Using estimated carinal pressure for feedback control of carinal pressure during ventilation

Information

  • Patent Grant
  • 9022031
  • Patent Number
    9,022,031
  • Date Filed
    Tuesday, January 31, 2012
    12 years ago
  • Date Issued
    Tuesday, May 5, 2015
    9 years ago
Abstract
This disclosure describes systems and methods for configuring a ventilator to estimate the carinal pressure to minimize the work of breathing due to a breathing tube. A patient's carina is a cartilaginous ridge located at the site of the tracheal bifurcation between the two primary bronchi. An estimated carinal pressure (a pressure estimated to exist at the patient carina) may be determined and used as feedback control for the carinal pressure. According to embodiments, the estimated carinal pressure may be compared to the carinal pressure command to determine an error. The carinal pressure command may be positive end expiratory pressure (PEEP) or some other suitable target pressure. The error between the estimated carinal pressure and the carinal pressure command may then be used as feedback control to achieve the carinal pressure command and thereby to minimize the work of breathing due to the breathing tube.
Description
INTRODUCTION

A ventilator is a device that mechanically helps patients breathe by replacing some or all of the muscular effort required to inflate and deflate the lungs. When delivering positive-pressure ventilation, the ventilator may be configured with a number of target pressures, including an inspiratory pressure (i.e., the target pressure to be delivered to the patient during inspiration) and an end-expiratory pressure (i.e., the target pressure at the end of exhalation). In some cases, a clinician may desire the baseline pressure to be positive, termed positive end-expiratory pressure (PEEP). Among other things, PEEP may promote higher oxygenation saturation and/or may prevent alveolar collapse during expiration. It is desirable that the carinal pressure be maintained at PEEP during inspiration so that the patient has the sense of breathing without the restriction imposed by the breathing tube.


Clinicians and patients may greatly benefit from a determination of an estimated carinal pressure as feedback control for maintaining the carinal pressure at PEEP in order to minimize the work of breathing due to the breathing tube. Additionally, a determination of an estimated carinal pressure may be used as feedback control for maintaining the carinal pressure at any other suitable target pressure.


Using Estimated Carinal Pressure for Feedback Control of Carinal Pressure During Ventilation

This disclosure describes systems and methods for configuring a ventilator to estimate the carinal pressure to minimize the work of breathing due to a breathing tube. A patient's carina is a cartilaginous ridge located at the site of the tracheal bifurcation between the two primary bronchi. According to embodiments, an estimated carinal pressure may be determined and used as feedback control for the carinal pressure. An estimated carinal pressure refers to a pressure estimated to exist at the patient carina. According to embodiments, the estimated carinal pressure may be compared to the carinal pressure command to determine an error. The carinal pressure command may be positive end expiratory pressure (PEEP), a function of PEEP, or some other suitable target pressure. The PEEP or other suitable target pressure may be set by a clinician for a particular patient based on a medical protocol, a medical prescription, or otherwise. The error between the estimated carinal pressure and the carinal pressure command may then be used as feedback control to achieve the carinal pressure command and thereby to minimize the work of breathing due to the breathing tube.


According to embodiments, a ventilator-implemented method for controlling delivery of gas flow to a patient is provided. The method comprises delivering gas flow to the patient based on a carinal pressure command. The method further comprises receiving a signal representative of a pressure at a patient wye and calculating a pressure drop across a breathing tube extending from the patient wye to about the carina of the patient. Additionally, the method comprises estimating a carinal pressure by subtracting the pressure drop across the breathing tube from the pressure at the patient wye and comparing the estimated carinal pressure to the carinal pressure command. The method further comprises controlling delivery of gas flow to the patient based on comparing the estimated carinal pressure and the carinal pressure command.


According to additional embodiments, a ventilator system for controlling delivery of gas flow to a patient is provided. The ventilator system comprises at least one processor and at least one memory communicatively coupled to the at least one processor and containing instructions that, when executed by the at least one processor, cause the ventilator system to perform a method. The method comprises delivering gas flow to the patient based on a carinal pressure command. The method further comprises receiving a signal representative of a pressure at a patient wye and calculating a pressure drop across a breathing tube extending from the patient wye to about the carina of the patient. In addition, the method comprises estimating a carinal pressure by subtracting the pressure drop across the breathing tube from the pressure at the patient wye and comparing the estimated carinal pressure to the carinal pressure command. The method further comprises controlling delivery of gas flow to the patient based on comparing the estimated carinal pressure and the carinal pressure command.


According to additional embodiments, a ventilator processing interface for controlling delivery of gas flow to a patient is provided. The ventilator processing interface comprising means for delivering gas flow to the patient based on a carinal pressure command. The ventilator processing interface further comprising means for receiving a signal representative of a pressure at a patient wye and means for calculating a pressure drop across a breathing tube extending from the patient wye to about the carina of the patient. The ventilator processing interface also comprising means for estimating a carinal pressure by subtracting the pressure drop across the breathing tube from the pressure at the patient wye and means for comparing the estimated carinal pressure to the carinal pressure command. Additionally, the ventilator processing interface comprising means for controlling delivery of gas flow to the patient based on comparing the estimated carinal pressure and the carinal pressure command.


According to additional embodiments, a non-transitory computer storage medium having computer-executable instructions for performing steps is provided. The steps comprising delivering gas flow to the patient based on a carinal pressure command. The steps further comprising receiving a signal representative of a pressure at a patient wye and calculating a pressure drop across a breathing tube extending from the patient wye to about the carina of the patient. The steps also comprising estimating a carinal pressure by subtracting the pressure drop across the breathing tube from the pressure at the patient wye and comparing the estimated carinal pressure to the carinal pressure command. Additionally, the steps comprising controlling delivery of gas flow to the patient based on comparing the estimated carinal pressure and the carinal pressure command.


These and various other features as well as advantages which characterize the systems and methods described herein will be apparent from a reading of the following detailed description and a review of the associated drawings. Additional features are set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the technology. The benefits and features of the technology will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.


It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the claims.





BRIEF DESCRIPTION OF THE DRAWINGS

The following drawing figures, which form a part of this application, are illustrative of described technology and are not meant to limit the scope of the claims in any manner, which scope shall be based on the claims appended hereto.



FIG. 1 is a diagram illustrating an embodiment of a ventilator connected to a human patient.



FIG. 2 is a block-diagram illustrating an embodiment of a ventilatory system for estimating carinal pressure and using the estimated carinal pressure as feedback control.



FIG. 3 is a flow chart illustrating an embodiment of a method for controlling delivery of gas flow to a patient.



FIG. 4 is a flow chart illustrating an embodiment of a method for modulating ventilator control algorithms based on an estimated carinal pressure.



FIG. 5 is a flow chart illustrating an embodiment of a method for determining a carinal pressure command based on a pressure support setting.





DETAILED DESCRIPTION

Although the techniques introduced above and discussed in detail below may be implemented for a variety of medical devices, the present disclosure will discuss the implementation of these techniques for use in a mechanical ventilator system. The reader will understand that the technology described in the context of a ventilator system could be adapted for use with other therapeutic equipment for using an estimated pressure as feedback control for a pressure command.


This disclosure describes systems and methods for configuring a ventilator to estimate the carinal pressure to minimize the work of breathing due to a breathing tube. A patient's carina is a cartilaginous ridge located at the site of the tracheal bifurcation between the two primary bronchi. According to embodiments, an estimated carinal pressure may be determined and used as feedback control for maintaining a carinal pressure command. The carinal pressure command may be positive end expiratory pressure (PEEP), a function of PEEP, or some other suitable target pressure. An estimated carinal pressure refers to a pressure estimated to exist at the patient carina. According to embodiments, the estimated carinal pressure may be compared to the carinal pressure command to determine an error. The error between the estimated carinal pressure and the carinal pressure command may then be used as feedback control to achieve the carinal pressure command and thereby to minimize the work of breathing due to the breathing tube.



FIG. 1 is a diagram illustrating an embodiment of an exemplary ventilator 100 connected to a human patient 150.


Ventilator 100 includes a pneumatic system 102 (also referred to as a pressure generating system 102) for circulating breathing gases to and from patient 150 via the ventilation tubing system 130, which couples the patient to the pneumatic system via an invasive (e.g., endotracheal tube, as shown, or a tracheostomy tube) or a non-invasive (e.g., nasal mask) patient interface. According to embodiments, a non-invasive patient interface may be less applicable to the present methods and systems, which take into account a pressure drop across an invasive patient interface (i.e., breathing tube).


Ventilation tubing system 130 may be a two-limb (shown) or a one-limb circuit for carrying gases to and from the patient 150. In a two-limb embodiment, a fitting, typically referred to as a “wye-fitting” or “patient wye” 170, may be provided to couple an invasive patient interface 180 (as shown, an endotracheal tube) or a non-invasive (NIV) patient interface (e.g., mask, not shown) to an inspiratory limb 132 and an expiratory limb 134 of the ventilation tubing system 130. According to at least some embodiments, an invasive patient interface may be interchangeably referred to as a “breathing tube” and may include an endotracheal tube, tracheostomy tube, or other invasive patient interface. According to embodiments, the breathing tube extends from the patient wye to about the carina of the patient. The carina 190 of patient 150 is located at the tracheal bifurcation between the two primary bronchi leading into the patient's lungs.


