The present disclosure generally relates to computer technology for solving technical challenges in search queries to data sources. More specifically, the present disclosure relates to the dynamic alteration of weights to re-weight candidate features of a candidate search and ranking model in a streaming environment.
The rise of the Internet has occasioned two disparate phenomena: the increase in the presence of social networks, with their corresponding member profiles visible to large numbers of people, and the increase in use of social networks for job searches, both by applicants and by employers. Employers, or at least recruiters attempting to connect applicants and employers, often perform searches on social networks to identify candidates who have qualifications that make them good candidates for whatever job opening they are attempting to fill. The employers or recruiters then can contact these candidates to see if they are interested in applying for the job opening.
Traditional querying of social networks for candidates involves the employer or recruiter entering one or more search terms to manually create the query. A key challenge in talent search is to translate the criteria of a hiring position into a search query that leads to desired candidates. To fulfill this goal, the searcher has to understand which skills are typically required for the position, what the alternatives are, which organizations are likely to have such candidates, which schools the candidates are most likely to graduate from, and so forth. Moreover, the knowledge varies over time. As a result, it is not surprising that even for experienced recruiters it often requires many searching trials in order to obtain a satisfactory query.
Some embodiments of the technology are illustrated, by way of example and not limitation, in the figures of the accompanying drawings.
The present disclosure describes, among other things, methods, systems, and computer program products that individually provide various functionality. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the various aspects of different embodiments of the present disclosure. It will be evident, however, to one skilled in the art, that the present disclosure may be practiced without all of the specific details.
In an example embodiment, a system is provided whereby candidate features are re-weighed based on a mixture of explicit and implicit feedback. The feedback can include user feedback for candidates in a given stream. The user can be, for example, a recruiter or hiring manager reviewing candidates in a stream of candidates presented to the user. Explicit feedback can include acceptance, deferral, or rejection of a presented candidate by a user (e.g., recruiter feedback). Explicit feedback can also include a user's Interest in member attributes (i.e., urns) and is used to identify ranking and recall limitations of previously displayed profiles and to devise reformulation schemes for query intent clusters. For example, starting with a set of desired candidates for a title (i.e., desired hires for a given job title) specified by the stream, an embodiment represents a candidate profile as a bag of urns. In this example, an urn is an entity type associated with a member profile, where an entity type represents an attribute or feature of the member's profile (e.g., skills, education, experience, current and past organizations). For instance, member profiles can be uniquely identified by urns, where the urns can include urns for skills (e.g., C++ programming experience) and other urns for company or organization names (e.g., names of current and former employers). Implicit feedback can include measured metrics such as dwell time, profile sections viewed, and number of revisits to a saved candidate profile. Correlations between explicit and implicit feedback are used to determine relative weights of member urns in a profile in order to quickly converge on a set of candidates in a streaming environment.
In certain embodiments, a candidate stream collects two types of explicit feedback. The first type of explicit feedback includes signals from a user such as acceptance, deferral, or rejection of a candidate shown or presented to the user (e.g., a recruiter). The second type of explicit feedback includes member urns that are similar to urns of a desired hire. If the explicit feedback includes many negative responses, an embodiment can prompt the user to ask the user if he wants to see candidates from known connections instead of or in addition to candidates from a stream. In another example, if a user is searching for a game developer with certain experience or skills (e.g., real-time software development skills), the system can use explicit feedback to present known connections who have these skills after a baseline number of candidates that have been accepted.
Explicit feedback can be used to re-weight arms of a multi-armed bandit (MAB) solution, where the MAB solution is used to explore the appropriateness of each of a set of possible user query intents in terms of each intent's match to a current hidden intent of the user. For instance, each arm of the MAB solution can represent an intent, and the choice of weights for these arms can be determined based on user feedback (e.g., recruiter feedback). In some embodiments, explicit feedback is used to populate arms for an MAB approach. According to these embodiments, the MAB approach is away to explore whether, for a current candidate search, certain candidate feature weights are more appropriate for the search.
In some embodiments, implicit feedback can include one or more user feedback signals or measurements such as, for example, the user's dwell time on a presented candidate, a number of a member's profile sections viewed by the user, and a number of revisits by the user to a saved member profile. For instance, implicit feedback can use log data from a recruiting tool to measure an amount of things or items in a member profile a user has reviewed or seen (e.g., a number of profile sections viewed). In this example, such log data from a recruiting product can be used to determine if a user is interested in a particular skill set, seniority or tenure in a position, seniority or tenure at an organization, and other implicit feedback that can be determined from log data. In another example, log data from an automated sourcing or intelligent matches product may be used to determine if a user of the product is interested in a particular skill set, seniority or tenure in a position, seniority or tenure at an organization, and other implicit feedback that can be determined from automated sourcing or intelligent matches log data.
