circuits within device 110. Connecting wire 102 provides a single path for powering the motion sensing device in receptacle 106 and enabling bi-directional communication between the motion sensing system and device 110. In embodiments, the data collected through the motion sensor system is correlated with data from an ECG monitor and/or other physiological monitoring systems, such as respiration data and blood pressure (BP) data.


In an embodiment, an adapter cable is used to connect multiple motion sensor systems to a physiological monitoring system, such as device 110 shown in FIG. 1. A plug portion of the adapter is configured to connect to a specific device 110 and may include any safety feature or unique/specialized aspect required to allow plug 104 to connect with wire 102. Multiple receptacles are electrically coupled to device 110 through the adapter cable, plug 104, and wire 102. FIG. 1B illustrates an adapter cable 112 used to connect multiple wires to device 110 of FIG. 1, in accordance with some embodiments of the present specification. Plug 104 connects to a connector 112a of adapter 112, while another connector portion 112b of adapter 112 is available to connect another wire, such as another motion sensor system. Additionally, FIG. 1C illustrates an alternative embodiment of a device 110a that includes a separate connector 116 to connect plug 104. Connector 116 may be provided in addition to the conventional connectors for interfacing with physiological monitoring device 110a. Connector 106 may also interface with an adapter 112 to connect with multiple sensors. Accordingly, connector comprises a first connector portion 112 configured to connect to a connector port of a conventional ECG monitoring device, a connection port of a conventional respiration monitoring device, or a connection port of a conventional BP monitoring device, a wire extending therefrom and being split into two or more prongs, where each prong leads to a port (112a, 112b, etc.) configured to receive a connector portion of an ECG lead wire, a cable of a respiration sensor, or a cable of a blood pressure cuff. It should be appreciated that while FIG. 1A shows a two-pronged connection, there could be 3, 4, 5, 6, 7, 8, 9, 10, or 100 prongs, or any whole number increment therein.



FIG. 1D is a flowchart showing exemplary process steps for monitoring both a motion of a person and electrical signals generated by the person's heart, in accordance with some embodiments of the present specification. The person is a patient or any other living being that is under observation for monitoring by the systems of the present specification. With reference to both FIGS. 1A and 1D, at step 152, the person, a physician or any other care provider for the person, acquires a monitoring device, such as device 110, configured to receive data indicative of the electrical signals and data indicative of the motion of the person. The monitoring device 110 includes two or more ports 120 that are used to connect ECG lead wires such as lead wire 108, which does not include a motion detector, and wire 102 which includes a motion detector, in their respective receptacles. Each of the two or more ports 120 of device 110 are structurally equivalent and are configured to receive a same shaped connector. At step 154, a first ECG lead wire, such as wire 108, is connected to a first port. In embodiments, wire 108 does not include a motion detector. The first port can be any one of the two or more ports 120 on device 110. A first end of the wire 108 includes a connector configured to connect to the port of device 110. A second end of the wire 108 includes a receptacle configured to attach to the person. The receptacle includes an electrode and does not comprise a motion detector. At step 156, the electrode of first ECG lead wire is attached to the person at a suitable location on the body of the person. At step 158, a second ECG lead wire, such as wire 102, is connected to a second port of the two or more ports 120 on device 110. The second ECG lead wire has a first end with a connector, such as plug 104, configured to the corresponding port on device 110. A second end of the wire 102 has a receptacle, such as receptacle 106, which includes an electrode and a motion detector, configured to attach to the person. The motion detector is configured to acquire positional and movement information of the person and transmit the positional and movement information over the second ECG lead wire (wire 102) to the monitoring device 110 when it is activated. Once device 110 is activated, wire 102 channels power to the motion detector and to transmit data to and from the motion detector. At step 160, the electrode of second ECG lead wire is attached to the person in a manner similar to any other ECG lead wire, such as wire 108. In some embodiments, a third ECG lead wire is attached to the device 110 at third port of the two or more ports 120. The third ECG lead wire is similar to the first ECG lead wire 108, and does not include a motion detector. A receptacle of the third wire is attached to the person similar to the first wire 108. In some embodiments, a fourth ECG lead wire is attached to the device 110 at yet another one of its ports. The fourth ECG lead wire is similar to the first ECG lead wire 108 and the third wire, and does not include a motion detector. A receptacle of the fourth wire is attached to the person similar to the first wire 108. At step 162, the monitoring device 110 is activated. The monitoring device 110 is activated by enabling power supply to operate the device 110, and optionally by selecting one or more options through a user interface such as buttons, to activate the device 110. At step 164, the monitoring device 110 records data indicative of the electrical signals and data indicative of the motion of the person.


The conventional physiological monitoring devices record and analyze data pertaining to their intended physiological parameter. Integration of real-time physiological data with position and/or movement-related data can be more effective in determining changes in the physiology of the subject. Physiological data can be monitored as a result of change in posture or movement of the subject.



FIG. 2 illustrates an orthographic view of a receptacle 200 shown in FIG. 1, in accordance with some embodiments of the present specification. Receptacle 200 includes a housing 206 that encompasses components of an integrated motion sensor system 204. A lead connector 208 is located at the distal end of a connecting wire 202 within a portion of the housing 206 that interfaces with an electrode connector, analogous to an ECG electrode connector for the purpose of attaching receptacle 200 to the body of the subject. Motion sensor system 204 may comprise multiple components placed on a printed circuit board (PCB), and including elements that detect and process position and movement-related data. Accordingly, in one embodiment, the present invention is directed to a ECG electrode having a housing, an electrode embedded into, and exposed outside of, the housing, and a motion detector integrated into the housing, proximate the electrode.



FIG. 3A illustrates a first portion 300a of a PCB configured to carry components of motion sensor system 204 shown in FIG. 2, in accordance with some embodiments of the present specification. FIG. 3B illustrates a second portion 300b of a PCB, which is on a side opposite to the side of first portion 300a, configured to carry components of motion sensor system 204 shown in FIG. 2, in accordance with some embodiments of the present specification. Referring simultaneously to FIGS. 3A and 3B, the PCB (300a, 300b) is configured to be housed within a housing of a receptacle of a lead connecting wire that couples the motion sensor system to a monitoring device that stores and processes motion sensor data alone, or in combination with other physiological monitoring data. In embodiments, the PCB (300a, 300b) is sized in order to fit within the housing of the receptacle. In one embodiment, the PCB (300a, 300b) is 0.5 inches long and 0.3 inches wide, with electrical and electronic components on both sides. In some embodiments, electrical pads 302 on the PCB (300a, 300b) are configured to solder the ground and power/communication wires to the PCB (300a, 300b).


The connecting wire may be soldered to one of the electrical pads 302 to enable communication between PCB (300a, 300b) components and a power source and physiological data monitoring device. Power from the source may be communicated over the connecting wire and received by a power converter 304. Power converter 304 is configured to drop the power on the cable down to a recommended chip voltage and to remove the fluctuation of the power due to the signalling, and thereby power the electronic components of PCB (300a, 300b). A processor 306 is configured to both process sensor data and facilitate communication to and from the physiological monitoring device. A motion sensor 308 detects position and movement-related data and provides the data to processor 306. In some embodiments, motion sensor 308 is a multi-axis accelerometer. In one embodiment, motion sensor 308 is a tri-axis accelerometer. In various embodiments, motion sensor 308 could include a ‘6-axis’ sensor (3-axis accelerometer and 3-axis gyroscope), or a ‘9-axis’ sensor (3-axis accelerometer, 3-axis gyroscope, and 3-axis magnetometer). The sensors are used to provide positional and orientation information in 3-axis, which could be used to determine an orientation of a patient, such as determining if a patient is facing down a corridor as opposed to across it. Given that an accelerometer will indicate a value of 1 G straight downward (due to gravity), the accelerometer may be used to determine inclination of a patient. Quick changes in the acceleration indicated by the accelerometer may show motion of the subject, whereas slow changes in the acceleration may indicate an inclination change (for example, sitting up or rolling on one's side). Motion sensor 308 is configured to detect at least one or more of a position, inclination, and movement of the subject.


Embodiments of the present specification can be configured to interface with different types of physiological monitoring devices, such as respiration monitoring devices, BP monitoring devices, and devices that monitor multiple physiological parameters but, in each case, are preferably positioned within the housing of a conventional physiological sensor positioned on the patient's body.


Embodiments of the present specification are used to monitor exercise data of the subject. Activity levels may be quantified to provide helpful indications about the exercises performed by the subject. For example, the number of steps can be monitored. Embodiments of the present specification may also be used to indicate a type and duration of one or more activities performed by the subject. For example, physiological data is combined with posture information to determine whether the subject is sitting, standing, awake, or asleep, for a healthy duration. Similarly, embodiments may be used to determine levels of inactivity. For example, a subject who is bed-ridden is monitored for duration(s) of inactivity and an alarm is generated to remind that the subject needs to be moved to avoid bed-sores, or if they have deceased. Embodiments can be used to also detect fall of a subject. Embodiments can also be used to detect movement by a subject that may be unwarranted, accidental, or unhealthy. For example, movement of a subject exiting the bed can be detected when they are not supposed to leave on their own. Embodiments can also be used to detect rapid movements, such as but not limited to seizures, tremors, epileptic episodes, shivers, rapid breathing due to discomfort, coughing, vomiting, and rolling in bed.