Pneumatic system 102 may be configured in a variety of ways. In the present example, system 102 includes an exhalation module 108 coupled with the expiratory limb 134 and an inhalation module 104 coupled with the inspiratory limb 132. Compressor 106 or other source(s) of pressurized gases (e.g., air, oxygen, and/or helium) is coupled to inhalation module 104 to provide a gas source for ventilatory support via inspiratory limb 132.


The pneumatic system 102 may include a variety of other components, including mixing modules, valves, sensors, tubing, accumulators, filters, etc. Controller 110 is operatively coupled with pneumatic system 102, signal measurement and acquisition systems, and an operator interface 120 that may enable an operator to interact with the ventilator 100 (e.g., change ventilatory settings, select operational modes, view monitored parameters, etc.). Controller 110 may include memory 112, one or more processors 116, storage 114, and/or other components of the type commonly found in command and control computing devices. In the depicted example, operator interface 120 includes a display 122 that may be touch-sensitive and/or voice-activated, enabling the display 122 to serve both as an input and output device.


The memory 112 includes non-transitory, computer-readable storage media for storing software that is executed by the one or more processors 116 and which controls the operation of the ventilator 100. In an embodiment, the memory 112 includes one or more solid-state storage devices such as flash memory chips. In an alternative embodiment, the memory 112 may be mass storage connected to the one or more processors 116 through a mass storage controller (not shown) and a communications bus (not shown). Although the description of computer-readable media contained herein refers to a solid-state storage, it should be appreciated by those skilled in the art that computer-readable storage media can be any available media that can be accessed by the one or more processors 116. That is, computer-readable storage media includes non-transitory, volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data. For example, computer-readable storage media includes RAM, ROM, EPROM, EEPROM, flash memory or other solid state memory technology, CD-ROM, DVD, or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by the computer.


Communication between components of the ventilatory system or between the ventilatory system and other therapeutic equipment and/or remote monitoring systems may be conducted over a distributed network via wired or wireless means. Further, the present methods may be configured as a presentation layer built over the TCP/IP protocol. TCP/IP stands for “Transmission Control Protocol/Internet Protocol” and provides a basic communication language for many local networks (such as intra- or extranets) and is the primary communication language for the Internet. Specifically, TCP/IP is a bi-layer protocol that allows for the transmission of data over a network. The higher layer, or TCP layer, divides a message into smaller packets, which are reassembled by a receiving TCP layer into the original message. The lower layer, or IP layer, handles addressing and routing of packets so that they are properly received at a destination.



FIG. 2 is a block-diagram illustrating an embodiment of a ventilatory system for estimating carinal pressure and using the estimated carinal pressure as feedback control.


Ventilatory system 200 includes ventilator 202 with its various modules and components. That is, ventilator 202 may further include, inter alia, one or more processors 206, memory 208, user interface 210, and ventilation module 212 (which may further include and/or communicate with inspiration module 214 and exhalation module 216). The one or more processors 206 are defined as described above for one or more processors 116. Processors 206 may further be configured with a clock whereby elapsed time may be monitored by the system 200. Memory 208 is defined as described above for memory 112.


The ventilatory system 200 may also include a display module 204 communicatively coupled to ventilator 202. Display module 204 may provide various input screens, for receiving clinician input, and various display screens, for presenting useful information to the clinician. The display module 204 is configured to communicate with user interface 210 and may include a graphical user interface (GUI). The GUI may be an interactive display, e.g., a touch-sensitive screen or otherwise, and may provide various windows (i.e., visual areas) comprising elements for receiving user input and interface command operations and for displaying ventilatory information (e.g., ventilatory data, alerts, patient information, parameter settings, etc.). The elements may include controls, graphics, charts, tool bars, input fields, etc. Alternatively, other suitable means of communication with the ventilator 202 may be provided, for instance by a wheel, keyboard, mouse, or other suitable interactive device. Thus, user interface 210 may accept commands and input through display module 204. Display module 204 may also provide useful information in the form of various ventilatory data regarding the physical condition of a patient and/or a prescribed respiratory treatment. The useful information may be derived by the ventilator 202, based on data collected by a data processing module 222, and the useful information may be displayed to the clinician on display module 204 in the form of graphs, wave representations, pie graphs, or other suitable forms of graphic display.


Ventilation module 212 may oversee ventilation of a patient according to ventilatory settings. Ventilatory settings may include any appropriate input for configuring the ventilator to deliver breathable gases to a particular patient. Ventilatory settings may be entered by a clinician, e.g., based on a prescribed treatment protocol for the particular patient, or automatically generated by the ventilator, e.g., based on attributes (i.e., age, diagnosis, ideal body weight, gender, etc.) of the particular patient according to any appropriate standard protocol or otherwise. For example, ventilatory settings may include, inter alia, inspiratory pressure (PI), pressure support (PSUPP), rise time percent (rise time %), positive end-expiratory pressure (PEEP), etc.


Ventilation module 212 may further include an inspiration module 214 configured to deliver gases to the patient according to prescribed ventilatory settings. Specifically, inspiration module 214 may correspond to or control the inhalation module 104 or may be otherwise coupled to source(s) of pressurized gases (e.g., air, oxygen, and/or helium), and may deliver gases to the patient. Inspiration module 214 may be configured to provide ventilation according to various ventilatory types and modes, e.g., via volume-targeted, pressure-targeted, or via any other suitable type of ventilation. According to some embodiments, inspiration module 214 may be configured to deliver mandatory ventilation to a patient based on a set inspiratory volume or pressure for a set period of time (referred to as the inspiratory time, TI). Alternatively, inspiration module 214 may be configured to deliver spontaneous ventilation to a patient based on an inspiratory pressure support setting. An inspiratory pressure support setting may be a set percentage of ventilation support, a set value of pressure support, or other suitable partial to full ventilation setting. According to additional embodiments, various ventilator control algorithms may control inspiration module 214 maintain a target pressure at the patient carina during inspiration. According to some embodiments, the target pressure may be determined or calculated to minimize the work of breathing due to the breathing tube. According to embodiments, the target pressure may be a carinal pressure command equal to PEEP, some suitable percentage of PEEP, or some other suitable pressure for minimizing the work of breathing due to the breathing tube.


Ventilation module 212 may further include an exhalation module 216 configured to release gases from the patient's lungs according to prescribed ventilatory settings. Specifically, exhalation module 216 may correspond to or control exhalation module 108 or may otherwise be associated with and/or control an exhalation valve for releasing gases from the patient. By way of general overview, a ventilator may initiate exhalation based on lapse of an inspiratory time setting (TI) or other cycling criteria set by the clinician or derived from ventilatory settings. Alternatively, exhalation may be cycled based on detection of patient effort or otherwise. Upon initiating the exhalation phase, exhalation module 216 may allow the patient to exhale by controlling an exhalation valve.


The ventilatory system 200 may also include one or more distributed sensors 218 communicatively coupled to ventilator 202. Distributed sensors 218 may communicate with various components of ventilator 202, e.g., ventilation module 212, internal sensors 220, data processing module 222, carinal pressure command module 224, feedback control module 226, and any other suitable components and/or modules. Distributed sensors 218 may be placed in any suitable location, e.g., within the ventilatory circuitry or other devices communicatively coupled to the ventilator. For example, sensors may be affixed to the ventilatory tubing or may be imbedded in the tubing itself. According to some embodiments, sensors may be provided at or near the carina for detecting a pressure at the carina (e.g., actual carinal pressure). Additionally or alternatively, sensors may be affixed or imbedded in or near patient wye 170 and/or patient interface 180, as described above. A sensor affixed near the patient wye 170 may be configured to measure an actual wye pressure. Distributed sensors 218 may include pressure transducers for detecting circuit pressure, flowmeters for detecting circuit flow, optical or ultrasound sensors for measuring gas characteristics or other parameters, or any other suitable sensory device.


Ventilator 202 may further include one or more internal sensors 220. Similar to distributed sensors 218, internal sensors 220 may communicate with various components of ventilator 202, e.g., ventilation module 212, data processing module 222, carinal pressure command module 224, feedback control module 226, and any other suitable components and/or modules. Internal sensors 220 may employ any suitable sensory or derivative technique for monitoring one or more parameters associated with the ventilation of a patient. However, as opposed to the distributed sensors 218, the internal sensors 220 may be placed in any suitable internal location, such as, within the ventilatory circuitry or within components or modules of ventilator 202. For example, sensors may be coupled to the inhalation and/or exhalation modules, the exhalation valve, etc., for detecting pressure and/or flow. Specifically, internal sensors may include pressure transducers and flowmeters for measuring changes in pressure and airflow. Additionally or alternatively, internal sensors may utilize optical or ultrasound techniques for measuring changes in ventilatory parameters.