Embodiments incorporate the above-noted types of explicit and implicit feedback signals into a single weighted scheme of signals. This single weighted scheme of signals is used as a correlation between the explicit and implicit feedback to develop attribution schemes for determining relative weights of urns on a member profile. In additional or alternative embodiments, the explicit member urns feedback is used to identify ranking and recall limitations of previously displayed member profiles and to devise reformulation schemes for query intent clusters. The query intent clusters do not require displaying a query for editing by the user. Instead, the user's query can be tuned automatically behind the scenes. For instance, query intent clusters can be used to automatically reformulate and tune a query based on a mixture of explicit and implicit feedback as the user is looking for candidates, and reviews, selects, defers, or rejects candidates in a candidate stream. As used herein, the terms ‘stream of candidates’ and ‘candidate stream’ generally refer to sets of candidates that can be presented or displayed to a user. The user can be a user of a recruiting tool. For example, the user can be a recruiter or a hiring manager that interacts with a recruiting tool to view and review a stream of candidates being considered for a position or job.
The above-noted types of explicit and implicit feedback can be used to promote and demote candidates by re-weighting candidate features. That is, values assigned to weights corresponding to candidate features (e.g., desired hire features) can be re-calculated or re-weighted. Some feedback can conflict with other feedback. For example, seniority feedback can indicate that a user wants a candidate with long seniority at a start-up company, but relatively shorter seniority at a larger organization (e.g., a Fortune 500 company). Embodiments provide valuation or ranking of candidates in a stream of candidates. For example, embodiments can present members with member urns that are similar to a desired hire, but only after the user has rejected a threshold number of candidates in a stream.
In an example embodiment, a system is provided whereby, given a set of input ‘desired’ candidates, a search query is built capturing the key information in the candidates' profiles. The query is then used to retrieve and rank results. In this manner, a searcher may list one or several examples of good candidates for a given position. For instance, hiring managers or recruiters can utilize profiles of existing members of the team for which the position pertains. In this new paradigm, instead of specifying a complex query capturing the position requirements, the searcher can simply pick up a small set of desired hires for the position. The system then builds a query automatically extracted from the input candidates and searches for result candidates based on this built query. In some example embodiments, the automatically constructed query can also be presented to the searcher, which helps explain why a certain result shows up in a search ranking, thereby making the system more transparent to the searcher. Further, the searcher can then interact with the system and have control over the results by modifying the initial query.
Example embodiments provide systems and methods for query intent clustering for a search query, where the search query is a candidate query in a recruiting context. According to these embodiments, an automated sourcing application or an intelligent matches application allows a user, such as, for example, a recruiter or hiring manager, to create a stream from a minimal set of features. As used herein, in certain embodiments, the terms ‘automated sourcing’, ‘intelligent matches’ and ‘intelligent matching’ refer to systems and methods that offer intelligent candidate suggestions to users such as, for example, recruiters, hiring managers, and small business owners. Automated sourcing enables such users to review and select relevant candidates from a candidate stream without having to navigate or review a large list of candidates. For example, automated sourcing can provide a user with intelligent suggestions automatically selected from a candidate stream or flow of candidates for a position to be filled without requiring the user to manually move through a list of thousands of candidates. In the automated sourcing context, such a candidate stream can be created based on minimal initial contributions or inputs from users such as small business owners and hiring managers.
Instead of requiring large amounts of explicit user feedback, automated sourcing techniques infer criteria with features and information derived from the user's company or organization, job descriptions, other companies or organizations in similar industries, and implicit user feedback (e.g., feedback inferred based on recent hires). Among many features or factors that can contribute to the criteria for including members of a social networking service in a stream of candidates, embodiments use a standardized job title and location to start a stream. In certain embodiments, the social networking service is an online professional network. As a user is fed a stream of candidates, the user can assess respective ones of the candidates. This interaction information can be fed back into a relevance engine that includes logic for determining which candidates end up in a stream. In this way, automated sourcing techniques continue to improve the stream.
In certain embodiments, a user of a recanting tool can create a new stream from a standardized title and location combination. In the event that the user does have a company that is standardized, and the tool has enough data on the organization or company to make it useful, an embodiment can also implicitly leverage the organization's or company's industry and other metadata to improve the immediate quality of the stream. For each new stream, a standardized title and location are used to frame the position. The search service can use the recruiting tool's suggested titles and locations to automatically broaden the search. That is, the title and location used to frame the stream are the job title the candidate will have and the location where they will work, as opposed to requiring the user to enter current titles.
An embodiment standardizes company, organization, title, and location values. For example, if the user's standardized company contains enough information to start a stream, an embodiment can personalize the stream based on the company name. This results in immediately improving the relevance model versus needing to wait for additional indicators or parameters. The standardized company can be derived from a user's contract settings or from the user's profile. In certain embodiments, additional questions are incorporated after the initial stream creation to better frame the candidate stream. The amount of these questions are kept as low impact as possible in order to simplify the process of getting started with sourcing candidates. For example, if a user's organization seeks to hire an accountant, an additional question may prompt the user to determine if it is a requirement that candidates have a certified public accountant (CPA) credential. In addition to information that the automated sourcing tool infers, there are interstitial questions that might be asked to help target the stream even further. For example, the tool may prompt the user to determine how senior of a candidate the user is looking for and when the candidate needs to be available to start. These questions can be asked throughout the candidate ranking process and can vary based on the demands of relevancy. Like the initial questions that can be asked, these additional questions are based on how much success the rating flow is having at returning quality, desired candidates. In the streaming environment, that success is measured by the amount of positive ratings for candidates in the stream.