Embodiments of the present specification may combine respiration detection data with motion sensor data to monitor chest motion and detect apnea. Additionally, measurement of respiration characteristics can be suppressed during a healthy exercise regimen. Similarly, when combining BP measurement data, a monitoring attempt can be cancelled, delayed or retried at later time, if the subject is identified to be excessively active.


Embodiments of the present specification assist in minimizing false ECG ST Segment alarms, which may otherwise occur due to positional changes. Additionally, false ECG rhythm alarms, such as v-tach (ventricular tachycardia), v-run (ventricular run), or any other ECG parameter, due to changes in position or due to motion, are minimized. A combination of ECG data, respiration data, BP data, with the motion sensor data in accordance with the embodiments of the present specification can detect and raise an appropriate alarm if a subject has a critical condition, for example, if the heart rate is low and there is a decrease in pulse amplitude.


Referring now to FIG. 4, a block diagram 400 of two devices that are connected using a single wire 402 for power and data communication is illustrated in accordance with some embodiments of the present specification. In embodiments, device 406 corresponds to device 110 (FIG. 1A) used for physiological monitoring, and device 408 corresponds to an integrated motion sensor system 204 (FIG. 2) placed within a receptacle 106 (FIG. 1A). In embodiments, a first device 406 and a second device 408, are respectively configured as a master device and a slave device. Device 406 provides power to device 408, and both devices communicate with each other over wire 402. In some embodiments, multiple slave devices are connected to first device 406.


In one embodiment during normal operation, a first transistor 410 in first device 406 does not conduct, thus allowing power from a power source and through a power module 412, through a second transistor 416, and through a first resistor 414 to wire 402 and thus to any connected devices, such as device 408. First device 406 and second device 408, each have a transistor 416 and 418, respectively, which are non-conducting. The transistor 418 in second device 408 is normally non-conducting. Therefore, the power sourced by device 406 over wire 402 to device 408 flows through a diode 420 positioned between transistor 418 and a power module 422 within device 408, towards power module 422. A comparator 424 is configured to receive power sent over wire 402, within device 408. Comparator 424 compares the input power rail to a reference voltage and outputs a low′ to a receiving pin on a processor 426 of device 408.


In one embodiment, for transmitting a bit from first/master device 406 to second/slave device 408, first transistor 410 is moved to a conducting state which switches transistor 416 to a non-conducting state. The side of first resistor 414 that is connected to wire 402, is pulled low′ through conducting transistor 410. On the other side of wire 402, in second device 408, comparator 424 senses the input supply going low′ and switches the receiving pin on processor 426 to ‘high’. In some embodiments, low′ and ‘high’ signify a level of voltage, which can be interpreted by digital circuits as binary data. In some embodiments the ‘high’ and low′ states can be opposite—that is what is specified in this description as a low′ could be a ‘high’ and a ‘high’ could be a ‘low’. In some embodiments, the transition on the receiving pin, from low′ to ‘high’ denotes a binary ‘1’. Diode 420 prevents the voltage into the power module 422 of second device 408 from dropping rapidly. A capacitor 428 positioned between the line connecting resistor 420 and power module 422, and the ground, provides a small amount of power as the power supplied to device 408 through its power module 422 starts to drain the current from that node. The combination of diode 420 and capacitor 428 momentarily minimizes the voltage drop into the power supply from power module 422.


Once a sufficient amount of time is given for second device 408 to have seen the input from wire 402 drop ‘low’, first device 406 turns first transistor 410 back to a non-conducting state, which turns transistors 416 to a conducting state, thereby allowing a normal amount of current to flow through wire 402. If first transistor 410 is turned on to a conducting state and then back to a non-conducting state relatively quickly, second device 408 registers the change as data, but the power supplied to second device 408 remains constant. The amount of time in which transistor 410 changes its state from on to off may be determined on the basis of amount of current consumed by device(s) 408, the leakage of current back through diode 420, and the size of capacitor 428.


For second device 408 to transmit a bit of data to first device 406, transistor 416 and therefore transistor 418 are turned on to a conducting state by processor 426. Input from wire 402 through a resistor 430, positioned between output of wire 402 and transistor 418 of second device 408, is momentarily pulled ‘low’. A comparator 432 on first device 406 senses the power output through resistor 414 drops to ‘low’ and consequently changes a receiving pin on a processor 434 within first device 406 to ‘high’. After a sufficient amount of time expires, processor 426 on second device 408 switches off conduction through transistor 418 and wire 402 input to second device 408 rapidly rises back up to the supply level since that input is no longer shorted to ground. Comparator 432 detects the output voltage transitioning back to ‘high’ and sets the receiving pin on processor 434 of first device 406 back to ‘low’.


In embodiments, resistor 414 on first device 406 keeps the regulator of first device 406 (the supply) from overcurrent during the intermittent short circuit events seen on the power line during transmission by second device 408. During these transmissions, transistors 416 and 410 are in a conducting state, so any momentary short circuit events of wire 402 are detected by power module 412 which puts system 400 into an overcurrent condition.


The communication over wire 402 is asynchronous, implying that a device (first device 406 or second device 408) could initiate communication on wire 402 at any time. Therefore, it is important for each device 406 and 408 to be able to detect possible data collisions. A data collision may occur when both devices 406 and 408 are sending data at the same time. When a device wishes to transmit data, it enters into a transmit state. In that state it should only detect the receiving pin change state when it has changed the state of a device processor's transmitting pin. If the receiving pin changes when the transmitting pin has not changed, then the processor (434, 426) concludes that it has sensed a collision and an upper level protocol of processors 434 and 426 of system 400 are signaled of such an event. It will be up to the upper level protocol to initiate any corrective action (usually a backoff for some random amount of time followed by a retry).



FIG. 5 illustrates an exemplary circuit 500 where the systems in accordance with some embodiments of the present specification were simulated. In one embodiment, a left side of the circuit 500 relates to a device 506 corresponding to first device 406 described with reference to FIG. 4. Similarly, a right side of circuit 500 relates to a device 508 corresponding to second device 408 of FIG. 4. A wire 502 (402) connects devices 506 (406) and 508 (408). Components of FIG. 5 correspond to the various components of FIG. 4 and are numbered similarly. For example, transistors 510 and 516 correspond to the transistors 410 and 416 of first device 406/506. In alternative embodiments, there can be multiple devices similar to device 508, which may be connected to device 506 through wire 502. In embodiments, the number of devices, similar to device 508, which may be connected through wire 502 to device 506, is limited by the power supplied by device 506 and consumed by multiple devices 508. Additionally, the numbers of multiple device 508 is limited by the protocols' ability to address more than a specific number of devices individually. In one embodiment, up to eight devices 508 are connected to device 506.


Referring again to FIG. 4, a voltage supply simulation ‘HostProc’ which is connected to Vgate simulates the interaction with processor 434. The remaining portions of processor 434 are not simulated. Similarly, a voltage supply simulation ‘DevProc’ simulates the interaction of the processor 426 and the remaining portions of that processor are not simulated. Referring to FIG. 5, a resistance ‘WIreR_1’ 540 and capacitance ‘WireC_1’ 542 are used to simulate parasitic resistances and capacitances of the wire 502. Finally, component U5 and associated components C9 through C13, in the power supply 512 of the first device 506, are optional. In some embodiments voltage dividers and op-amps make up comparator portions 524 and 532, respectively within devices 508 and 506, of circuit 500. However, there is no restriction to that portion of the circuit—other circuits such as those with internal references may also be used.



FIG. 6A illustrates transmission of data from first device 406/506 to second device 408/508, shown in FIGS. 4 and 5, in accordance with some embodiments of the present specification. Simultaneous reference to components of FIGS. 4 and 5 is made to enhance the description of the graphs. The figure shows transmission of a value of 0xFFFF (2 sets of 8 bits of 1's). Lower graph 602 shows the input provided to the transmit transistor (transmitting pin of transistor 410 of FIG. 4). Middle graph 604 shows comparator 424/524 op-amp inputs on second device 408/508 where a line 606 drawn across graph 604, is the reference voltage. In an embodiment, the reference voltage is between 2.19V and 2.3V. Top graph 608 shows the output of comparator 42/524 which is for all practical purposes identical to the transmitted input. In an exemplary embodiment, these transmissions were simulated at a rate of 100 KHz.