Ventilator 202 may further include a data processing module 222. As noted above, distributed sensors 218 and/or internal sensors 220 may collect data regarding various ventilatory parameters. A ventilatory parameter refers to any factor, characteristic, or measurement associated with the ventilation of a patient, whether monitored by the ventilator or by any other device. According to embodiments, internal and/or distributed sensors may further transmit collected data to the data processing module 222 and the data processing module 222 may be configured to measure data regarding some ventilatory parameters, to retrieve data regarding some ventilatory parameters or settings, to calculate data regarding other ventilatory parameters, and/or to graphically represent measured, retrieved, and/or calculated data on display module 204. According to embodiments, any measured, retrieved, calculated, and/or graphically represented data may be referred to as ventilatory data.


For example, according to some embodiments, the ventilator may periodically or continuously measure ventilatory data associated with pressure and/or flow in the patient circuit or in the breathing tube. According to additional embodiments, the ventilator may retrieve ventilatory data associated with ventilatory settings (e.g., O2%, PEEP, PI, PSUPP, etc.), patient data (e.g., ideal body weight, IBW), breathing tube data (e.g., diameter, length, type, and/or resistance of breathing tube), atmospheric pressure data (e.g., measured or default of 0 cmH2O), humidity data (e.g., measured or default of 100% saturation), etc. Retrieved ventilatory data may be acquired from any suitable database or data storage location associated with the ventilator (e.g., stored in memory 208, stored on a server accessible over a network, etc.). According to additional embodiments, the ventilator may periodically or continuously calculate ventilatory data, e.g., a pressure drop (ΔP) across the breathing tube from the patient wye to the carina, a pressure at the patient wye (Pwye), a resistance associated with the breathing tube (e.g., based on length, size, type of breathing tube), a gas density (e.g., based on O2%), etc.


Ventilator 202 may further include a carinal pressure command module 224. According to some embodiments, carinal pressure command module 224 may calculate or determine a suitable carinal pressure command. According to embodiments, the work of breathing due to the breathing tube relative to the work required to maintain the carinal pressure command is targeted to be 0 joules/liter. For example, where the actual carinal pressure is equal to the carinal pressure command (i.e., Pcarina−Pcommand=0), the work of breathing relative to the work required to maintain the carinal pressure command is 0 joules/liter. In this case, the patient experiences this carinal pressure during exhalation and during inhalation just as if the breathing tube was not in place. As actual carinal pressure is difficult to measure, estimated carinal pressure is used as feedback control to target Pcarina at the Pcommand.


According to some embodiments, the carinal pressure command is PEEP. According to alternative embodiments, the carinal pressure command is calculated based on a pressure support (PSUPP) setting. For example, if PSUPP is 10%, the carinal pressure command may be calculated as 10% of the PEEP setting. For example, if PEEP is 10 cm H2O, the carinal pressure command may be determined to be 1 cm H2O. In this case, while the Pcarina may equal Pcommand (i.e., both equal to 10% of PEEP), the patient experiences less support for the tube resistance and the actual work of breathing is increased. According to embodiments, this may be done to challenge the patient (i.e., to promote weaning by increasing the patient's ability to breathe independently). According to other embodiments, the carinal pressure command is calculated as PEEP adjusted by an offset. For example, where PEEP is 0 cm H2O, an offset may be used to subtract some value from 0 cm H2O to determine the carinal pressure command. According to still other embodiments, the carinal pressure command may be calculated based on a percentage of PEEP combined with an offset. According to embodiments, the carinal pressure command may be calculated via any suitable means.


Ventilator 202 may further include feedback control module 226. According to embodiments, feedback control module 226 may determine estimated Pcarina and calculate any error between the carinal pressure command and the estimated Pcarina. Feedback control module 226 may determine estimated Pcarina via a any suitable means. For example, feedback control module 226 may determine estimated Pcarina by first measuring or estimating the pressure at the patient wye (measured or estimated Pwye) and adjusting for the dynamics of the breathing tube. Pwye may be estimated or measured via any suitable means. For example, Pwye may be measured using a sensor associated with the patient wye or may be estimated according to any other suitable means (e.g., by using pressure measurements at one or more other locations within the ventilatory system and calculating Pwye).


Upon measuring or estimating Pwye, the feedback control module 226 may determine estimated Pcarina. According to embodiments, the dynamics of the breathing tube result in a pressure drop across the breathing tube (ΔPtube) between the patient wye and the patient's carina that is a function of one or more of a gas flow through the breathing tube, a breathing tube resistance (based on a size and type of the breathing tube), a gas composition (e.g., determined based on the O2% or otherwise), an atmospheric pressure (e.g., measured or default of 0 cmH2O), a humidity (e.g., measured or a default of 100% saturation), and a target inspiratory pressure (e.g., PI setting for mandatory ventilation or PSUPP setting for spontaneous ventilation). According to embodiments, ΔPtube may be estimated or measured via any suitable means. Moreover, ΔPtube may be continuously or periodically estimated or measured. Upon measuring or estimating ΔPtube, the feedback control module 226 may determine estimated Pcarina by subtracting the ΔPtube from the Pwye according to the following formula:

Estimated Pcarina=Pwye−ΔPtube

Where Pwye may be measured or estimated and ΔPtube may be measured or estimated.


Upon determining estimated Pcarina, the feedback control module 226 may determine an error between the carinal pressure command and the estimated Pcarina. The feedback control module 226 may determine the error via any suitable means. For example, the feedback control module 226 may compare the carinal pressure command to the estimated Pcarina to determine the greater error. According to embodiments, if the carinal pressure command is greater than the estimated Pcarina, the ventilator control algorithms may be modulated by some function of the error to increase the pressure at the carina. According other to embodiments, if the carinal pressure command is less than the estimated Pcarina, ventilator control algorithms may be modulated by some function of the error to decrease the pressure at the carina. According to still other embodiments, if the carinal pressure command is substantially equal to the estimated Pcarina, the feedback control module 226 may determine that a negligible or null error exists and the ventilator control algorithms may not be adjusted or modulated. According to embodiments, feedback control module 226 may modulate the ventilator control algorithms via any suitable means. According to embodiments, the feedback control module 226 may modulate the ventilator control algorithms substantially continuously (e.g., for every servo control period) or periodically (e.g., at the beginning of each inspiratory phase, every third inspiratory phase, or any other suitable periodic adjustment phase).


As should be appreciated, the various modules described above do not represent an exclusive array of modules. Indeed, any number of additional modules may be suitably configured to execute one or more of the above-described operations within the spirit of the present disclosure. Furthermore, the various modules described above do not represent a necessary array of modules. Indeed, any number of the disclosed modules may be appropriately replaced by other suitable modules without departing from the spirit of the present disclosure. According to some embodiments, operations executed by the various modules described above may be stored as computer-executable instructions in the ventilator memory, e.g., memory 112, which computer-executable instructions may be executed by one or more processors, e.g., processors 116, of the ventilator.



FIG. 3 is a flow chart illustrating an embodiment of a method for controlling delivery of gas flow to a patient.


Method 300 begins with deliver ventilation operation 302. According to embodiments, ventilation involves delivering breathing gases to a patient who is unable to breathe completely independently. Ventilation includes delivering any portion of breathing gases, from full mandatory ventilation to full or partially-supported spontaneous ventilation.


At deliver operation 304, a gas flow may be delivered to a patient based on a carinal pressure command. The carinal pressure command may be a pressure that is maintained at the patient carina to minimize the work of breathing due to the breathing tube. According to embodiments, when the actual carinal pressure is equal to the carinal pressure command (i.e., Pcarina−Pcommand=0), the work of breathing relative to the work required to maintain the carinal pressure command is 0 joules/liter. In this case, the patient experiences this pressure during exhalation and during inhalation just as if the breathing tube was not in place. As actual carinal pressure is difficult to measure, estimated carinal pressure is used as feedback control to target Pcarina at the Pcommand.


According to some embodiments, the carinal pressure command is equal to PEEP. According to alternative embodiments, the carinal pressure command is some function of PEEP. For example, according to embodiments, the carinal pressure command is calculated based on a pressure support (PSUPP) setting. For example, if PSUPP is 10%, the carinal pressure command may be calculated as 10% of the PEEP setting. According to other embodiments, PEEP may be adjusted by an offset to determine the carinal pressure command. For example, where PEEP is 0 cm H2O, an offset may be used to subtract some value from 0 cm H2O to calculate the carinal pressure command. According to still other embodiments, the carinal pressure command may be calculated based on a percentage of PEEP combined with an offset. According to other embodiments, the carinal pressure command is calculated or determined via any suitable means.


At receive operation 306, a signal representative of a pressure at the patient wye (Pwye) may be received. As described above, the patient wye couples a breathing tube (e.g., patient interface 180) to an inspiratory limb and an expiratory limb of the ventilation tubing system. The pressure at the patient wye may be measured using a sensor associated with the patient wye or may be estimated according to any suitable means (e.g., by using pressure measurements at one or more other locations within the ventilatory system and calculating Pwye). As such, the signal representative of Pwye may be an estimated Pwye or a measured Pwye.