Following the creation of the stream, the user can be dropped into a sourcing flow where they will start to receive candidates one at a time. Action (e.g., feedback) may be required on a candidate to move on to the next one. The current candidate for each stream is tracked, allowing the user to return to where they left off at any point.
A user can use a recruiting tool to move or navigate through a candidate stream. For example, as a stream engine returns each candidate to the user, the user can provide feedback to rate the candidate in one of a discrete number of ways. Non-limiting examples of the feedback include acceptance (e.g., Yes—interested in candidate, deferral (e.g., maybe later) and rejection (e.g., No—not interested).
A candidate stream can be resumed or started from a home screen of the automated sourcing recruiting tool, where a review endpoint is hit. This endpoint returns the next prospect identifier (ID) associated with that specific stream. If it is a suggested stream or new stream, a create call is made first. If it is a current stream that is being resumed, then it goes directly to the review endpoint. With each user rating (e.g., explicit feedback), the following actions can be taken: 1. The stream engine receives the candidate, the project and the rating. This allows updating of a tagging table that is used to track the candidate's rating within a specific recruiting project. At this point, a call can be made (e.g., an application programming interface/API call) to a relevance backend to pass along the rating information. Next, 2for web to API purposes, a posting call will return a success response and the same review endpoint from before will be hit. The review endpoint returns a fully decorated profile for the next stream. An API can handle all profile decoration via a rest call to an identity super block. The candidates are stored in the recruiting project for several reasons, with the main one being that it provides a record of yes/no/deferred feedback to the relevancy engine. The stream may expose previously rated candidates back to user if the training data flags a candidate as a potential rematch (may have been hastily rated, had their profile data updated, has since become a more appropriate candidate, etc.). Another important reason is to allow the user to upgrade to a full recruiter contract at any given time and have all their candidates stored in projects correlated to each stream.
In addition to having the ability to go from an automated sourcing contract to full recruiter contract, an embodiment allows existing recruiters to add automated sourcing as a feature to their account. This means supporting the ability to create automated sourcing streams off of their existing recruiting or staffing projects. Since these projects can be closely tied to each other, some inferences about the candidates that already exist in that recruiter's projects can be made. For example, if the recruiter has a project with 25 candidates that have been contacted, an embodiment can assume the candidates would be tagged with the same ‘automated_good’ ranking just as if they went through automated sourcing. This allows for an easy mapping when it comes to creating streams from a recruiter's existing projects.
A user, such as a recruiter, can resume an existing stream. For instance, this can be an entry point on the homepage of a recruiting tool to pick up an existing stream. A candidate stream can be referenced by a unique stream ID and can use the same review endpoint that grabs additional candidates to direct the user back into a stream. A stream can essentially be never ending. Whether the ranking model associated with the stream is updated offline or new candidates are re-exposed, unless explicitly deleted by the user, there should be relevant candidates available for that stream at any time.
A user, such as a recruiter, can also take actions on candidates. There are going to be a wide variety of actions that can be taken against a candidate in a stream. In an embodiment, only one of these actions will have a clear defined action. For example, in this embodiment, there are three statuses based on user feedback, all of which add the user to the same project: (1) Deferred: I'm not interested in this candidate right now, but they may be a hit at another time, (2) Interested: I'm interested in this candidate right now, I want to reach out to them immediately, and (3) Not Interested: I am not and will not be interested in this candidate. The Deferred feedback adds a candidate to the project with a skipped or deferred tag. This means they can be re-exposed later by the relevance engine. The Not Interested feedback means that the user is explicitly not interested in this candidate. There can be any number of factors behind this, but the underlying message is do not show the user this candidate again. The Interested feedback means that the user is interested in contacting this candidate. An embodiment validates this feedback against user testing, but this will either prompt the user to send a message (e.g., a Linkedin InMail message) right from the review screen of the recruiting tool or add them to a list to be contacted later. This same setup could be reorganized into multiple feedbacks and ratings, where different ratings align with some of these base indicators. For example, a star rating system where four or live stars indicates that a user is interested in a candidate, one or two stars means the user is not interested, and a three star rating means the user is deferring a decision.
In some embodiments, an offline technique evaluates the effect of explicit feedback on candidate ranking in an automated sourcing context. The technique can glean explicit feedback from review or log data of an automated sourcing recruiter tool. The technique can determine feedback based on impression data in log data from such a tool. An embodiment uses a simple ranking model that can be utilized offline to evaluate re-ranking due to feedback.
Example techniques utilize review data from a recruiter tool (see, e.g., the example recruiter tool user interface shown in
According to certain embodiments, a method filters a data set for a candidate count in order to be able to evaluate online updates to the candidate ranks. Some of these embodiments use a certain number of initially ranked candidates as input. In additional or alternative embodiments, filtering can also be performed according to a total number of successful reviews and other feedback measurements. Feature selection is also performed. Initially, a method includes performing a manual feature selection. Such a manual feature selection can include a recruiter user making manual selections of desired seniority and skills for a candidate search. In general, the method obtains an informational feature vector for each candidate to incorporate into the ranking model. Next, the example method performs re-ranking and evaluation.