FIG. 6B illustrates transmission of data from second device 408/508 to first device 406/506 in response to the data transmission of FIG. 6A, in accordance with some embodiments of the present specification. In a first graph 632, a top trace 634 shows the input supply rail to the regulator 422 of second device 408/508. Some amount of expected sag is seen in trace 632, which occurs as a result of the power input intermittently dropping out. The output of that supply, however, remains constant at 3.3V (as shown in a lower trace 636 of graph 632) since the input is above the drop-out limit of the regulator. In some embodiments, regulators with low dropout values are selected to keep the slave device(s), such as second device 408/508, from drawing the power down below into the dropout range of their regulator(s). Alternatively, in some embodiments, the power resistor, such as resistor 414, is adjusted. A second graph 630 shows the current through resistor 414. A graph 628 below graph 630 shows comparator 432 output of first device 406/506, which is identical to the inputs from both of devices 406/506 and 408/508. A fourth graph 622 shows op-amp inputs 624 of first device 406/506 with a straight line 626 being the reference input voltage. A graph 618 shows an output 620 of the comparator 424. Traces 614 in a graph 616 show the signal and reference inputs, respectively, to the comparator 424. A trace 610 in a lower graph 612 is the input to transistor 418 of second device 408/508.


Additionally care needs to be taken to minimize the pulse widths of the bits transmitted and to allow enough recovery time in-between transmissions. Therefore, the pulse width of each bit is controlled. The bandwidth (baud rate) at which the transmission is driven may be a factor in controlling the pulse width for each bit. Independent of the baud rate, if the actual data transmission rate is low, a sag in the applied voltage is small. As the transmission rate increases and approaches the full bandwidth (baud rate) of the channel, the sag will worsen. In some embodiments, these signals are in the kHz range and the low portion of the pulse is minimized. In embodiments, pulse width depends upon the speed of each processor (434 and 426) and on the current draw of each 408 device. The size of capacitor 428, the leakage of diode 420, and the drop-out voltage value of regulator 422 may also affect the pulse width. Pulses of equal high and low widths that are between 1 kHz and 100 kHz are easily accommodated without resorting to larger or more expensive components.



FIGS. 7A, 7B, and 7C illustrate images of a first end 700 of a wire that connects the first master device 406 (FIG. 4) and the second slave device 408 (FIG. 4), in accordance with some embodiments of the present specification. The first end 700 is a plug portion of the wire that connects with a physiological monitoring system, such as device 110 shown in FIG. 1. FIG. 7A illustrates a photograph of the plug portion 700, in accordance with some embodiments of the present specification. FIG. 7B illustrates a line drawing of the plug portion 700, including a cross-section view of its housing. FIG. 7C illustrates a line drawing of the plug portion 700 with dimensions of its components. Referring simultaneously to FIGS. 7A, 7B, and 7C, the plug portion comprises a pin 702 that is configured to be placed inside a corresponding female port of the physiological monitoring device, thereby providing an electrical connection between the wire and the physiological monitoring device. A pointed end of the pin 702, extending for a length of approximately 3.9 millimeters (mm) and with a diameter of approximately 2.35 mm, emerges from a band of approximately 0.8 mm that joins the pointed end of the pin 702 to an opposite end of the pin 702, which extends for a length of approximately 6.7 mm and has a diameter of approximately 2.46 mm. At the opposite end, the pin 702 is connected to a protective housing 704. The housing 704 encompasses a switch with electrical components of the wire that provides communication of power and data from and to the physiological monitoring device when the pin is plugged into the physiological monitoring device. A total length of the plug portion 700 extends for approximately 25.9 mm. In embodiments, the pin portion 700 plugs into a special pin on the physiological monitoring device or is built into a yoke.



FIGS. 8A to 8D illustrate different views of a wire 800 with a plug portion 802 at one end and a receptacle portion 804 at the other end, in accordance with some embodiments of the present specification. FIG. 8A illustrates a top view of the receptacle portion 804 of the wire 800. FIG. 8B illustrates a side view of the receptacle portion 804 of the wire 800. FIG. 8C illustrates a cross-sectional side view of the receptacle portion 804 of the wire 800. FIG. 8D illustrates a bottom view of the receptacle portion 804 of the wire 800. In some embodiments, the wire 800 comprises a coaxial cable so as to avoid crosstalk. In different embodiments, the length of the wire 800 is different to suit various applications. For ECG applications, the length of wire 800 is similar to an ECG lead wire. Similarly, for ECG applications, wire 800 has a bend radius that is similar to the bend radius of an ECG lead wire. In embodiments, the wire 800 is applied and removed using its plug portion 802 using a similar force and technique for plugging and removing ECG lead wires. The receptacle portion 804 corresponds to the receptacle 200 of FIG. 2, which includes a housing 806 that encompasses components of an integrated motion sensor system. A lead connector is located at a one end of the connecting wire 800 within a portion of the housing 806 that interfaces with an electrode connector, analogous to an ECG electrode connector for the purpose of attaching receptacle portion 804 to the body of a patient. The motion sensor system, as described above, may comprise multiple components placed on a printed circuit board (PCB), and including elements that detect and process position and movement-related data. In embodiments, the housing 806 is watertight. The receptacle portion 804 may be configured as any of the known and used connectors to position on a subject.


The above examples are merely illustrative of the many applications of the system of present invention. Although only a few embodiments of the present invention have been described herein, it should be understood that the present invention might be embodied in many other specific forms without departing from the spirit or scope of the invention. Therefore, the present examples and embodiments are to be considered as illustrative and not restrictive, and the invention may be modified within the scope of the appended claims.