At calculate operation 308, a pressure drop across the breathing tube (ΔPtube) may be calculated. In general, the dynamics of the breathing tube result in a pressure drop across the breathing tube (ΔPtube) between the patient wye and the patient's carina that is a function of one or more of a gas flow through the breathing tube, a breathing tube resistance (based on a size and type of the breathing tube), a gas composition (e.g., determined based on the O2% or otherwise), an atmospheric pressure (e.g., measured or default of 0 cmH2O), a humidity (e.g., measured or a default of 100% saturation), and a target inspiratory pressure (e.g., PI setting for mandatory ventilation or PSUPP setting for spontaneous ventilation). According to embodiments, ΔPtube may be estimated or measured via any suitable means. Moreover, ΔPtube may be continuously or periodically estimated or measured.


At estimate operation 310, a carinal pressure may be estimated. In general, patient's carina is a cartilaginous ridge located at the site of the tracheal bifurcation between the two primary bronchi. Due to the location of the carina, it is difficult to measure an actual carinal pressure. An estimated carinal pressure (estimated Pcarina) refers to a pressure estimated to exist at the patient carina. According to embodiments, the carinal pressure may be estimated by subtracting ΔPtube from Pwye according to the following formula:

Estimated Pcarina=Pwye−ΔPtube

Where ΔPtube may be measured or estimated and Pwye may be measured or estimated.


At compare operation 312, the estimated Pcarina may be compared to carinal pressure command. As described above, when the estimated Pcarina is equal to the carinal pressure command, the work of breathing due to the breathing tube relative to the work required to maintain the carinal pressure command is targeted at 0 joules/liter. According to some embodiments, the carinal pressure command is equal to PEEP, to some percentage of PEEP, or to PEEP adjusted by an offset. According to embodiments, the estimated Pcarina may be compared to carinal pressure command via any suitable means.


At control delivery operation 314, the delivery of gas flow to the patient may be controlled based on comparing the estimated Pcarina to the carinal pressure command. Based on the comparison, the ventilator control algorithms may be modulated accordingly. For example, if the carinal pressure command is greater than the estimated Pcarina, ventilator control algorithms may be modulated by some function of the error to increase the pressure at the carina. According other to embodiments, if the carinal pressure command is less than the estimated Pcarina, the ventilator control algorithms may be modulated by some function of the error to decrease the pressure at the carina. According to still other embodiments, if the carinal pressure command is substantially equal to the estimated Pcarina, the ventilator control algorithms may not be adjusted or modulated.


As should be appreciated, the particular steps and methods described above with reference to FIG. 3 are not exclusive and, as will be understood by those skilled in the art, the particular ordering of steps as described herein is not intended to limit the method, e.g., steps may be performed in differing order, additional steps may be performed, and disclosed steps may be excluded without departing from the spirit of the present methods.



FIG. 4 is a flow chart illustrating an embodiment of a method for modulating ventilator control algorithms based on an estimated carinal pressure.


Method 400 begins with deliver ventilation operation 402. As described above, ventilation involves delivering breathing gases to a patient who is unable to breathe completely independently. Ventilation includes delivering any portion of breathing gases, from full mandatory ventilation to full or partially-supported spontaneous ventilation.


At deliver operation 404, a gas flow may be delivered to a patient based on a carinal pressure command, as described above with respect to deliver operation 304.


At estimate operation 406, a carnal pressure may be estimated. As described above with respect to estimate operation 310, the carinal pressure may be estimated by subtracting ΔPtube from Pwye according to the following formula:

Estimated Pcarina=Pwye−ΔPtube

Where ΔPtube may be measured or estimated and Pwye may be measured or estimated.


At compare operation 408, the estimated Pcarina may be compared to the carinal pressure command. According to some embodiments, by comparing the estimated Pcarina the carinal pressure command an error may be determined. The error may be determined via any suitable means. For example, the estimated Pcarina may be subtracted from the carinal pressure command to determine a difference between the estimated Pcarina and the carinal pressure command. According to some embodiments, if the estimated Pcarina is greater than the carinal pressure command, the error may be negative. According to alternative embodiments, if the estimated Pcarina is less than the carinal pressure command, the error may be positive. According to still alternative embodiments, if the estimated Pcarina is substantially equal to the carinal pressure command, there may be no error.


At determination operation 410, it may be determined whether an error was detected upon comparing the estimated Pcarina to the carinal pressure command. As described above, upon comparing the estimated Pcarina to the carinal pressure command, a negative error, a positive error, or no error may be detected. If a negative error or a positive error is detected, the method may proceed to modulate operation 412. Alternatively, if no error is detected, the method may return to deliver operation 404. According to additional or alternative embodiments, the error (whether positive or negative) may be compared to an error threshold. According to some embodiments, if the error is less than the error threshold, the error may be negligible and the method may return to deliver operation 404. According to other embodiments, if the error is greater than or equal to the error threshold, the error may not be negligible and the method may proceed to modulate operation 412.


At modulate delivery operation 412, the delivery of gas flow may be modulated based on the error. For example, if the estimated Pcarina is greater than the carinal pressure command (e.g., negative error) ventilator control algorithms may be modulated by some function of the error to adjust gas flow to decrease the pressure at the carina. According to alternative embodiments, if the estimated Pcarina is less than the carinal pressure command (e.g., positive error) ventilator control algorithms may be modulated by some function of the error to adjust gas flow to increase the pressure at the carina. As should be appreciated, if the estimated Pcarina is substantially equal to the carinal pressure command (e.g., no error), ventilator control algorithms may not be adjusted or modulated.


According to embodiments, the ventilator control algorithms may be modulated via any suitable means. That is, according to embodiments, the modulated ventilator control algorithms are adjusted to maintain the carinal pressure command such that the work of breathing due to the breathing tube relative to the work required to maintain the carinal pressure command approximates 0 joules/liter. According to embodiments, the ventilator control algorithms may be modulated substantially continuously (e.g., for every servo control period) or periodically (e.g., at the beginning of each inspiratory phase, every third inspiratory phase, or any other suitable periodic adjustment phase).


As should be appreciated, the particular steps and methods described above with reference to FIG. 4 are not exclusive and, as will be understood by those skilled in the art, the particular ordering of steps as described herein is not intended to limit the method, e.g., steps may be performed in differing order, additional steps may be performed, and disclosed steps may be excluded without departing from the spirit of the present methods.



FIG. 5 is a flow chart illustrating an embodiment of a method for determining a carnal pressure command based on a pressure support setting.


Method 500 begins with deliver ventilation operation 502. According to embodiments, ventilation involves delivering breathing gases to a patient who is unable to breathe completely independently. Ventilation includes delivering any portion of breathing gases, from full mandatory ventilation to full or partially-supported spontaneous ventilation.


At retrieve operation 504, ventilatory data may be retrieved via any suitable means. As described above, ventilatory data may comprise any data regarding ventilatory settings (e.g., O2%, PEEP, PI, PSUPP, etc.), patient data (e.g., ideal body weight, IBW), breathing tube data (e.g., diameter, length, type, and/or resistance of breathing tube), atmospheric pressure data (e.g., measured or default of 0 cmH2O), humidity data (e.g., measured or default of 100% saturation), etc. Retrieved ventilatory data may be acquired from any suitable database or data storage location associated with the ventilator (e.g., stored in memory on the ventilator, stored on a server accessible over a network, etc.). According to additional embodiments, ventilator data may be retrieved that has been periodically or continuously calculated by the ventilator. For example, retrieved ventilatory data may further include a pressure drop (ΔP) across the breathing tube (e.g., from the patient wye to the carina), a pressure at the patient wye (Pwye), a resistance associated with the breathing tube (e.g., based on length, size, type of breathing tube), a gas density (e.g., based on O2%), etc. Indeed, any suitable measured, calculated, and/or graphically represented ventilatory data may be retrieved at retrieve operation 504.


At determine operation 506, the work of breathing due to the breathing tube may be determined. Any suitable ventilatory data retrieved above, whether with regard to the breathing tube, the patient, the atmosphere or humidity, the ventilatory settings, gas flow, etc., may be used to determine the work of breathing associated with the tube. For example, the work of breathing associated with the tube may be influenced by the resistance of the breathing tube (resulting from the diameter, length, and type of tube), the gas flow, the gas composition, etc.


At determine operation 508, a carinal pressure command may be determined. According to embodiments, the carinal pressure command is targeted to offset the work of breathing due to the breathing tube relative to the work required to maintain the carinal pressure command. That is, the work of breathing due to the breathing tube relative to the work required to maintain the carinal pressure command is targeted at 0 joules/liter. For example, where the actual carinal pressure is equal to the carinal pressure command (i.e., Pcarina−Pcommand=0), the work of breathing relative to the work required to maintain the carinal pressure is 0 joules/liter.


The carinal pressure command may be determined or calculated according to any suitable means. For example, according to embodiments, the carinal pressure command may be PEEP. According to alternative embodiments, the carinal pressure command may be some function of PEEP. For example, where PSUPP is 10%, the carinal pressure command may be calculated as 10% of PEEP. According to still other embodiments, PEEP may be adjusted by an offset to determine the carinal pressure command. Indeed, the carinal pressure command may be calculated or determined via any suitable means.