The re-ranking and evaluation can include performing a cold start of the ranking model with a first candidate and user feedback that the first candidate received. The ranking model is used to rank a pool of candidates (excluding the first candidate since it has already been used). Based on the current ranking of the candidates, the method retrieves the candidate with the highest rating. This can be done in the context of an online system that is presenting a candidate to the user based on the feedback it has received thus far. Using the feedback for the current candidate, and a feature vector representing the candidate to the ranking model, the method updates the ranking model.
Next, the method re-ranks the pool of candidates that have not yet been used according to the updated model. Then, the method repeatedly retrieves the candidate with the highest rating until all candidates in the pool have been exhausted.
To judge the effectiveness of the ranking model at selecting favorably rated candidates before unfavorably rated candidates, the method can include computing ranking metrics measuring precision and candidate feature weights.
The method can include implementing a simulated data flow for ingesting an initial ranking model and updating it, and then performing further iterations of the offline experimental simulations. These offline experimental simulations can employ different models, use a warm-start of models, and utilize different features.
Due to limitations on the number of candidates per job in some recruiter tool log data or review data, there is a possibility that the method may not be able to produce meaningful results utilizing only such log or review data. In such cases, an embodiment supplements log or review data with impression data from the recruiter tool. This embodiment can implement reinforcement learning using desired hires or ideal candidates, both in the context of automated sourcing.
Some embodiments use explicit and implicit feedbacks that are given by recruiter users, rather than other users such as hiring managers. These embodiments can potentially take less domain knowledge into account by not relying on feedback from an organization's hiring manager.
Certain embodiments incorporate feedback to update candidate rankings offline. For example, once viable candidates are obtained that match a specific search query (see, e.g., a query built using an intent query clustering technique), the relative ranking among those is further performed according to a score that is a weighted combination of the candidate features. In an embodiment, this score can be calculated using the following formula:
In the above formula (1), a ‘good’ w vector gives higher scores to candidates (cand) which are estimated to receive good feedback (i.e., where a user such as a hiring manager is interested in the candidates). In this way, an online update for the weights gets the gradient of the w according to the actual feedback (y), to get as close as possible to it, by using the following formula:
{right arrow over (w)}
f
={right arrow over (w)}−α·({right arrow over (w)}●ca{right arrow over (n)}di−y)·candi (2)
An example technique overcomes an issue arising from the fact that the actual score (i.e., wX candi) is not known. However, in accordance with the example technique, for the purposes of reinforcing the feedback, the actual score can be ignored. This means that a positive feedback for a particular candidate will enforce the weights of that particular candidate's features being increased. Conversely, a negative feedback for a particular candidate will enforce the weights of that particular candidate's features being decreased.
In the context of online learning, α in formula (2) above is referred to as the learning rate. This value, in general, is based on the time when a candidate ranking is updated. In certain embodiments, different methods for assigning α can be used. For instance, the learning rate α may be independent for each feature, as well as the same for the whole weight vector at each update step.
An API server 114 and a web server 116 are coupled to, and provide programmatic and web interfaces respectively to, one or more application servers 118. The application server(s) 118 host one or more applications 120. The application server(s) 118 are, in turn, shown to be coupled to one or more database servers 124 that facilitate access to one or more databases 126. While the application(s) 120 are shown in
Further, while the client-server system 100 shown in
The web client 106 accesses the various applications 120 via the web interface supported by the web server 116. Similarly, the programmatic client 108 accesses the various services and functions provided by the application(s) 120 via the programmatic interface provided by the API server 114.
In some embodiments, any website referred to herein may comprise online content that may be rendered on a variety of devices including, but not limited to, a desktop personal computer (PC), a laptop, and a mobile device (e.g., a tablet computer, smartphone, etc.). In this respect, any of these devices may be employed by a user to use the features of the present disclosure. In some embodiments, a user can use a mobile app on a mobile device (any of the machines 110, 112 and the third party server 130 may be a mobile device) to access and browse online content, such as any of the online content disclosed herein. A mobile server (e.g., API server 114) may communicate with the mobile app and the application server(s) 118 in order to make the features of the present disclosure available on the mobile device.
In some embodiments, the networked system 102 may comprise functional components of a social networking service.
As shown in
An application logic layer may include one or more various application server blocks 214, which, in conjunction with the user interface block(s) 212, generate various user interfaces (e.g., web pages) with data retrieved from various data sources in a data layer. In some embodiments, individual application server blocks 214 are used to implement the functionality associated with various applications 120 and/or services provided by the social networking service.
As shown in
Once registered, a member may invite other members, or be invited by other members, to connect via the social networking service. A ‘connection’ may constitute a bilateral agreement by the members, such that both members acknowledge the establishment of the connection. Similarly, in some embodiments, a member may elect to ‘follow’ another member. In contrast to establishing a connection, the concept of ‘following’ another member typically is a unilateral operation and, at least in some embodiments, does not require acknowledgement or approval by the member that is being followed. When one member follows another, the member who is following may receive status updates (e.g., in an activity or content stream) or other messages published by the member being followed, or relating to various activities undertaken by the member being followed. Similarly, when a member follows an organization, the member becomes eligible to receive messages or status updates published on behalf of the organization. For instance, messages or status updates published on behalf of an organization that a member is following will appear in the member's personalized data feed, commonly referred to as an activity stream or content stream. In any case, the various associations and relationships that the members establish with other members, or with other entities and objects, are stored and maintained within a social graph in a social graph database 220.