Claims
  • 1. A sensor configured to monitor a motion of a person and to monitor a physiological parameter of the person, wherein the sensor is configured to communicate with a monitoring system and wherein the monitoring system is at least one of an electrocardiogram (ECG) monitoring device, a respiration monitoring device, a SpO2 monitoring device, or a blood pressure monitoring device, the sensor comprising: a lead wire comprising a connecting wire having a first end and an opposing second end;a connector plug attached to the first end, wherein the connector plug is configured to electrically connect the lead wire with said monitoring system;a receptacle at the second end, wherein the receptacle is configured to attach to the person;a first printed circuit board integrated into the receptacle comprising a motion detector, wherein the motion detector is configured to acquire positional and movement information of the person and transmit the positional and movement information over the connecting wire, wherein the first printed circuit board is configured as a slave to a master printed circuit board located in the monitoring system, wherein the master printed circuit board comprises a power source and physiological sensor configured to acquire physiological data of the person, wherein the physiological data comprises at least one of ECG data, respiration data, SpO2 data, or blood pressure data, wherein the first printed circuit board is configured to receive power from the master printed circuit board and compare said received power to a reference, and wherein the physiological sensor and motion detector are configured to communicate data asynchronously across the connecting wire.
  • 2. The sensor of claim 1, further comprising a power converter on the first printed circuit board for receiving power from the power source at the first printed circuit board via the connecting wire.
  • 3. The sensor of claim 1, further comprising an electrode configured to detect electrical signals generated by the person's cardiac activity.
  • 4. The sensor of claim 3, wherein the electrode is partially exposed outside the receptacle.
  • 5. The sensor of claim 3, wherein the electrode is configured to transmit the electrical signals generated by the person's cardiac activity through the connecting wire.
  • 6. The sensor of claim 3, wherein the electrode is adapted to be positioned adjacent the motion detector and wherein the motion detector comprises at least one of a three-axis accelerometer, a combination of a three-axis accelerometer and a gyroscope, or a combination of a three-axis accelerometer, a gyroscope, and a magnetometer integrated therein.
  • 7. The sensor of claim 1, wherein, when the second printed circuit board is in a transmission state, the second printed circuit board is configured to detect a change in a receiving state of the second printed circuit board, and adapted to halt transmission for a period of time based on said receiving state and wherein the period of time is a period of time of random length.
  • 8. The sensor of claim 1, wherein, when the second printed circuit board is in a transmission state, the second printed circuit board is configured to detect a change in a receiving state of the second printed circuit board, and adapted to halt transmission for a period of time based on said receiving state and wherein, after said period of time has elapsed, the second printed circuit board is configured to reinitiate transmission.
  • 9. An electrocardiogram monitoring system configured to monitor a motion of a person and to monitor electrical signals generated by the person's heart, comprising: a monitoring device configured to receive data indicative of the electrical signals and data indicative of the motion of the person, wherein the monitoring device comprises at least two ports;a first electrocardiogram lead wire having a first end with a connector configured to connect to either of the at least two ports and having a second end with a first receptacle, wherein the first receptacle is configured to attach to the person and wherein the first receptacle comprises an electrode and does not comprise a motion detector; anda second lead wire having a first end with a connector configured to connect to either of the at least two ports and having a second end with a second receptacle, wherein the second receptacle is configured to attach to the person, wherein the second receptacle comprises a first printed circuit board integrated into the second receptacle comprising a motion detector configured to acquire positional and movement information of the person and transmit the positional and movement information over the second lead; anda second printed circuit board integrated into the monitoring device comprising a physiological sensor and a power source, wherein the physiological sensor is configured to acquire physiological data of the person and transmit the physiological data over the first electrocardiogram lead wire, wherein the first printed circuit board is configured as a slave to the second printed circuit board, wherein the first printed circuit board and the second printed circuit board are connected via the second lead wire; wherein the first printed circuit board is configured to receive power from the second printed circuit board over the second lead wire and compare said received power to a reference, and wherein the physiological sensor, via the first electrocardiogram lead wire, and motion detector, via the second lead wire, are configured to asynchronously communicate data with the monitoring device.
  • 10. The electrocardiogram monitoring system of claim 9, wherein the second lead wire is further adapted to channel power to the motion detector from the second printed circuit board and to transmit data to and from the motion detector.
  • 11. The electrocardiogram monitoring system of claim 9, wherein, in the first electrocardiogram lead wire, the electrode is partially exposed through the first receptacle, is configured to detect the electrical signals, and is in electrical communication with the first electrocardiogram lead wire and wherein, in the second lead wire, the electrode is partially exposed through the second receptacle, is configured to detect the electrical signals, and is in electrical communication with the second lead wire.
  • 12. The electrocardiogram monitoring system of claim 9, wherein, in the second lead wire, the electrode is positioned adjacent the motion detector and wherein the motion detector comprises at least one of a three-axis accelerometer, a combination of a three-axis accelerometer and a gyroscope, or a combination of a three-axis accelerometer, a gyroscope, and a magnetometer integrated therein.
  • 13. The electrocardiogram monitoring system of claim 9, wherein the monitoring device comprises a third port.
  • 14. The electrocardiogram monitoring system of claim 13, further comprising a third electrocardiogram lead wire having a first end with a connector configured to connect to either of the at least two ports or the third port and having a second end with a receptacle, wherein the receptacle is configured to attach to the person and wherein the receptacle comprises an electrode and does not comprise a motion detector.
  • 15. The electrocardiogram monitoring system of claim 14, wherein the monitoring device comprises a fourth port.
  • 16. The electrocardiogram monitoring system of claim 15, further comprising a fourth electrocardiogram lead wire having a first end with a connector configured to connect to either of the at least two ports, the third port or the fourth port and having a second end with a receptacle, wherein the receptacle is configured to attach to the person and wherein the receptacle comprises an electrode and does not comprise a motion detector.
  • 17. The electrocardiogram monitoring system of claim 16, wherein each of the at least two ports, the third port and the fourth port are structurally equivalent and configured to receive a same shaped connector.
  • 18. The electrocardiogram monitoring system of claim 9, wherein, when the second printed circuit board is in a transmission state, the second printed circuit board is configured to detect a change in a receiving state of the second printed circuit board, and adapted to halt transmission for a period of time based on said receiving state and wherein the period of time is a period of time of random length.
  • 19. The electrocardiogram monitoring system of claim 9, wherein, when the second printed circuit board is in a transmission state, the second printed circuit board is configured to detect a change in a receiving state of the second printed circuit board, and adapted to halt transmission for a period of time based on said receiving state and wherein, after said period of time has elapsed, the second printed circuit board is configured to reinitiate transmission.
  • 20. A method for monitoring a motion of a person and electrical signals generated by the person's heart, comprising: acquiring a monitoring device configured to receive data indicative of the electrical signals and data indicative of the motion of the person, wherein the monitoring device comprises at least two ports;connecting a first electrocardiogram lead wire to either of the at least two ports, wherein the first electrocardiogram lead wire comprises a first end with a connector configured to connect to either of the at least two ports and a second end with a first receptacle, wherein the first receptacle is configured to attach to the person and wherein the first receptacle comprises an electrode and does not comprise a motion detector;attaching the electrode of the first electrocardiogram lead wire to the person;connecting a second lead wire to either of the at least two ports, wherein the second lead wire has a first end with a connector configured to connect to either of the at least two ports and a second end with a second receptacle, wherein the second receptacle is configured to attach to the person, wherein the second receptacle comprises an electrode and a first printed circuit board comprising a motion detector configured to acquire positional and movement information of the person and transmit the positional and movement information over the second lead wire, wherein a second printed circuit board positioned in the monitoring device comprises a power source and a physiological sensor configured to acquire physiological data of the person, wherein the first printed circuit board is configured as a slave to the second printed circuit board, wherein the first printed circuit board and the second printed circuit board are connected via the second lead wire, wherein the first printed circuit board is configured to receive power from the second printed circuit board over the second lead wire and compare said received power to a reference, and wherein the motion detector is configured to asynchronously communicate data with the monitoring device;attaching the electrode of the second lead wire to the person;activating the monitoring device; andrecording data indicative of the electrical signals and data indicative of the motion of the person.
  • 21. The method of claim 20, wherein the second lead wire is further adapted to channel power from the second printed circuit board to the motion detector and to transmit data to and from the motion detector.
  • 22. The method of claim 20, wherein, in the second lead wire, the electrode is positioned adjacent the motion detector having at least one of a three-axis accelerometer, a combination of a three-axis accelerometer and a gyroscope, or a combination of a three-axis accelerometer, a gyroscope, and a magnetometer integrated therein.
  • 23. The method of claim 20, further comprising connecting a third electrocardiogram lead wire to either of the at least two ports or a third port, wherein the third electrocardiogram lead wire has a first end with a connector configured to connect to either of the at least two ports or the third port and a second end with a receptacle, wherein the receptacle is configured to attach to the person, wherein the receptacle comprises an electrode and does not comprise a motion detector and attaching the electrode of the third electrocardiogram lead wire to the person.
  • 24. The method of claim 23, further comprising connecting a fourth electrocardiogram lead wire to either of the at least two ports, the third port, or a fourth port, wherein the fourth electrocardiogram lead wire has a first end with a connector configured to connect to either of the at least two ports, the third port or the fourth port, and a second end with a receptacle, wherein the receptacle is configured to attach to the person, wherein the receptacle comprises an electrode and does not comprise a motion detector and attaching the electrode of the fourth electrocardiogram lead wire to the person.
  • 25. The method of claim 24, wherein each of the at least two ports, the third port and the fourth port are structurally equivalent and configured to receive a same shaped connector.
  • 26. The method of claim 20, wherein, when the second printed circuit board is in a transmission state, the second printed circuit board is configured to detect a change in a receiving state of the second printed circuit board, and adapted to halt transmission for a period of time based on said receiving state and wherein the period of time is a period of time of random length.
  • 27. The method of claim 20, wherein, when the second printed circuit board is in a transmission state, the second printed circuit board is configured to detect a change in a receiving state of the second printed circuit board, and adapted to halt transmission for a period of time based on said receiving state and wherein, after said period of time has elapsed, the second printed circuit board is configured to reinitiate transmission.
CROSS-REFERENCE

The present application relies on U.S. Patent Provisional Application No. 62/866,621, entitled “Using Data From a Body Worn Sensor to Modify Monitored Physiological Data”, and filed on Jun. 26, 2019, for priority.