At control delivery operation 510, a gas flow may be delivered to a patient based on the carinal pressure command. According to embodiments, one or more ventilator control algorithms may be employed to deliver gas flow to the patient based on the carinal pressure command. Moreover, an estimated carinal pressure may be determined and used as feedback control of the ventilator control algorithms in order to achieve the carinal pressure command at the carina. According to additional embodiments, when the carinal pressure command is maintained at the carina, the work of breathing due to the breathing tube relative to the work required to maintain the carinal pressure command is 0 joules/liter.


As should be appreciated, the particular steps and methods described above with reference to FIG. 5 are not exclusive and, as will be understood by those skilled in the art, the particular ordering of steps as described herein is not intended to limit the method, e.g., steps may be performed in differing order, additional steps may be performed, and disclosed steps may be excluded without departing from the spirit of the present methods.


Unless otherwise indicated, all numbers expressing measurements, dimensions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present disclosure. Further, unless otherwise stated, the term “about” shall expressly include “exactly,” consistent with the discussions regarding ranges and numerical data. Concentrations, amounts, and other numerical data may be expressed or presented herein in a range format. It is to be understood that such a range format is used merely for convenience and brevity and thus should be interpreted flexibly to include not only the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited. As an illustration, a numerical range of “about 4 percent to about 7 percent” should be interpreted to include not only the explicitly recited values of about 4 percent to about 7 percent, but also include individual values and sub-ranges within the indicated range. Thus, included in this numerical range are individual values such as 4.5, 5.25 and 6 and sub-ranges such as from 4-5, from 5-7, and from 5.5-6.5, etc. This same principle applies to ranges reciting only one numerical value. Furthermore, such an interpretation should apply regardless of the breadth of the range or the characteristics being described.


It will be clear that the systems and methods described herein are well adapted to attain the ends and advantages mentioned as well as those inherent therein. Those skilled in the art will recognize that the methods and systems within this specification may be implemented in many manners and as such is not to be limited by the foregoing exemplified embodiments and examples. In other words, functional elements being performed by a single or multiple components, in various combinations of hardware and software, and individual functions can be distributed among software applications at either the client or server level. In this regard, any number of the features of the different embodiments described herein may be combined into one single embodiment and alternative embodiments having fewer than or more than all of the features herein described are possible.


While various embodiments have been described for purposes of this disclosure, various changes and modifications may be made which are well within the scope of the present disclosure. Numerous other changes may be made which will readily suggest themselves to those skilled in the art and which are encompassed in the spirit of the disclosure and as defined in the appended claims.