As members interact with the various applications 120, services, and content made available via the social networking service, the members' interactions and behavior (e.g., content viewed, links or buttons selected, messages responded to, etc.) may be tracked, and information concerning the members' activities and behavior may be logged or stored, for example, as indicated in
In some embodiments, the databases 218, 220, and 222 may be incorporated into the database(s) 126 in
Although not shown, in some embodiments, the social networking system 210 provides an API block via which applications 120 and services can access various data and sen/ices provided or maintained by the social networking service. For example, using an API, an application may be able to request and/or receive one or more navigation recommendations. Such applications 120 may be browser-based applications 120 or may be operating system-specific. In particular, some applications 120 may reside and execute (at least partially) on one or more mobile devices (e.g., phone or tablet computing devices) with a mobile operating system. Furthermore, while in many cases the applications 120 or services that leverage the API may be applications 120 and services that are developed and maintained by the entity operating the social networking service, nothing other than data privacy concerns prevents the API from being provided to the public or to certain third parties under special arrangements, thereby making the navigation recommendations available to third party applications 128 and services.
Although the search engine 216 is referred to herein as being used in the context of a social networking service, it is contemplated that it may also be employed in the context of any website or online services. Additionally, although features of the present disclosure are referred to herein as being used or presented in the context of a web page, it is contemplated that any user interface view (e.g., a user interface on a mobile device or on desktop software) is within the scope of the present disclosure.
In an example embodiment, when member profiles are indexed, forward search indexes are created and stored. The search engine 216 facilitates the indexing and searching for content within the social networking service, such as the indexing and searching for data or information contained in the data layer, such as profile data (stored, e.g., in the profile database 218), social graph data (stored, e.g., in the social graph database 220), and member activity and behavior data (stored, e.g., in the member activity and behavior database 222). The search engine 216 may collect, parse, and/or store data in an index or other similar structure to facilitate the identification and retrieval of information in response to received queries for information. This may include, but is not limited to, forward search indexes, inverted indexes, N-gram indexes, and so on.
In an example embodiment, the input, from the client profile search component 302 includes an identification of one or more desired hires for a job opening. This identification may be accomplished in many ways. In some example embodiments, the input may be an explicit, identification of one or more member profiles stored in the profile database 218. This explicit identification may be determined by the searcher, for example, browsing or otherwise locating specific profiles that the searcher feels are desired. For example, the searcher may know the identity of individuals on a team, in which the open position is available, and may navigate to and select the profiles associated with those team individuals. In another example embodiment, the searcher may create one or more hypothetical ‘desired hire’ profiles and use those as the input. In another example embodiment, the searcher may browse or search profiles in the profile database 218 using traditional browsing or searching techniques. In some example embodiments, the explicit identification may be provided by the job poster.
The server profile search component 300 may contain a feature extractor 304. The feature extractor 304 may be implemented as a system component or machine component that is configured to extract one or more raw features from one or more profiles of one or more desired hires (e.g., skills, organizations, titles, schools. industries, and other features from one or more desired hire member profiles). The feature extractor 304 extracts raw features, including, for example, skills, organizations, titles, schools, industries, and the like, from the profiles of the one or more desired hires. These raw features are then passed to a query builder 306. For each feature type, the query builder 306 aggregates the raw features across the input candidates, expands them to similar features, and finally selects the top features that best represent the desired hires.
After the query is generated, in an example embodiment, the generated query may be shown to the searcher via the client profile search component 302 and the searcher may have the opportunity to edit the generated query. This may include adding or removing some features, such as skills and organizations, in the query. As part of this operation, a query processor 308 may perform a search on the query and present raw results to the searcher via the client profile search component 302. These raw results may be useful to the searcher in determining how to edit the generated query.
In some example embodiments, refinement questions are presented to a searcher in order to refine a query. For instance, responses to refinement questions received from the searcher can be used to refine a generated query. In another example embodiment, a machine learning model is trained to make ‘smart suggestions’ to the searcher as to how to modify the generated query. The model may be trained to output suggestions based on any number of different facets, such as title, company or organization, industry, location, school, and skill.
Usage data can be gathered regarding actions taken by searchers when facing a suggestion— (1) add the suggestion, (2) delete the suggestion, or (3) ignore the suggestion. Intuitively, if a searcher adds a suggestion, it is probably a desired one and thus can be considered a positive training sample. If the searcher deletes the suggestion, then it is probably not a desired one and thus can be considered a negative training sample. For ignored suggestions, if the suggestion is positioned lower than an added suggestion (e.g. ‘Santa Clara University’ is positioned lower than added ‘University of California, Santa Cruz’), then it is not certain whether the suggestion is really ignored by searchers or useless in the setting of the query. Thus, this data can be ignored. If, however, the ignored suggestion is positioned higher than an added suggestion, it can be treated as negative data.