US Referenced Citations (581)
Number Name Date Kind
2003120 William May 1935 A
2004116 Jennings Jun 1935 A
2005005 Preston Jun 1935 A
2005146 Kotrbaty Jun 1935 A
2006213 Halliday Jun 1935 A
2007120 Holmes Jul 1935 A
2008221 Molander Jul 1935 A
2008251 Hillebrand Jul 1935 A
2009121 Price Jul 1935 A
2009326 Sanchez-Vello Jul 1935 A
2246464 Gerber Jun 1941 A
2808580 Fuller Oct 1957 A
2820651 Phillips Jan 1958 A
2912858 Fuller Nov 1959 A
2944547 Ziherl Jul 1960 A
3517639 Whitsel Jun 1970 A
3608545 Novack Sep 1971 A
3618592 Simpson Nov 1971 A
3673863 Spacek Jul 1972 A
3689908 Ray Sep 1972 A
3733482 Miller May 1973 A
3757577 Bozek Sep 1973 A
3844171 Rodger Oct 1974 A
3897606 Schleining Aug 1975 A
3938551 Henkin Feb 1976 A
3954010 Hilblom May 1976 A
3981329 Wohlwend Sep 1976 A
4064826 Pauli Dec 1977 A
4148312 Bird Apr 1979 A
4167115 Stoever Sep 1979 A
4323064 Hoenig Apr 1982 A
4365331 Biba Dec 1982 A
4428230 Testone Jan 1984 A
4428507 Sneider Jan 1984 A
4513294 Anderson Apr 1985 A
4521891 Biba Jun 1985 A
4557216 Demyon Dec 1985 A
4615547 Sutcliffe Oct 1986 A
4625731 Quedens Dec 1986 A
4630485 Wastlsr Dec 1986 A
4630486 Miles Dec 1986 A
4643693 Rubinstein Feb 1987 A
4697450 Bachman Oct 1987 A
4869253 Craig Sep 1989 A
4879997 Bickford Nov 1989 A
4899585 Kulha Feb 1990 A
4903222 Carter Feb 1990 A
4944305 Takatsu Jul 1990 A
4989791 Ridenour Feb 1991 A
4991576 Henkin Feb 1991 A
4993683 Kreuzer Feb 1991 A
5086397 Schuster Feb 1992 A
5087906 Eaton Feb 1992 A
5101851 Abadi Apr 1992 A
5144898 Posly Sep 1992 A
5174163 Gussman Dec 1992 A
5197480 Gebhardt Mar 1993 A
5213108 Bredesen May 1993 A
5222486 Vaughn Jun 1993 A
5231981 Schreiber Aug 1993 A
5233975 Choate Aug 1993 A
5253641 Choate Oct 1993 A
5262944 Weisner Nov 1993 A
5291182 Wiseman Mar 1994 A
5292564 Lee Mar 1994 A
5311908 Barone May 1994 A
5319363 Welch Jun 1994 A
5322069 Gallant Jun 1994 A
5331549 Crawford, Jr. Jul 1994 A
5333106 Lanpher Jul 1994 A
5339826 Schmidt Aug 1994 A
5348008 Bornn Sep 1994 A
5372389 Tam Dec 1994 A
5373746 Bloss Dec 1994 A
5375604 Kelly Dec 1994 A
5377399 Ogawa Jan 1995 A
5419332 Sabbah May 1995 A
5438983 Falcone Aug 1995 A
5467954 Wekell Nov 1995 A
5473536 Wimmer Dec 1995 A
5482050 Smokoff Jan 1996 A
5497766 Foster Mar 1996 A
5502853 Singleton Apr 1996 A
5515083 Casebolt May 1996 A
5520191 Karlsson May 1996 A
5537992 Bjoernstijerna Jul 1996 A
5553296 Forrest Sep 1996 A
5558418 Lambright Sep 1996 A
5558638 Evers Sep 1996 A
5563495 Tomiyori Oct 1996 A
5584291 Vapola Dec 1996 A
5586909 Saba Dec 1996 A
5603330 Suga Feb 1997 A
5633457 Kilar May 1997 A
5682526 Smokoff Oct 1997 A
5684504 Verhulst Nov 1997 A
5687717 Halpern Nov 1997 A
5692494 Pernetti Dec 1997 A
5715813 Guevrekian Feb 1998 A
5718235 Golosarsky Feb 1998 A
5724025 Tavori Mar 1998 A
5724985 Snell Mar 1998 A
5749367 Gamlyn May 1998 A
5752917 Fuchs May 1998 A
5765842 Phaneuf Jun 1998 A
5779305 Hocking Jul 1998 A
5787298 Broedner Jul 1998 A
5800360 Kisner Sep 1998 A
5800387 Duffy Sep 1998 A
5819741 Karlsson Oct 1998 A
5852440 Grossman Dec 1998 A
5855550 Lai Jan 1999 A
5868133 Devries Feb 1999 A
5904328 Leveridge May 1999 A
5947907 Duich Sep 1999 A
5956013 Raj Sep 1999 A
5966760 Gallant Oct 1999 A
5975081 Hood Nov 1999 A
6005767 Ku Dec 1999 A
6008809 Brooks Dec 1999 A
6024089 Wallace Feb 2000 A
6042548 Giuffre Mar 2000 A
6048044 Biggel Apr 2000 A
6050940 Braun Apr 2000 A
6063028 Luciano May 2000 A
6096025 Borders Aug 2000 A
6099093 Spence Aug 2000 A
6115643 Stine Sep 2000 A
6131571 Lampotang Oct 2000 A
6134537 Pao Oct 2000 A
6146523 Kenley Nov 2000 A
6155255 Lambert Dec 2000 A
6167401 Csipkes Dec 2000 A
6188407 Smith Feb 2001 B1
6221012 Maschke Apr 2001 B1
6269813 Fitzgerald Aug 2001 B1
6322502 Schoenberg Nov 2001 B1
6338823 Furukawa Jan 2002 B1
6339732 Phoon Jan 2002 B1
6346047 Sobota Feb 2002 B1
6347310 Passera Feb 2002 B1
6349436 Kreuzer Feb 2002 B1
6364834 Reuss Apr 2002 B1
6383136 Jordan May 2002 B1
6396583 Clare May 2002 B1
6406426 Reuss Jun 2002 B1
6416471 Kumar Jul 2002 B1
6424860 Karlsson Jul 2002 B1
6435690 Till Aug 2002 B1
6443889 Groth Sep 2002 B1
D467001 Buczek Dec 2002 S
6488029 Hood Dec 2002 B1
6536430 Smith Mar 2003 B1
6541758 Yashiro Apr 2003 B2
6554238 Hibberd Apr 2003 B1
6571227 Agrafiotis May 2003 B1
6571792 Hendrickson Jun 2003 B1
6591694 Tsai Jul 2003 B2
6600662 Emmert Jul 2003 B1
6605046 Del Mar Aug 2003 B1
6647341 Golub Nov 2003 B1
6650779 Vachtesvanos Nov 2003 B2
6674837 Taskar Jan 2004 B1
6692258 Kurzweil Feb 2004 B1
6692436 Bluth Feb 2004 B1
6699187 Webb Mar 2004 B2
6702754 Ogura Mar 2004 B2
6715722 Roberts Apr 2004 B2
6722010 Maruyama Apr 2004 B2
6725184 Gadh Apr 2004 B1
6735648 Onishi May 2004 B2
6771172 Robinson Aug 2004 B1
6790178 Mault Sep 2004 B1
6796264 Appenzeller Sep 2004 B1
6804656 Rosenfeld Oct 2004 B1
6824539 Novak Nov 2004 B2
6829501 Nielsen Dec 2004 B2
6868495 Glover Mar 2005 B1
6896241 Chen May 2005 B2
6931795 Baloga Aug 2005 B1
6933931 Lubarsky, Jr. Aug 2005 B2
6944561 Tseng Sep 2005 B2
6985762 Brashears Jan 2006 B2
7006865 Cohen Feb 2006 B1
7013833 Lemberger Mar 2006 B2
7024569 Wright Apr 2006 B1
7031857 Tarassenko Apr 2006 B2
7038588 Boone May 2006 B2
7040175 Huang May 2006 B1
7055232 Maruyama Jun 2006 B2
7076435 Mckeag Jul 2006 B1
7081091 Merrett Jul 2006 B2
RE39233 Mcgrath Aug 2006 E
7096864 Mayer Aug 2006 B1
7111852 Woods Sep 2006 B2
7117438 Wallace Oct 2006 B2
7128709 Saruya Oct 2006 B2
7137951 Pilarski Nov 2006 B2
7193233 Smith Mar 2007 B2
7216802 De La Huerga May 2007 B1
7219559 Sugi May 2007 B2
7223007 Fredley May 2007 B1
7234944 Nordin Jun 2007 B2
7256708 Rosenfeld Aug 2007 B2
7265676 Gordon Sep 2007 B2
7267666 Duchon Sep 2007 B1
7282029 Poulsen Oct 2007 B1
7310544 Brister Dec 2007 B2
7315825 Rosenfeld Jan 2008 B2
7319386 Collins, Jr. Jan 2008 B2
7336980 Kaikuranta Feb 2008 B1
7360454 Kawashima Apr 2008 B2
7371214 Kouchi May 2008 B2
7386340 Schlegel Jun 2008 B2
7390299 Weiner Jun 2008 B2
7439856 Weiner Oct 2008 B2
7468032 Stahmann Dec 2008 B2
7469601 Sugi Dec 2008 B2
7489250 Bock Feb 2009 B2
D589959 Han Apr 2009 S
7516924 White Apr 2009 B2
7523040 Kirchhoff Apr 2009 B2
7529083 Jeong May 2009 B2
7530949 Alali May 2009 B2
7540187 Dillon Jun 2009 B1
7556039 Peirry Jul 2009 B1
7566307 Inukai Jul 2009 B2
7621500 Ishizaki Nov 2009 B2
7704212 Wekell Apr 2010 B2