Claims
  • 1. A ventilator-implemented method for controlling delivery of gas flow to a patient, the method comprising: delivering gas flow to the patient based on a carinal pressure command;receiving a signal representative of a pressure at a patient wye;calculating a pressure drop across a breathing tube extending from the patient wye to about the carina of the patient;estimating a carinal pressure by subtracting the pressure drop across the breathing tube from the pressure at the patient wye;comparing the estimated carinal pressure to the carinal pressure command; andcontrolling delivery of gas flow to the patient based on comparing the estimated carinal pressure and the carinal pressure command.
  • 2. The method of claim 1, wherein the pressure drop is estimated as a function of at least one of: a gas flow through the breathing tube, atmospheric pressure, humidity, a gas composition, and a target inspiratory pressure.
  • 3. The method of claim 1, wherein controlling delivery of gas flow to the patient further comprises: determining an error based on comparing the estimated carinal pressure and the carinal pressure command; andmodulating the delivery of gas flow based on the error.
  • 4. The method of claim 3, wherein the delivery of gas flow is adjusted based on the error when the estimated carinal pressure is less than the carinal pressure command.
  • 5. The method of claim 3, wherein the delivery of gas flow is adjusted based on the error when the estimated carinal pressure is greater than the carinal pressure command.
  • 6. The method of claim 1, wherein the signal representative of the pressure at the patient wye represents an estimated pressure at the patient wye.
  • 7. The method of claim 1, wherein the carinal pressure command is one of: positive end expiratory pressure (PEEP), a percentage of PEEP, and PEEP adjusted by an offset.
  • 8. A ventilator system for controlling delivery of gas flow to a patient, the ventilator system comprising: at least one processor; andat least one memory communicatively coupled to the at least one processor and containing instructions that, when executed by the at least one processor, cause the ventilator system to: deliver gas flow to the patient based on a carinal pressure command;receive a signal representative of a pressure at a patient wye;calculate a pressure drop across a breathing tube extending from the patient wye to about the carina of the patient;estimate a carinal pressure by subtracting the pressure drop across the breathing tube from the pressure at the patient wye;compare the estimated carinal pressure to the carinal pressure command; andcontrol delivery of gas flow to the patient based on comparing the estimated carinal pressure and the carinal pressure command.
  • 9. The ventilator system of claim 8, wherein the pressure drop is estimated as a function of at least one of: a gas flow through the breathing tube, atmospheric pressure, humidity, a gas composition, and a target inspiratory pressure.
  • 10. The ventilator system of claim 8, wherein controlling delivery of gas flow to the patient further comprises: determining an error based on comparing the estimated carinal pressure and the carinal pressure command; andmodulating the delivery of gas flow based on the error.
  • 11. The ventilator system of claim 10, wherein the delivery of gas flow is adjusted based on the error when the estimated carinal pressure is less than the carinal pressure command.
  • 12. The ventilator system of claim 10, wherein the delivery of gas flow is adjusted based on the error when the estimated carinal pressure is greater than the carinal pressure command.
  • 13. The ventilator system of claim 8, wherein the signal representative of the pressure at the patient wye represents an estimated pressure at the patient wye.
  • 14. The ventilator system of claim 8, wherein the carinal pressure command is one of: positive end expiratory pressure (PEEP), a percentage of PEEP, and PEEP adjusted by an offset.
  • 15. A ventilator processing interface for controlling delivery of gas flow to a patient, the ventilator processing interface comprising: means for delivering gas flow to the patient based on a carinal pressure command;means for receiving a signal representative of a pressure at a patient wye;means for calculating a pressure drop across a breathing tube extending from the patient wye to about the carina of the patient;means for estimating a carinal pressure by subtracting the pressure drop across the breathing tube from the pressure at the patient wye;means for comparing the estimated carinal pressure to the carinal pressure command; andmeans for controlling delivery of gas flow to the patient based on comparing the estimated carinal pressure and the carinal pressure command.
  • 16. The ventilator processing interface of claim 15, wherein the controlling means for delivery of gas flow to the patient further comprises: means for determining an error based on the comparison of the estimated carinal pressure and the carinal pressure command; andmeans for modulating the delivery of gas flow based on the error.
  • 17. The ventilator processing interface of claim 15, wherein the signal representative of the pressure at the patient wye represents an estimated pressure at the patient wye.
  • 18. The ventilator processing interface of claim 15, wherein the carinal pressure command is one of positive end expiratory pressure (PEEP), a percentage of PEEP, and PEEP adjusted by an offset.
  • 19. A non-transitory computer storage medium having computer-executable instructions that when executed by a processor cause a ventilator system to: deliver gas flow to the patient based on a carinal pressure command;receive a signal representative of a pressure at a patient wye;calculate a pressure drop across a breathing tube extending from the patient wye to about the carina of the patient;estimate a carinal pressure by subtracting the pressure drop across the breathing tube from the pressure at the patient wye;compare the estimated carinal pressure to the carinal pressure command; andcontrol delivery of gas flow to the patient based on comparing the estimated carinal pressure and the carinal pressure command.
  • 20. The non-transitory computer storage medium of claim 19, wherein controlling delivery of gas flow to the patient further comprises: determining an error based on comparing the estimated carinal pressure and the carinal pressure command; andmodulating the delivery of gas flow based on the error.
US Referenced Citations (560)
Number Name Date Kind
3827433 Shannon Aug 1974 A
3869771 Bollinger Mar 1975 A
3889670 Loveland et al. Jun 1975 A
3896800 Cibulka Jul 1975 A
3908987 Boehringer Sep 1975 A
3976065 Durkan Aug 1976 A
4020834 Bird May 1977 A
4050458 Friend Sep 1977 A
4057059 Reid, Jr. et al. Nov 1977 A
4082093 Fry et al. Apr 1978 A
4155357 Dahl May 1979 A
4197843 Bird Apr 1980 A
4206754 Cox et al. Jun 1980 A
4211221 Schwanbom et al. Jul 1980 A
4211239 Raemer et al. Jul 1980 A
4227523 Warnow et al. Oct 1980 A
4232666 Savelli et al. Nov 1980 A
4245633 Erceg Jan 1981 A
4265237 Schwanbom et al. May 1981 A
4267827 Racher et al. May 1981 A
4285340 Gezari et al. Aug 1981 A
4320754 Watson et al. Mar 1982 A
4323064 Hoenig et al. Apr 1982 A
4351328 Bodai Sep 1982 A
4351329 Ellestad et al. Sep 1982 A
4417573 De Vries Nov 1983 A
4436090 Darling Mar 1984 A
4457304 Molnar et al. Jul 1984 A
4459982 Fry Jul 1984 A
4459983 Beyreuther et al. Jul 1984 A
4462397 Suzuki Jul 1984 A
4502481 Christian Mar 1985 A
4527557 DeVries et al. Jul 1985 A
4596246 Lyall Jun 1986 A
4598706 Darowski et al. Jul 1986 A
4611591 Inui et al. Sep 1986 A
4622976 Timpe et al. Nov 1986 A
4651731 Vicenzi et al. Mar 1987 A
4752089 Carter Jun 1988 A
4813409 Ismach Mar 1989 A
4821709 Jensen Apr 1989 A
4877023 Zalkin Oct 1989 A
4921642 LaTorraca May 1990 A
4924862 Levinson May 1990 A
4954799 Kumar Sep 1990 A
5002050 McGinnis Mar 1991 A
5007420 Bird Apr 1991 A
5057822 Hoffman Oct 1991 A
5063925 Frank et al. Nov 1991 A
5065746 Steen Nov 1991 A
5067487 Bauman Nov 1991 A
5072737 Goulding Dec 1991 A
5150291 Cummings et al. Sep 1992 A
5158569 Strickland et al. Oct 1992 A
5161525 Kimm et al. Nov 1992 A
5222491 Thomas Jun 1993 A
5237987 Anderson et al. Aug 1993 A
5271389 Isaza et al. Dec 1993 A
5279549 Ranford Jan 1994 A
5299568 Forare et al. Apr 1994 A
5301667 McGrail et al. Apr 1994 A
5301921 Kumar Apr 1994 A
5303698 Tobia et al. Apr 1994 A
5315989 Tobia May 1994 A
5319540 Isaza et al. Jun 1994 A
5323772 Linden et al. Jun 1994 A
5325861 Goulding Jul 1994 A
5333606 Schneider et al. Aug 1994 A
5339807 Carter Aug 1994 A