After the query is modified, the query processor 308 may refresh the search results. A search results ranker 310 may act to rank the search results, taking into account both the query (including potentially the generated query and the modified generated query) as well as the input desired hires when ranking the search results. The search results ranker 310 may be implemented as a system component or machine component that is configured to rank the search results according to one or more ranking algorithms. For example, the search results ranker 310 may rank one or more desired hire documents (e.g., member profiles of desired hires) based on ranking scores obtained by inputting one or more desired hire-based features extracted from the desired hire documents to a combined ranking model. The combined ranking model may be trained by a machine learning algorithm to output a ranking score for each of the desired hire documents. The combined ranking model may include weights assigned to each of the one or more extracted, desired hire-based features. A results display component 316 may receive ranked search results from the search results ranker 310 and present the ranked search results on a display device (e.g., a display screen of a computing device). As shown in
Referring back to the query builder 306, given the raw features from the profiles of the desired hires, the query builder 306 generates a query containing skills, organizations, titles, and the like that best represents the desired hires.
The query builder 306 may comprise a skills generator 312 designed to generate skills to be added to the generated query. The social networking service may allow members to add skills to their profiles. Typical examples of skills that, for example, an information technology (IT) recruiter might search could be ‘search,’ ‘information retrieval,’ ‘machine learning,’ and the like. Members may also endorse skills of other members in their network by, for example, asserting that the member does indeed have the specified skills. Thus, skills may be an important part of members' profiles that showcase their professional expertise. A technical challenge encountered, however, is that desired hires may not explicitly list all of the skills they have on their profiles. Additionally, some of their skills may not be relevant to their core expertise. For example, an IT professional may list ‘nonprofit fundraising’ as a skill. The query builder 306 may also comprise an organization generator 314 designed to use collaborative filtering to find organization relationships (e.g., relationships between companies).
To overcome these challenges, expertise scores for the desired hire may be estimated based on explicit skills (skills the member has explicitly listed) as well as implicit skills (skills the member is likely to have, but has not explicitly linked).
In the example of
After setting the success bucket and obtaining the candidate information for all streams, an embodiment applies an online learning simulation to estimate the potential online behaviour applying the online learning algorithm. This can be done by first randomizing the set of candidates into an arbitrary ordering (the aim is to show that re-ranking improves candidate quality) as the baseline. Then, the process starts with a model that assigns equal weight to each candidate feature, and at each step, the weights are updated according to the explicit and implicit user feedback. Each update causes the remaining candidates in the stream to be re-ranked. Next, the quality metrics (such as, for example, NDCG) are compared at each step. Since a significant number of candidates in the stream are needed for the ordering to be meaningful, a hard filtering of streams is performed to ensure that the streams have a certain range of candidates. In certain embodiments, the hard filtering of streams is performed to ensure that the streams have between 20 and 300 candidates. Example offline results are presented in
While
ifPerFeatureLR—indicates if a different learning rate is calculated for each feature at each time step, or if a single learning rate is calculated for all features at each time step.
use Skills: indicates whether skills are used as candidate features.
useEducation: indicates whether degree is used as a candidate feature.
useSeniority: indicates whether seniority is used as a candidate feature.
alpha: Hyper parameter for calculating learning rate.
learningRateAlgorithm: Algorithm 1→alpha*1/t, where t is either the number of steps so far (if the same learning rate is calculated for all features at that step) or the number of times a feature has been seen till that step (if a different learning rate is calculated for each feature at that step). Algorithm 2→alpha*1/sqrt(t), where t definition is the same as in the case of Algorithm 1.
With continued reference to
In particular,
In particular,
In some embodiments, utilizing the learning rate method alpha=(1/sqrt) often gives better results due to learning more aggressively in later steps compared to a linear learning rate such as alpha=(1/n).
With continued reference to
Prior to calculating expertise scores 1302 on actual member profiles, a training apparatus 1312 may obtain training data for statistical model 1304, which includes a positive class 1314 and a negative class 1316. Positive class 1314 may include data associated with items of a particular category (e.g., trait, feature, dimension, etc.), while negative class 1316 may include data associated with items that do not belong in the category.
For example, statistical model 1304 may be a logistic regression model that classifies each member profile as either an expert or a non-expert in a corresponding skill. Positive class 1314 may thus include a subset of candidate features 1306-1308 associated with members with known expertise in one or more skills. Such ‘expert’ members may be identified based on publications, speeches, awards, and/or contributions of the users in their respective fields. On the other hand, negative class 1316 may include a subset of candidate features 1306-1308 associated with members who are not recognized as experts in their respective fields, such as random members who list a given skill in their profiles. Because far fewer users belong in positive class 1314 than negative class 1316, positive class 1314 may be oversampled to produce a roughly class-balanced set of training data for statistical model 1304.
Next, training apparatus 1312 may use positive class 1314 and negative class 1316 to train statistical model 1304. For example, training apparatus 1312 may use maximum-likelihood estimation (MLE) and/or another estimation technique to estimate the parameters of a logistic regression model for calculating expertise scores 1302. After training of the logistic regression model is complete, the parameters may be set so that the logistic regression model outputs values close to 1 for training data in positive class 1314 and values close to 0 for training data in negative class 1316.
The trained statistical model 1304 may be provided to scoring apparatus 1300, which calculates expertise scores 1302 for member profiles not included in the training data (such as desired member profiles supplied by the searcher) by applying statistical model 1304 to features (e.g., candidate features 1306-1308) for each of the items. For example, a feature vector may be generated for each item from a subset of candidate features 1306-1308 in data repository 1310, and statistical model 1304 may be applied to the feature vector to calculate an expertise score for the item with respect to a dimension of the member profile.