7710567 Mentzer May 2010 B1
7751878 Merkle Jul 2010 B1
7756722 Levine Jul 2010 B2
7831670 Goodman Nov 2010 B2
7836882 Rumph Nov 2010 B1
7945452 Fathallah May 2011 B2
7974924 Holla Jul 2011 B2
8002701 John Aug 2011 B2
8027846 Schoenberg Sep 2011 B2
8033686 Recker Oct 2011 B2
8091422 Felske Jan 2012 B2
8147419 Krauss Apr 2012 B2
8190900 Corndorf May 2012 B2
8233272 Fidacaro Jul 2012 B2
8273018 Fackler Sep 2012 B1
8344847 Moberg Jan 2013 B2
8398408 Hansen Mar 2013 B1
8413271 Blanchard Apr 2013 B2
8544406 Fujihira Oct 2013 B2
8593275 Davis Nov 2013 B2
8704666 Baker, Jr. Apr 2014 B2
8738118 Moon May 2014 B2
8798527 Gaines Aug 2014 B2
8811888 Wiesner Aug 2014 B2
8818260 Gaines Aug 2014 B2
8855550 Gaines Oct 2014 B2
8868028 Kaltsukis Oct 2014 B1
8897198 Gaines Nov 2014 B2
8903308 Wiesner Dec 2014 B2
8922330 Moberg Dec 2014 B2
8931702 Wekell Jan 2015 B2
8940147 Bartsch Jan 2015 B1
8943168 Wiesner Jan 2015 B2
9020419 Gaines Apr 2015 B2
9086313 Tobia Jul 2015 B2
9844637 Beduhn Dec 2017 B2
10617302 Al-Ali Apr 2020 B2
20010001179 Healy May 2001 A1
20010004234 Petelenz Jun 2001 A1
20010018332 Lustila Aug 2001 A1
20010027791 Wallace Oct 2001 A1
20010034475 Flach Oct 2001 A1
20020013517 West Jan 2002 A1
20020026941 Biondi Mar 2002 A1
20020032386 Sackner Mar 2002 A1
20020040954 Roberts Apr 2002 A1
20020060247 Krishnaswamy May 2002 A1
20020095424 Chung Jul 2002 A1
20020108011 Tanha Aug 2002 A1
20020138017 Bui Sep 2002 A1
20020161291 Kianl Oct 2002 A1
20020173991 Avitall Nov 2002 A1
20020193679 Malave Dec 2002 A1
20020196141 Boone Dec 2002 A1
20020196234 Gray Dec 2002 A1
20030028118 Dupree Feb 2003 A1
20030029451 Blair Feb 2003 A1
20030037786 Biondi Feb 2003 A1
20030065536 Hansen Apr 2003 A1
20030076015 Ehrenreich Apr 2003 A1
20030092974 Santoso May 2003 A1
20030114836 Estes Jun 2003 A1
20030117296 Seely Jun 2003 A1
20030120164 Nielsen Jun 2003 A1
20030130590 Bui Jul 2003 A1
20030135087 Hickle Jul 2003 A1
20030144699 Freeman Jul 2003 A1
20030145854 Hickle Aug 2003 A1
20030158492 Sheldon Aug 2003 A1
20030171898 Tarassenko Sep 2003 A1
20030191373 Blike Oct 2003 A1
20030197614 Smith Oct 2003 A1
20030209246 Schroeder Nov 2003 A1
20030210780 Pratt Nov 2003 A1
20030216621 Alpert Nov 2003 A1
20030231460 Moscovitch Dec 2003 A1
20030233129 Matos Dec 2003 A1
20040008825 Seeley Jan 2004 A1
20040011938 Oddsen Jan 2004 A1
20040015079 Berger Jan 2004 A1
20040021705 Baker Feb 2004 A1
20040024303 Banks Feb 2004 A1
20040032426 Rutledge Feb 2004 A1
20040054261 Kamataki Mar 2004 A1
20040054295 Ramseth Mar 2004 A1
20040073128 Hatlestad Apr 2004 A1
20040077954 Oakley Apr 2004 A1
20040102687 Brashears May 2004 A1
20040103001 Mazar May 2004 A1
20040113895 Andre Jun 2004 A1
20040116813 Selzer Jun 2004 A1
20040117209 Brown Jun 2004 A1
20040117233 Rapp Jun 2004 A1
20040118404 Wallace Jun 2004 A1
20040147818 Levy Jul 2004 A1
20040149892 Akitt Aug 2004 A1
20040153257 Munk Aug 2004 A1
20040158132 Zaleski Aug 2004 A1
20040172078 Chinchoy Sep 2004 A1
20040172222 Simpson Sep 2004 A1
20040186357 Soderberg Sep 2004 A1
20040220629 Kamath Nov 2004 A1
20040221077 Yen Nov 2004 A1
20040236192 Necolashehada Nov 2004 A1
20040240167 Ledbetter Dec 2004 A1
20040249298 Selevan Dec 2004 A1
20040249673 Smith Dec 2004 A1
20050005932 Berman Jan 2005 A1
20050010165 Hickle Jan 2005 A1
20050033124 Kelly Feb 2005 A1
20050033188 Whitaker Feb 2005 A1
20050038332 Saidara Feb 2005 A1
20050038821 Wallen Feb 2005 A1
20050054920 Washburn Mar 2005 A1
20050059924 Katz Mar 2005 A1
20050065417 Ali Mar 2005 A1
20050113650 Pacione May 2005 A1
20050113704 Lawson May 2005 A1
20050124866 Elaz Jun 2005 A1
20050139213 Blike Jun 2005 A1
20050146431 Hastings Jul 2005 A1
20050148890 Hastings Jul 2005 A1
20050151640 Hastings Jul 2005 A1
20050177096 Bollish Aug 2005 A1
20050192845 Brinsfield Sep 2005 A1
20050193263 Watt Sep 2005 A1
20050229110 Gegner Oct 2005 A1
20050251232 Hartley Nov 2005 A1
20060004475 Brackett Jan 2006 A1
20060013462 Sadikali Jan 2006 A1
20060022096 Chan Feb 2006 A1
20060042635 Niklewski Mar 2006 A1
20060053034 Hlathein Mar 2006 A1
20060058591 Garboski Mar 2006 A1
20060094970 Drew May 2006 A1
20060142808 Pearce Jun 2006 A1
20060155206 Lynn Jul 2006 A1
20060155589 Lane Jul 2006 A1
20060161295 Yun Jul 2006 A1
20060199618 Steer Sep 2006 A1
20060213517 Mashak Sep 2006 A1
20060226992 Al-Ali Oct 2006 A1
20060235316 Ungless Oct 2006 A1
20060252999 Devaul Nov 2006 A1
20060258926 Ali Nov 2006 A1
20060261781 Oberding Nov 2006 A1
20060272141 Rudduck Dec 2006 A1
20060278270 Jones Dec 2006 A1
20060280621 Kinugawa Dec 2006 A1
20060282021 Devaul Dec 2006 A1
20060282302 Hussain Dec 2006 A1
20060290525 Andersen Dec 2006 A1
20070007418 Lubbers Jan 2007 A1
20070028921 Banner Feb 2007 A1
20070032749 Overall Feb 2007 A1
20070044578 Jones Mar 2007 A1
20070047797 Vilella Mar 2007 A1
20070049127 Nordin Mar 2007 A1
20070050715 Behar Mar 2007 A1
20070051861 Teramachi Mar 2007 A1
20070060869 Tolle Mar 2007 A1
20070063850 Devaul Mar 2007 A1
20070093784 Leonard Apr 2007 A1
20070100213 Dossas May 2007 A1
20070107728 Ricciardelli May 2007 A1
20070108291 Bhatia May 2007 A1
20070120763 Depaepe May 2007 A1
20070136023 Schoenborn Jun 2007 A1
20070165865 Talvitie Jul 2007 A1
20070176931 Tivig Aug 2007 A1
20070180140 Welch Aug 2007 A1
20070197881 Wolf Aug 2007 A1
20070199388 Furkert Aug 2007 A1
20070199566 Be Aug 2007 A1
20070255116 Mehta Nov 2007 A1
20070265533 Tran Nov 2007 A1
20070276277 Booth Nov 2007 A1
20070296571 Kolen Dec 2007 A1
20080033254 Kamath Feb 2008 A1
20080039701 Ali Feb 2008 A1
20080039735 Hickerson Feb 2008 A1
20080051667 Goldreich Feb 2008 A1
20080077435 Muradia Mar 2008 A1
20080103375 Kiani May 2008 A1
20080117029 Dohrmann May 2008 A1
20080154909 Dam Jun 2008 A1
20080167569 Ermes Jul 2008 A1
20080170287 Champion Jul 2008 A1
20080177160 Al Ali Jul 2008 A1
20080177397 Davlin Jul 2008 A1
20080181465 Sauerwein Jul 2008 A1
20080194918 Kulik Aug 2008 A1
20080208381 Soga Aug 2008 A1
20080221418 Al-Ali Sep 2008 A1
20080221495 Steffens Sep 2008 A1
20080228045 Gao Sep 2008 A1
20080228089 Cho Sep 2008 A1
20080249376 Zaleski Oct 2008 A1
20080251003 Boston Oct 2008 A1
20080267790 Gaudet Oct 2008 A1
20080271736 Leonard Nov 2008 A1
20080275309 Stivoric Nov 2008 A1
20080281168 Gibson Nov 2008 A1
20080281170 Eshelman Nov 2008 A1