5343857 Schneider et al. Sep 1994 A
5351522 Lura Oct 1994 A
5357946 Kee et al. Oct 1994 A
5368019 LaTorraca Nov 1994 A
5373842 Olsson et al. Dec 1994 A
5383449 Forare et al. Jan 1995 A
5385142 Brady et al. Jan 1995 A
5390666 Kimm et al. Feb 1995 A
5401135 Stoen et al. Mar 1995 A
5402796 Packer et al. Apr 1995 A
5407174 Kumar Apr 1995 A
5413110 Cummings et al. May 1995 A
5433193 Sanders et al. Jul 1995 A
5438980 Phillips Aug 1995 A
5443075 Holscher Aug 1995 A
5487383 Levinson Jan 1996 A
5507282 Younes Apr 1996 A
5509406 Kock et al. Apr 1996 A
5513631 McWilliams May 1996 A
5517983 Deighan et al. May 1996 A
5520071 Jones May 1996 A
5524615 Power Jun 1996 A
5531221 Power Jul 1996 A
5535738 Estes et al. Jul 1996 A
5540220 Gropper et al. Jul 1996 A
5542415 Brody Aug 1996 A
5544674 Kelly Aug 1996 A
5549106 Gruenke et al. Aug 1996 A
5551419 Froehlich et al. Sep 1996 A
5575283 Sjoestrand Nov 1996 A
5582163 Bonassa Dec 1996 A
5596984 O'Mahoney et al. Jan 1997 A
5606968 Mang Mar 1997 A
5615669 Olsson et al. Apr 1997 A
5630411 Holscher May 1997 A
5632269 Zdrojkowski May 1997 A
5632270 O'Mahoney et al. May 1997 A
5645048 Brodsky et al. Jul 1997 A
5647345 Saul Jul 1997 A
5647351 Weismann et al. Jul 1997 A
5651360 Tobia Jul 1997 A
5660171 Kimm et al. Aug 1997 A
5664560 Merrick et al. Sep 1997 A
5664562 Bourdon Sep 1997 A
5671767 Kelly Sep 1997 A
5672041 Ringdahl et al. Sep 1997 A
5673689 Power Oct 1997 A
5715812 Deighan et al. Feb 1998 A
5735267 Tobia Apr 1998 A
5740796 Skog Apr 1998 A
5752509 Lachmann et al. May 1998 A
5762480 Adahan Jun 1998 A
5769072 Olsson et al. Jun 1998 A
5771884 Yarnall et al. Jun 1998 A
5791339 Winter Aug 1998 A
5794615 Estes Aug 1998 A
5794986 Gansel et al. Aug 1998 A
5813399 Isaza et al. Sep 1998 A
5826575 Lall Oct 1998 A
5829441 Kidd et al. Nov 1998 A
5864938 Gansel et al. Feb 1999 A
5865168 Isaza Feb 1999 A
5865173 Froehlich Feb 1999 A
5881717 Isaza Mar 1999 A
5881723 Wallace et al. Mar 1999 A
5884623 Winter Mar 1999 A
5909731 O'Mahony et al. Jun 1999 A
5915379 Wallace et al. Jun 1999 A
5915380 Wallace et al. Jun 1999 A
5915381 Nord Jun 1999 A
5915382 Power Jun 1999 A
5918597 Jones et al. Jul 1999 A
5921238 Bourdon Jul 1999 A
5927274 Servidio et al. Jul 1999 A
5934274 Merrick et al. Aug 1999 A
5970975 Estes et al. Oct 1999 A
5983891 Fukunaga Nov 1999 A
6010459 Silkoff et al. Jan 2000 A
6024089 Wallace et al. Feb 2000 A
6029664 Zdrojkowski et al. Feb 2000 A
6041780 Richard et al. Mar 2000 A
6042550 Haryadi et al. Mar 2000 A
6047860 Sanders Apr 2000 A
6067984 Piper May 2000 A
6076523 Jones et al. Jun 2000 A
6095139 Psaros Aug 2000 A
6095140 Poon et al. Aug 2000 A
6102038 DeVries Aug 2000 A
6105575 Estes et al. Aug 2000 A
6116240 Merrick et al. Sep 2000 A
6116464 Sanders Sep 2000 A
6123073 Schlawin et al. Sep 2000 A
6135106 Dirks et al. Oct 2000 A
6142150 O'Mahony Nov 2000 A
6148814 Clemmer et al. Nov 2000 A
6152132 Psaros Nov 2000 A
6158432 Biondi et al. Dec 2000 A
6161539 Winter Dec 2000 A
6192885 Jalde Feb 2001 B1
6200271 Kuck et al. Mar 2001 B1
6210342 Kuck et al. Apr 2001 B1
6213119 Brydon et al. Apr 2001 B1
6217524 Orr et al. Apr 2001 B1
6220244 McLaughlin Apr 2001 B1
6220245 Takabayashi et al. Apr 2001 B1
6238351 Orr et al. May 2001 B1
6241681 Haryadi et al. Jun 2001 B1
6258038 Haryadi et al. Jul 2001 B1
6269812 Wallace et al. Aug 2001 B1
6273444 Power Aug 2001 B1
6283119 Bourdon Sep 2001 B1
6305373 Wallace et al. Oct 2001 B1
6305374 Zdrojkowski et al. Oct 2001 B1
6306098 Orr et al. Oct 2001 B1
6321748 O'Mahoney Nov 2001 B1
6325785 Babkes et al. Dec 2001 B1
6357438 Hansen Mar 2002 B1
6360745 Wallace et al. Mar 2002 B1
6369838 Wallace et al. Apr 2002 B1
6390091 Banner et al. May 2002 B1
6412483 Jones et al. Jul 2002 B1
6427692 Hoglund Aug 2002 B1
6439229 Du et al. Aug 2002 B1
6443154 Jalde et al. Sep 2002 B1
6450968 Wallen et al. Sep 2002 B1
6467477 Frank et al. Oct 2002 B1
6467478 Merrick et al. Oct 2002 B1
6510846 O'Rourke Jan 2003 B1
6532957 Berthon-Jones Mar 2003 B2
6532960 Yurko Mar 2003 B1
6539940 Zdrojkowski et al. Apr 2003 B2
6546930 Emerson et al. Apr 2003 B1
6553991 Isaza Apr 2003 B1
6557553 Borrello May 2003 B1
6564798 Jalde May 2003 B1
6568387 Davenport et al. May 2003 B2
6571795 Bourdon Jun 2003 B2
6584973 Biondi et al. Jul 2003 B1
6588422 Berthon-Jones et al. Jul 2003 B1
6609517 Estes et al. Aug 2003 B1
6622726 Du Sep 2003 B1
6626175 Jafari et al. Sep 2003 B2
6640806 Yurko Nov 2003 B2
6644310 Delache et al. Nov 2003 B1
6659100 O'Rourke Dec 2003 B2
6662032 Gavish et al. Dec 2003 B1
6668824 Isaza et al. Dec 2003 B1
6675801 Wallace et al. Jan 2004 B2
6679258 Strom Jan 2004 B1
6688307 Berthon-Jones Feb 2004 B2
6705314 O'Dea Mar 2004 B1
6718974 Moberg Apr 2004 B1
6725447 Gilman et al. Apr 2004 B1
6739337 Isaza May 2004 B2
6752151 Hill Jun 2004 B2
6758216 Berthon-Jones et al. Jul 2004 B1
6761167 Nadjafizadeh et al. Jul 2004 B1
6761168 Nadjafizadeh et al. Jul 2004 B1
6776159 Pelerossi et al. Aug 2004 B2
6786216 O'Rourke Sep 2004 B2
6810876 Berthon-Jones Nov 2004 B2
6814074 Nadjafizadeh et al. Nov 2004 B1
6823866 Jafari et al. Nov 2004 B2
6854462 Berthon-Jones et al. Feb 2005 B2
6866040 Bourdon Mar 2005 B1
6915803 Berthon-Jones et al. Jul 2005 B2
6920878 Sinderby et al. Jul 2005 B2
6932084 Estes et al. Aug 2005 B2
6948497 Zdrojkowski et al. Sep 2005 B2
6960854 Nadjafizadeh et al. Nov 2005 B2
6962155 Sinderby Nov 2005 B1
6986349 Lurie Jan 2006 B2
6990980 Richey, II Jan 2006 B2
7000612 Jafari et al. Feb 2006 B2
7036504 Wallace et al. May 2006 B2
7066177 Pittaway et al. Jun 2006 B2
7077131 Hansen Jul 2006 B2
RE39225 Isaza et al. Aug 2006 E
7096866 Be'eri et al. Aug 2006 B2
7117438 Wallace et al. Oct 2006 B2
7121277 Ström Oct 2006 B2
7122010 Böhm et al. Oct 2006 B2
7128069 Farrugia et al. Oct 2006 B2
7137389 Berthon-Jones Nov 2006 B2
7152598 Morris et al. Dec 2006 B2
7204251 Lurie Apr 2007 B2
7246618 Habashi Jul 2007 B2
7267122 Hill Sep 2007 B2
7267652 Coyle et al. Sep 2007 B2
7270126 Wallace et al. Sep 2007 B2
7270128 Berthon-Jones et al. Sep 2007 B2
7296573 Estes et al. Nov 2007 B2
7369757 Farbarik May 2008 B2
7370650 Nadjafizadeh et al. May 2008 B2
7428902 Du et al. Sep 2008 B2
7460959 Jafari Dec 2008 B2
7465275 Stenqvist Dec 2008 B2
7472702 Beck et al. Jan 2009 B2
7478634 Jam Jan 2009 B2
7481222 Reissmann Jan 2009 B2
7487773 Li Feb 2009 B2
RE40814 Van Brunt et al. Jun 2009 E
7556041 Madsen Jul 2009 B2
7562657 Blanch et al. Jul 2009 B2
7588033 Wondka Sep 2009 B2
7617824 Doyle Nov 2009 B2
7621270 Morris et al. Nov 2009 B2
7644713 Berthon-Jones Jan 2010 B2
7654802 Crawford, Jr. et al. Feb 2010 B2
7686019 Weiss et al. Mar 2010 B2
7694677 Tang Apr 2010 B2
7708015 Seeger et al. May 2010 B2
7717113 Andrieux May 2010 B2
7717858 Massad May 2010 B2
D618356 Ross Jun 2010 S
7735492 Doshi et al. Jun 2010 B2
7784461 Figueiredo et al. Aug 2010 B2
7793656 Johnson Sep 2010 B2
7798148 Doshi et al. Sep 2010 B2
7802571 Tehrani Sep 2010 B2
7806120 Loomas et al. Oct 2010 B2
7810496 Estes et al. Oct 2010 B2
7810497 Pittman et al. Oct 2010 B2
7823588 Hansen Nov 2010 B2
7841347 Sonnenschein et al. Nov 2010 B2
7855716 McCreary et al. Dec 2010 B2
D632796 Ross et al. Feb 2011 S
D632797 Ross et al. Feb 2011 S
7886739 Soliman et al. Feb 2011 B2
7891354 Farbarik Feb 2011 B2
7893560 Carter Feb 2011 B2
7909034 Sinderby et al. Mar 2011 B2
D638852 Skidmore et al. May 2011 S
7938114 Matthews et al. May 2011 B2
7971589 Mashak et al. Jul 2011 B2
7984714 Hausmann et al. Jul 2011 B2
D643535 Ross et al. Aug 2011 S
7992557 Nadjafizadeh et al. Aug 2011 B2
7992564 Doshi et al. Aug 2011 B2
8001967 Wallace et al. Aug 2011 B2
D645158 Sanchez et al. Sep 2011 S
8011363 Johnson Sep 2011 B2
8011364 Johnson Sep 2011 B2
8011366 Knepper Sep 2011 B2
8015974 Christopher et al. Sep 2011 B2
8020558 Christopher et al. Sep 2011 B2
8021310 Sanborn et al. Sep 2011 B2
D649157 Skidmore et al. Nov 2011 S
D652521 Ross et al. Jan 2012 S
D652936 Ross et al. Jan 2012 S
D653749 Winter et al. Feb 2012 S
8113062 Graboi et al. Feb 2012 B2
D655405 Winter et al. Mar 2012 S
D655809 Winter et al. Mar 2012 S
D656237 Sanchez et al. Mar 2012 S
8181648 Perine et al. May 2012 B2
8210173 Vandine Jul 2012 B2
8210174 Farbarik Jul 2012 B2
8240684 Ross et al. Aug 2012 B2
8267085 Jafari et al. Sep 2012 B2
8272379 Jafari et al. Sep 2012 B2
8272380 Jafari et al. Sep 2012 B2
8302600 Andrieux et al. Nov 2012 B2
8302602 Andrieux et al. Nov 2012 B2
8457706 Baker, Jr. Jun 2013 B2
8792949 Baker, Jr. Jul 2014 B2
20020017301 Lundin Feb 2002 A1
20020026941 Biondi et al. Mar 2002 A1
20020117173 Lynn et al. Aug 2002 A1
20020144681 Cewers et al. Oct 2002 A1
20030029453 Smith et al. Feb 2003 A1
20030140925 Sapienza et al. Jul 2003 A1
20030225339 Orr et al. Dec 2003 A1