Candidate features 1306-1308 used in the calculation of expertise scores 1302 may include demographic features, social features, and behavioral features. Demographic features may include data related to a member's location, age, experience, education, and/or background, social features may include features related to the behavior of other users with respect to the user; and behavioral features may include features related to the member's actions or behavior with the online professional network and/or related websites or applications.
Separately, a desired hire (DH)-based feature producer 1506 receives as input the specified desired hire(s) and the search results from the query generated by the desired hire(s). The desired hire (DH)-based feature producer 1506 then produces a set of desired hire-based features 1508 of the results. Desired hire-based features 1508 include features that are based on a comparison of desired hires and the search results (each feature measures one desired hire/search result pair). Example candidate-based features include skill similarity, headline matching, headline similarity, and browsemap similarity.
At the node (position) level, similarity can then be ascertained by using a generalized linear model, although in other embodiments other approaches could be substituted. Then, at the sequence (profile) level, a sequence alignment method may be employed to find an optimal or near-optimal alignment between pairs of nodes from the two career paths.
Various schemes may be used to model the node corresponding to a job position, including sequence of positions and sequence of compositions. In the sequence of positions scheme, each node represents one particular position of the member's professional experience. In the sequence of compositions scheme, for each node, in addition to using position information, transition information is also incorporated between the given position and the previous one. In other words, the position information and the transition-related information together comprise the node. Transition information, such as whether title changes in this transition, whether organization changes, how the seniority changes, and the time in this transition, enhances the representation of this scheme by further disclosing information of the changing trend between a previous and a given position.
Skill similarity is a measure of similarity of the skill set of the desired hire and the skill set of the search result. It should be noted that skill sets may include skills that are explicit (e.g., specified by the member in their member profile) or implicit (e.g., skills that are similar to skills specified by the member in their member profile, but not explicitly listed).
Headline matching is a measure of the similarity between the query and the headline of each result. Notably, this is based on a text-based comparison and is not strictly desired hire-based. A headline is one or more visible fields (along with name) displayed as a search result snippet for a search result. While the concept of creating snippets for each search result is a topic that is beyond the scope of the present disclosure, such snippets often include a headline that helps explain why the result is relevant and likely to trigger actions from the searcher. The headline matching feature, therefore, measures the similarity between the query and this headline from the search result's snippet.
Headline similarity is a measure of the similarity between a headline of the desired hire and the headline of the search result. This similarity calculation may be performed with or without considering word semantics. In example embodiments where word semantics are not considered, a word2vec algorithm may be utilized. Word2vec is a group of related models used to produce word-embeddings. The word-embeddings are shallow, two-layer neural networks that are trained to reconstruct linguistic contexts of words. The neural network is shown a word and guesses which words occurred in adjacent position in an input text. After training, word2vec models can be used to map each word to a vector of typically several hundred elements, which represent that word's relation to other words.
Browsemap similarity is a measure of whether and how much other members/searchers/browsers visited both the desired hire's profile and the search result's profile in the same browsing session. The intuitive correlation is that if previous members/searchers/browsers viewed both profiles in the same session, then there is a higher likelihood that the profiles are similar, and thus that the underlying desired hire and search result are similar.
The desired hire-based features 1508 may be fed along with the scores from the query-based ranking model 1504 to a machine learning block 1510 (e.g., a machine learning algorithm). The machine learning block 1510 is a machine component designed to train a combined ranking model 1512 that is capable of determining a ranking score for a search result at runtime. This training may use labels supplied for training data (e.g., training desired hires and training search results along with labeled scores for each). The training may involve the machine learning block 1510 learning which features/scores are more or less relevant to the ranking scores and appropriately weighting such features and scores for runtime computations. At runtime, a feature extractor 1514 extracts both query-based and desired hire-based features from the query, search results, and desired hires and feeds these features to the combined ranking model 1512, which produces the scores as per its model. A ranker 1516 then uses these ranking scores to rank the search results for display to the searcher.
It should be noted that since searching by desired hires is a new concept, it is difficult to generate labeled data directly from a log of previous search systems, as would typically be done to generate labeled data. Instead, in an example embodiment, labeled data is generated from the log of a query-based search. One such log is a log of electronic communications performed after the search. For example, if a searcher sees 20 results to a query-based search for candidates, and sends email communications to 8 candidates from the 20 results, then it may be assumed that these 8 candidates are similar enough to be considered for the same job, and thus if a profile for one or more of those 8 candidates had been submitted for a search by desired hire, the other candidates could be considered likely top results. In an example embodiment other actions taken with respect to previous search results may be logged and similarly used to determine desired hire matches. For example, while communication with a candidate may be considered as strongly indicative of a match for the underlying position (and thus a match with other candidates also emailed for the same position) and assigned a high relevance score, clicking on a candidate (without an email) may be considered to be a partial match and may be assigned a moderate relevance score, while skipped results might be considered a low relevance score. The relevance scores may be used as the labels for the sample data.