20080287763 Hayter Nov 2008 A1
20080294057 Parlikar Nov 2008 A1
20080310600 Clawson Dec 2008 A1
20080312709 Volpe Dec 2008 A1
20080319331 Zizzo Dec 2008 A1
20090005651 Ward Jan 2009 A1
20090005703 Fasciano Jan 2009 A1
20090015116 Arceta Jan 2009 A1
20090024008 Brunner Jan 2009 A1
20090043171 Rule Feb 2009 A1
20090054743 Stewart Feb 2009 A1
20090055735 Zaleski Feb 2009 A1
20090069642 Gao Mar 2009 A1
20090076345 Manicka Mar 2009 A1
20090076397 Libbus Mar 2009 A1
20090099480 Salgo Apr 2009 A1
20090117784 Wu May 2009 A1
20090121592 De Nando May 2009 A1
20090124239 Tsuei May 2009 A1
20090131759 Sims May 2009 A1
20090131805 Obrien May 2009 A1
20090133609 Nethken May 2009 A1
20090149901 Jayne Jun 2009 A1
20090151720 Inoue Jun 2009 A1
20090182204 Semler Jul 2009 A1
20090190713 Wai Jul 2009 A1
20090192541 Ortiz Jul 2009 A1
20090193315 Gower Jul 2009 A1
20090200902 Mckay Aug 2009 A1
20090206713 Vilkas Aug 2009 A1
20090209849 Rowe Aug 2009 A1
20090213034 Wu Aug 2009 A1
20090237264 Bobey Sep 2009 A1
20090248173 Sasko Oct 2009 A1
20090275805 Lane Nov 2009 A1
20090292227 Scholten Nov 2009 A1
20090326340 Wang Dec 2009 A1
20100004539 Chen Jan 2010 A1
20100007588 Zygmunt Jan 2010 A1
20100014229 Horie Jan 2010 A1
20100056875 Schoenberg Mar 2010 A1
20100056877 Fein Mar 2010 A1
20100070417 Flynn Mar 2010 A1
20100073915 Nittou Mar 2010 A1
20100094096 Petruzzelli Apr 2010 A1
20100110019 Ozias May 2010 A1
20100137729 Pierry Jun 2010 A1
20100156655 Bullemer Jun 2010 A1
20100164452 Ruan Jul 2010 A1
20100175695 Jamison Jul 2010 A1
20100179400 Brauker Jul 2010 A1
20100198027 Dixon Aug 2010 A1
20100233891 Broeksteeg Sep 2010 A1
20100238138 Goertz Sep 2010 A1
20100245091 Singh Sep 2010 A1
20100259881 Choi Oct 2010 A1
20100261979 Kiani Oct 2010 A1
20100273530 Jarvis Oct 2010 A1
20100282256 Loescher Nov 2010 A1
20100285771 Peabody Nov 2010 A1
20100294405 Longinotti-Buitoni Nov 2010 A1
20100298654 McCombie Nov 2010 A1
20100298655 Mccombie Nov 2010 A1
20100298656 Mccombie Nov 2010 A1
20100298718 Gilham Nov 2010 A1
20100318578 Treu Dec 2010 A1
20100324380 Perkins Dec 2010 A1
20100324384 Moon Dec 2010 A1
20100324936 Vishnubhatla Dec 2010 A1
20110004071 Faiola Jan 2011 A1
20110006876 Moberg Jan 2011 A1
20110015493 Koschek Jan 2011 A1
20110054267 Fidacaro Mar 2011 A1
20110055205 Scott Mar 2011 A1
20110066045 Moon Mar 2011 A1
20110066051 Moon Mar 2011 A1
20110071420 Pierre Mar 2011 A1
20110077971 Surwit Mar 2011 A1
20110087756 Biondi Apr 2011 A1
20110088694 Tobia Apr 2011 A1
20110092780 Zhang Apr 2011 A1
20110092838 Helfenbein Apr 2011 A1
20110125040 Crawford May 2011 A1
20110130798 Elghazzawi Jun 2011 A1
20110138323 Skidmore Jun 2011 A1
20110146676 Dallam Jun 2011 A1
20110152629 Eaton Jun 2011 A1
20110164074 Frank Jul 2011 A1
20110190643 Zhang Aug 2011 A1
20110224531 Steiner Sep 2011 A1
20110225771 Bartnick Sep 2011 A1
20110227739 Gilham Sep 2011 A1
20110245579 Bruggeman Oct 2011 A1
20110245688 Arora Oct 2011 A1
20110257489 Banet Oct 2011 A1
20110270058 Price Nov 2011 A1
20110279383 Wilson Nov 2011 A1
20110279958 Clark Nov 2011 A1
20110295426 Georgeson Dec 2011 A1
20110298718 Chang Dec 2011 A1
20110301435 Albert Dec 2011 A1
20120030610 Diperna Feb 2012 A1
20120041783 Mckee Feb 2012 A1
20120041786 Yu Feb 2012 A1
20120075060 Connor Mar 2012 A1
20120075327 Mackenzie Mar 2012 A1
20120083906 Weatherhead Apr 2012 A1
20120093311 Nierzwick Apr 2012 A1
20120095778 Gross Apr 2012 A1
20120101396 Solosko Apr 2012 A1
20120101411 Hausdorff Apr 2012 A1
20120105233 Bobey May 2012 A1
20120105774 Fletcher May 2012 A1
20120108991 Song May 2012 A1
20120116331 Locke May 2012 A1
20120127103 Qualey May 2012 A1
20120136231 Markel May 2012 A1
20120180789 Tobia Jul 2012 A1
20120184120 Basta Jul 2012 A1
20120186583 Drapes Jul 2012 A1
20120203491 Sun Aug 2012 A1
20120209984 Gonzalez-Banos Aug 2012 A1
20120232398 Roham Sep 2012 A1
20120233679 Shedrinsky Sep 2012 A1
20120245439 Andre Sep 2012 A1
20120265089 Orr Oct 2012 A1
20120330675 Muradia Dec 2012 A1
20130015966 Soomro Jan 2013 A1
20130030258 Cheung Jan 2013 A1
20130107445 Reber May 2013 A1
20130116514 Kroner May 2013 A1
20130162426 Wiesner Jun 2013 A1
20130237772 Pisani Sep 2013 A1
20130267861 Vassallo Oct 2013 A1
20140142963 Hill May 2014 A1
20140153747 Contolini Jun 2014 A1
20140275873 Fries Sep 2014 A1
20140275928 Acquista Sep 2014 A1
20140337777 Senesac Nov 2014 A1
20150018703 Shetty Jan 2015 A1
20150374256 Skrabal Dec 2015 A1
20160120445 Peluso May 2016 A1
20160157718 Barnes Jun 2016 A1
20160206224 Marek Jul 2016 A1
20170215797 Cretu-Petra Aug 2017 A1
20180271380 Gregg Sep 2018 A1
20200289185 Forsyth Sep 2020 A1
20200330037 Al-Ali Oct 2020 A1
Foreign Referenced Citations (123)
Number Date Country
1293943 May 2001 CN
1293943 May 2001 CN
1348740 May 2002 CN
1518427 Aug 2004 CN
1593764 Mar 2005 CN
1688256 Oct 2005 CN
1781107 May 2006 CN
1839311 Sep 2006 CN
1943505 Apr 2007 CN
1983258 Jun 2007 CN
100391403 Jun 2008 CN
101194278 Jun 2008 CN
101496923 Aug 2009 CN
101496923 Aug 2009 CN
101501683 Aug 2009 CN
101521845 Sep 2009 CN
101521845 Sep 2009 CN
101547716 Sep 2009 CN
101611410 Dec 2009 CN
201570216 Sep 2010 CN
201594642 Sep 2010 CN
101893916 Nov 2010 CN
201708829 Jan 2011 CN
102184312 Sep 2011 CN
102567624 Jul 2012 CN
203379114 Jan 2014 CN
9415672 Nov 1994 DE
102006011151 Sep 2007 DE
0596509 May 1994 EP
0686900 Dec 1995 EP
0686900 Dec 1995 EP
0955007 Nov 1999 EP
1054338 Nov 2000 EP
1227752 May 2001 EP
1197178 Apr 2002 EP
1406198 Apr 2004 EP
1449558 Aug 2004 EP
1852060 Nov 2007 EP
1868123 Dec 2007 EP
1197178 Jul 2008 EP
2555668 Feb 2013 EP
2641151 Sep 2013 EP
2651482 Oct 2013 EP
2709518 Mar 2014 EP
2805564 Sep 2015 EP
2908623 May 2008 FR
2908624 May 2008 FR
191214095 Oct 1912 GB
568212 Mar 1945 GB
2348715 Oct 2000 GB
2389290 Dec 2003 GB
2438495 Nov 2007 GB
13286735 Dec 1991 JP
05143611 Jun 1993 JP
15184550 Jul 1993 JP
15341771 Dec 1993 JP
07163527 Jun 1995 JP
H07227381 Aug 1995 JP
08504345 May 1996 JP
08504531 May 1996 JP
08275926 Oct 1996 JP
19108194 Apr 1997 JP
3059292 Jul 1999 JP
2001052281 Feb 2001 JP
2003210422 Jul 2003 JP
2003220039 Aug 2003 JP
2004147994 May 2004 JP
2004208855 Jul 2004 JP
2005529396 Sep 2005 JP
2008520026 Jun 2008 JP
2008532587 Aug 2008 JP
2009054381 Mar 2009 JP
2009517160 Apr 2009 JP
2009518153 May 2009 JP
2009211589 Sep 2009 JP