20050034724 O'Dea Feb 2005 A1
20050039748 Andrieux Feb 2005 A1
20050139212 Bourdon Jun 2005 A1
20050166928 Jiang Aug 2005 A1
20060249153 DeVries et al. Nov 2006 A1
20060272637 Johnson Dec 2006 A1
20060283451 Albertelli Dec 2006 A1
20070017515 Wallace et al. Jan 2007 A1
20070017518 Farrugia et al. Jan 2007 A1
20070017522 Be-Eri et al. Jan 2007 A1
20070017523 Be-Eri et al. Jan 2007 A1
20070062532 Choncholas Mar 2007 A1
20070062533 Choncholas et al. Mar 2007 A1
20070068528 Bohm et al. Mar 2007 A1
20070077200 Baker Apr 2007 A1
20070089741 Bohm et al. Apr 2007 A1
20070227537 Bemister et al. Oct 2007 A1
20070272241 Sanborn et al. Nov 2007 A1
20070284361 Nadjafizadeh et al. Dec 2007 A1
20080000475 Hill Jan 2008 A1
20080041383 Matthews et al. Feb 2008 A1
20080045845 Pfeiffer et al. Feb 2008 A1
20080053441 Gottlib et al. Mar 2008 A1
20080060656 Isaza Mar 2008 A1
20080072896 Setzer et al. Mar 2008 A1
20080072901 Habashi Mar 2008 A1
20080072902 Setzer et al. Mar 2008 A1
20080072904 Becker et al. Mar 2008 A1
20080078390 Milne et al. Apr 2008 A1
20080078395 Ho et al. Apr 2008 A1
20080083644 Janbakhsh et al. Apr 2008 A1
20080091117 Choncholas et al. Apr 2008 A1
20080092894 Nicolazzi et al. Apr 2008 A1
20080097234 Nicolazzi et al. Apr 2008 A1
20080110461 Mulqueeny et al. May 2008 A1
20080168990 Cooke et al. Jul 2008 A1
20080178874 Doshi et al. Jul 2008 A1
20080196720 Kollmeyer et al. Aug 2008 A1
20080200775 Lynn Aug 2008 A1
20080202528 Carter et al. Aug 2008 A1
20080221470 Sather et al. Sep 2008 A1
20080223361 Nieuwstad Sep 2008 A1
20080230061 Tham Sep 2008 A1
20080230062 Tham Sep 2008 A1
20080236582 Tehrani Oct 2008 A1
20080314385 Brunner et al. Dec 2008 A1
20090007914 Bateman Jan 2009 A1
20090020119 Eger et al. Jan 2009 A1
20090114223 Bonassa May 2009 A1
20090137919 Bar-Lavie et al. May 2009 A1
20090145441 Doshi et al. Jun 2009 A1
20090159082 Eger Jun 2009 A1
20090165795 Nadjafizadeh et al. Jul 2009 A1
20090165798 Cong et al. Jul 2009 A1
20090171176 Andersohn Jul 2009 A1
20090194109 Doshi et al. Aug 2009 A1
20090205661 Stephenson et al. Aug 2009 A1
20090205663 Vandine et al. Aug 2009 A1
20090241952 Nicolazzi et al. Oct 2009 A1
20090241953 Vandine et al. Oct 2009 A1
20090241956 Baker, Jr. et al. Oct 2009 A1
20090241957 Baker, Jr. et al. Oct 2009 A1
20090241958 Baker, Jr. Oct 2009 A1
20090241962 Jafari et al. Oct 2009 A1
20090247849 McCutcheon et al. Oct 2009 A1
20090247853 Debreczeny Oct 2009 A1
20090247891 Wood Oct 2009 A1
20090266360 Acker et al. Oct 2009 A1
20090272381 Dellaca et al. Nov 2009 A1
20090277448 Ahlmén et al. Nov 2009 A1
20090293872 Bocke Dec 2009 A1
20090293877 Blanch et al. Dec 2009 A1
20090301486 Masic Dec 2009 A1
20090301487 Masic Dec 2009 A1
20090301490 Masic Dec 2009 A1
20090301491 Masic et al. Dec 2009 A1
20090301492 Wysocki et al. Dec 2009 A1
20090308398 Ferdinand et al. Dec 2009 A1
20090314297 Mathews Dec 2009 A1
20100011307 Desfossez et al. Jan 2010 A1
20100024820 Bourdon Feb 2010 A1
20100051026 Graboi Mar 2010 A1
20100051029 Jafari et al. Mar 2010 A1
20100069761 Karst et al. Mar 2010 A1
20100071689 Thiessen Mar 2010 A1
20100071692 Porges Mar 2010 A1
20100071695 Thiessen Mar 2010 A1
20100071696 Jafari Mar 2010 A1
20100071697 Jafari et al. Mar 2010 A1
20100078017 Andrieux et al. Apr 2010 A1
20100078018 Heinonen et al. Apr 2010 A1
20100078026 Andrieux et al. Apr 2010 A1
20100081119 Jafari et al. Apr 2010 A1
20100081955 Wood, Jr. et al. Apr 2010 A1
20100101575 Fedorko et al. Apr 2010 A1
20100108066 Martin et al. May 2010 A1
20100116270 Edwards et al. May 2010 A1
20100139660 Adahan Jun 2010 A1
20100147302 Selvarajan et al. Jun 2010 A1
20100147303 Jafari et al. Jun 2010 A1
20100186744 Andrieux Jul 2010 A1
20100218765 Jafari et al. Sep 2010 A1
20100218766 Milne Sep 2010 A1
20100218767 Jafari et al. Sep 2010 A1
20100236555 Jafari et al. Sep 2010 A1
20100241159 Li Sep 2010 A1
20100242961 Mougel et al. Sep 2010 A1
20100249549 Baker, Jr. et al. Sep 2010 A1
20100252046 Dahlström et al. Oct 2010 A1
20100275920 Tham et al. Nov 2010 A1
20100275921 Schindhelm et al. Nov 2010 A1
20100282259 Figueiredo et al. Nov 2010 A1
20100288283 Campbell et al. Nov 2010 A1
20100300445 Chatburn et al. Dec 2010 A1
20100300446 Nicolazzi et al. Dec 2010 A1
20100319691 Lurie et al. Dec 2010 A1
20100326447 Loomas et al. Dec 2010 A1
20100331877 Li et al. Dec 2010 A1
20110005530 Doshi et al. Jan 2011 A1
20110009762 Eichler et al. Jan 2011 A1
20110011400 Gentner et al. Jan 2011 A1
20110023878 Thiessen Feb 2011 A1
20110023879 Vandine et al. Feb 2011 A1
20110023880 Thiessen Feb 2011 A1
20110023881 Thiessen Feb 2011 A1
20110029910 Thiessen Feb 2011 A1
20110036352 Estes et al. Feb 2011 A1
20110041849 Chen et al. Feb 2011 A1
20110041850 Vandine et al. Feb 2011 A1
20110061650 Heesch Mar 2011 A1
20110073112 DiBlasi et al. Mar 2011 A1
20110088697 DeVries et al. Apr 2011 A1
20110100365 Wedler et al. May 2011 A1
20110108041 Sather et al. May 2011 A1
20110126829 Carter et al. Jun 2011 A1
20110126832 Winter et al. Jun 2011 A1
20110126834 Winter et al. Jun 2011 A1
20110126835 Winter et al. Jun 2011 A1
20110126836 Winter et al. Jun 2011 A1
20110126837 Winter et al. Jun 2011 A1
20110128008 Carter Jun 2011 A1
20110132361 Sanchez Jun 2011 A1
20110132362 Sanchez Jun 2011 A1
20110132364 Ogilvie et al. Jun 2011 A1
20110132365 Patel et al. Jun 2011 A1
20110132366 Ogilvie et al. Jun 2011 A1
20110132367 Patel Jun 2011 A1
20110132368 Sanchez et al. Jun 2011 A1
20110132369 Sanchez Jun 2011 A1
20110132371 Sanchez et al. Jun 2011 A1
20110133936 Sanchez et al. Jun 2011 A1
20110138308 Palmer et al. Jun 2011 A1
20110138309 Skidmore et al. Jun 2011 A1
20110138311 Palmer Jun 2011 A1
20110138315 Vandine et al. Jun 2011 A1
20110138323 Skidmore et al. Jun 2011 A1
20110146681 Jafari et al. Jun 2011 A1
20110146683 Jafari et al. Jun 2011 A1
20110154241 Skidmore et al. Jun 2011 A1
20110175728 Baker, Jr. Jul 2011 A1
20110196251 Jourdain et al. Aug 2011 A1
20110197884 Duff et al. Aug 2011 A1
20110197886 Guttmann et al. Aug 2011 A1
20110197892 Koledin Aug 2011 A1
20110203598 Favet et al. Aug 2011 A1
20110209702 Vuong et al. Sep 2011 A1
20110209704 Jafari et al. Sep 2011 A1
20110209707 Terhark Sep 2011 A1
20110213215 Doyle et al. Sep 2011 A1
20110226248 Duff et al. Sep 2011 A1
20110230780 Sanborn et al. Sep 2011 A1
20110249006 Wallace et al. Oct 2011 A1
20110259330 Jafari et al. Oct 2011 A1
20110259332 Sanchez et al. Oct 2011 A1
20110259333 Sanchez et al. Oct 2011 A1
20110265024 Leone et al. Oct 2011 A1
20110271960 Milne et al. Nov 2011 A1
20110273299 Milne et al. Nov 2011 A1
20120000467 Milne et al. Jan 2012 A1
20120000468 Milne et al. Jan 2012 A1
20120000469 Milne et al. Jan 2012 A1
20120000470 Milne et al. Jan 2012 A1
20120029317 Doyle et al. Feb 2012 A1
20120030611 Skidmore Feb 2012 A1
20120060841 Crawford, Jr. et al. Mar 2012 A1
20120071729 Doyle et al. Mar 2012 A1
20120090611 Graboi et al. Apr 2012 A1
20120096381 Milne et al. Apr 2012 A1
20120133519 Milne et al. May 2012 A1
20120136222 Doyle et al. May 2012 A1
20120137249 Milne et al. May 2012 A1
20120137250 Milne et al. May 2012 A1
20120167885 Masic et al. Jul 2012 A1
20120185792 Kimm et al. Jul 2012 A1
20120197578 Vig et al. Aug 2012 A1
20120197580 Vij et al. Aug 2012 A1
20120216809 Milne et al. Aug 2012 A1
20120216810 Jafari et al. Aug 2012 A1
20120216811 Kimm et al. Aug 2012 A1
20120226444 Milne et al. Sep 2012 A1
20120247471 Masic et al. Oct 2012 A1
20120272960 Milne Nov 2012 A1
20120272961 Masic et al. Nov 2012 A1
20120272962 Doyle et al. Nov 2012 A1
20120304995 Kauc Dec 2012 A1
20130000644 Thiessen Jan 2013 A1
20130006133 Doyle et al. Jan 2013 A1
20130006134 Doyle et al. Jan 2013 A1
20130025596 Jafari et al. Jan 2013 A1
20130025597 Doyle et al. Jan 2013 A1
20130047989 Vandine et al. Feb 2013 A1
20130053717 Vandine et al. Feb 2013 A1
20130074844 Kimm et al. Mar 2013 A1
20130081536 Crawford, Jr. et al. Apr 2013 A1
20130104896 Kimm et al. May 2013 A1
20130146055 Jafari et al. Jun 2013 A1
20130167842 Jafari et al. Jul 2013 A1
20130167843 Kimm et al. Jul 2013 A1
Non-Patent Literature Citations (4)
Entry
7200 Series Ventilator, Options, and Accessories: Operator's Manual. Nellcor Puritan Bennett, Part No. 22300 A, Sep. 1990, pp. 1-196.
7200 Ventilatory System: Addendum/Errata. Nellcor Puritan Bennett, Part No. 4-023576-00, Rev. A, Apr. 1998, pp. 1-32.
800 Operator's and Technical Reference Manual. Series Ventilator System, Nellcor Puritan Bennett, Part No. 4-070088-00, Rev. L, Aug. 2010, pp. 1-476.
840 Operator's and Technical Reference Manual. Ventilator System, Nellcor Puritan Bennett, Part No. 4-075609-00, Rev. G, Oct. 2006, pp. 1-424.
Related Publications (1)
Number Date Country
20130192599 A1 Aug 2013 US