2009245435 Oct 2009 JP
2009544431 Dec 2009 JP
2010086535 Apr 2010 JP
2010533559 Oct 2010 JP
2011078640 Apr 2011 JP
2012529926 Nov 2012 JP
2018506338 Mar 2018 JP
9415523 Jul 1994 WO
1994015523 Jul 1994 WO
1999018705 Apr 1999 WO
1999027326 Jun 1999 WO
2000042911 Jul 2000 WO
0134023 May 2001 WO
03091841 Nov 2003 WO
03102850 Dec 2003 WO
2004038669 May 2004 WO
2004070994 Aug 2004 WO
2005101276 Oct 2005 WO
2005114524 Dec 2005 WO
2006051464 May 2006 WO
2006090371 Aug 2006 WO
2006094055 Sep 2006 WO
2008005921 Jan 2008 WO
2008079746 Jul 2008 WO
2010126797 Nov 2010 WO
2010126797 Nov 2010 WO
2010126916 Nov 2010 WO
2010126916 Nov 2010 WO
2010144720 Dec 2010 WO
2011001302 Jan 2011 WO
2011001302 Jan 2011 WO
2011046636 Apr 2011 WO
2011047363 Apr 2011 WO
2011119512 Sep 2011 WO
2012068564 May 2012 WO
2012068565 May 2012 WO
2012068567 May 2012 WO
2012068568 May 2012 WO
2012083276 Jun 2012 WO
2012083281 Jun 2012 WO
2012125135 Sep 2012 WO
2012128808 Sep 2012 WO
2012158720 Nov 2012 WO
2013056171 Apr 2013 WO
2013173520 Nov 2013 WO
2013173521 Nov 2013 WO
2014055660 Apr 2014 WO
2014194193 Dec 2014 WO
Non-Patent Literature Citations (49)
Entry
International Search Report for PCT/US2020/039705, Sep. 28, 2020.
International Preliminary Report on Patentability for PCT/US2020/039705, Dec. 28, 2021.
“BleaseSirius Anesthesia Systems User Manual 1073-0212-00/REV. B”, Dec. 1, 2010, pp. 1-258, XP055209666.
“Lifegard II Patient Monitor Operator's Manual”, Jan. 1, 2006, pp. 1-1, XP055209485.
Google patents search, Sep. 25, 2015, U.S. Appl. No. 14/044,524.
IntelliVue Patient Monitor; MP20/30, MP40/50, MP60/70/80/90, Release G.0 with Software Revision G.0x.xx (PHILIPS) Sep. 2008; pp. 4, 10, 19, 20, 46-49, 82, 326, 348, 420, 422, 424, 452; Accessed on Sep. 30, 2013: <http://www.mc.vanderbilt.edu/documents/nursingeducationresources/files/MP20-MP90%20Instructions%20for%20Use%20Manual%20Rev_G_0%20%20English%20M8000-9001K.pdf>.
International Preliminary Report on Patentability, PCT/US12/38000, Nov. 13, 2013.
International Preliminary Report on Patentability, PCT/US2006/007269, Sep. 11, 2007, Spacelabs Medical.
International Preliminary Report on Patentability, PCT/US2011/028007, Sep. 17, 2013, International Search Authority.
International Preliminary Report on Patentability, PCT/US2011/065678, Jun. 18, 2013, International Search Authority.
International Preliminary Report on Patentability, PCT/US2011/065685, Jun. 18, 2013.
International Preliminary Report on Patentability for PCT/US2011/061554, Feb. 25, 2014.
International Search Report, PCT/US2011/028007, Jul. 11, 2011, International Search Authority.
International Search Report, PCT/US2011/065685, May 8, 2012, International Search Authority.
International Search Report for PCT/US06/07269, Aug. 28, 2006.
International Search Report for PCT/US10/32635, Jul. 23, 2010.
International Search Report for PCT/US10/34025, Aug. 9, 2010.
International Search Report for PCT/US12/38000, Oct. 23, 2012.
International Search Report for PCT/US2010/052977, Mar. 18, 2011.
International Search Report for PCT/US2011/029278, Aug. 2, 2011.
International Search Report for PCT/US2011/061554, Feb. 14, 2014.
International Search Report for PCT/US2011/061555, Apr. 17, 2012.
International Search Report for PCT/US2011/061558, Aug. 10, 2012.
International Search Report for PCT/US2011/065676, Sep. 20, 2012.
International Search Report for PCT/US2011/065678, Jun. 29, 2012.
International Search Report for PCT/US2011/61557, Apr. 23, 2012.
International Search Report for PCT/US2012/060125, Apr. 19, 2013.
International Search Report for PCT/US2013/041246, Dec. 9, 2013.
International Search Report for PCT/US2013/041247, Jan. 10, 2014.
International Search Report for PCT/US2013/063087, Mar. 6, 2014.
International Search Report for PCT/US2014/040225, Nov. 5, 2014.
Schoenberg, Roy, MD; Sands, Daniel Z., MD MPH; Safran, Charles, MD; Center for Clinical Computing, Beth Israel Deaconess Medical Center, Harvard Medical School, “Making ICU Alarms Meaningful: a comparison of traditional vs. trend-based algorithms” (AMIA '99 Annual Symposium), 1999, pp. 1-5.
Google patents search, Apr. 9, 2018.
Philips: ‘IntelliVue Patient Monitor; MP20/30, MP40/50, MP60/70/80/90’, Internet Citation, Sep. 1, 2008, pp. 2PP, I-X, 1, XP003034216.
Anonymous: ‘Docking station-wikipedia, the free encyclopedia’, Feb. 20, 2012, XP055284610.
Anonymous: ‘Pogo pin-wikipedia, the free encyclopedia’, Apr. 28, 2012, XP055284974.
Anonymous: “Routing table”, Wikipedia, Oct. 3, 2012 (Oct. 3, 2012), XP055321398, Retrieved from the Internet: URL: https://en.wikipedia.org/w/index.php?title=Routing_table&oldid=515747820, [retrieved on Nov. 21, 2016].
Anonymous: “Metrics (networking)”, Wikipedia, Jul. 18, 2012 (Jul. 18, 2012), XP055321558, Retrieved from the Internet: URL: https://en.wikipedia.org/w/index.php?title=Metrics_(networking)&oldid=502970743, [retrieved on Nov. 22, 2016].
GE Healthcare, Modular monitoring for critical care, iMM Solar 8000i and iMM Transport Pro Monitors, 2005.
GE Healthcare, Carescape Monitor B850, Engineered to help provide better care, 2009.
Anonymous: “Framebuffer—Wikipedia, the free encyclopedia”, Mar. 14, 2010, XP055307861, Retrieved from the Internet: URL—https://en.wikipedia.org/w/index.php?title=Framebuffer&oldid=349748376 [retrieved on Oct. 5, 2016].
“IntelliVue Patient Monitor MP20/30, MP40/50, MP60/70/80/90 Release G.0 with Software Revision G.0X.XX” Sep. 2008; See particularly pp. 3-19.
Kevin James: “Status Checks”, PC Interfacing and Data Acquisition: Techniques for Measurement, Instrumentation and Control, Jul. 17, 2000, pp. 66-67, XP055461225, ISBN:978-0-7506-4624-6.
Aerotel Ltd v Telco Holdings Ltd Ord Rev 1 [2007] RPC 7 (Aerotel/Macrossam).
Symbian v Comptroller General of Patents [2008] EWCA Civ 1066.
AT&T Knowledge Ventures LP and Cvon Innovations Ltd v Comptroller General of patents [2009] EWHX 343 (Pat).
HTC Europe Co Ltd v Apple linc [2013] EWCA Civ 451.
Lantana v Comptroller—General of Patents [2013] EWHC 2673 (Pat).
Written Opinion of the International Searching Authority for PCT/US11/28007, Jul. 11, 2011.
Related Publications (1)
Number Date Country
20200405156 A1 Dec 2020 US
Provisional Applications (1)
Number Date Country
62866621 Jun 2019 US