Thus, in an example embodiment, communications between searchers and members of the social network service are monitored and logged and these communications are used to derive a label score for each sample search result/desired hire pair (the sample search results may simply be the search results presented in response to previous queries). The label score may be generated using various combinations of the metrics described above. For example, if the same searcher communicated with both candidates A and B in response to the same search query, then candidate B is assigned a score of 5 (on a scale of 1 to 5, 5 being most relevant) for a desired hire A and candidate A is assigned a score of 5 for a desired hire B. Actions such as clicking on a candidate that indicate a moderate relevance may be assigned a score of 3 and no action may be assigned a score of 1. Scores for various log entries can then be combined and averaged. The result is profile pairs that have been assigned a score of between 1 and 5 based on previous actions or inactions by previous searchers. These label scores may then be used as labels for hypothetical desired hire/search result pairs for those same member profiles.
In an example embodiment, a dynamic weight trainer is introduced into the architecture of
At the same time, as the search session continues, the confidence of the remaining features (e.g., query-based features) increase in usefulness.
At operation 1704, one or more candidate features are extracted from the one or more desired hire documents. According to certain embodiments, the operation 1704 also filters the data set for a candidate count in order to be able to evaluate online updates to the candidate ranks. Some of these embodiments use a certain number of initially ranked candidates as input. In additional or alternative embodiments, filtering can also be performed according to a total number of successful reviews and other feedback measurements. Feature selection can also performed as part of operation 1704. In an embodiment, operation 1704 obtains an informational feature vector for each candidate represented in the desired hire documents to incorporate into the ranking model.
At operation 1706, candidates represented by the one more desired hire documents are ranked and evaluated based on the extracted one or more features. The Initial rankings obtained by performing operation 1706 can be presented to a user as candidate documents (e.g., member profiles or summaries for candidates) in a candidate stream.
At operation 1708, feedback regarding presented candidate documents is received and measured. As shown, operation 1708 can include receiving explicit and implicit user feedback. The feedback can be feedback from a user such as a recruiter or hiring manager. Here, the desired hire documents may be member profiles in a social networking service.
Explicit feedback received at operation 1708 can include acceptance, deferral, or rejection of a presented candidate by a user (e.g., recruiter feedback). Explicit feedback received at operation 1708 can also Include a user's interest in member urns and can be used in method 1700 to identify ranking and recall limitations of previously displayed profiles and to devise reformulation schemes for query intent clusters. For example, starting with a set of desired candidates for a title (i.e., desired hires for a given job title) specified by the stream, an embodiment represents a candidate profile as a bag of urns. In this example, an urn is an entity type associated with a member profile, where an entity type represents an attribute or feature of the member's profile (e.g., skills, education, experience, current and past organizations). For instance, member profiles can be uniquely identified by urns, where the urns can include urns for skills (e.g., C++ programming experience) and other urns for company or organization names (e.g., names of current and former employers). Implicit feedback received at operation 1708 can include measured metrics such as dwell time, profile sections viewed, and a number of revisits to a saved candidate profile.
At operation 1710, candidates are re-ranked and evaluated based on the measured feedback received at operation 1708. Correlations between explicit and implicit feedback received at operation 1708 can be used in operation 1710 to determine relative weights of member urns in a profile in order to quickly converge on a set of candidates in a streaming environment.
The re-ranking and evaluation of operation 1710 can include performing a cold start of a ranking model with a first candidate and user feedback that the first candidate received. In operation 1710, the ranking model can be used to rank a pool of candidates (excluding the first candidate since it has already been used). Based on the current ranking of the candidates determined in operation 1706, the method 1700 retrieves the candidate with the highest rating. This can be done in the context of an online system that is presenting a candidate to the user based on the feedback it has received thus far at operation 1708. Using the feedback for the current candidate received at operation 1708, and a feature vector representing the candidate to the ranking model, the method 1700 updates the ranking model by performing operation 1710.
In an embodiment, operation 1710 re-ranks the pool of candidates that have not yet been used according to the updated model. Then, the method 1700 repeatedly retrieves the candidate with the highest rating until all candidates in the pool have been exhausted.
To judge the effectiveness of the ranking model at selecting favorably rated candidates before unfavorably rated candidates, the method 1700 can include computing ranking metrics measuring precision and candidate feature weights as part of operation 1710.
The method 1700 can include implementing a simulated data flow for ingesting an initial ranking model at operation 1706 and updating it at operation 1710 based on feedback received and measured at operation 1708, and then performing further iterations of the offline experimental simulations by repeating operations 1708 and 1710. These offline experimental simulations can employ different models, use a warm-start of models, and utilize different features.
Due to limitations on the number of candidates per job in some recruiter tool log data or review data, there is a possibility that the method 1700 may not be able to produce meaningful results utilizing only such log or review data. In such cases, an embodiment supplements log or review data with impression data from the recruiter tool. This embodiment can implement reinforcement learning using desired hires or ideal candidates, both in the context of automated sourcing.
Some embodiments use explicit and implicit feedbacks that are given by recruiter users, rather than other users such as hiring managers. These embodiments can potentially take less domain knowledge into account by not relying on feedback from an organization's hiring manager.
Certain embodiments incorporate feedback received at operation 1708 to update candidate rankings offline at operation 1710.
As shown, operations 1708 and 1710 can be repeated to perform re-ranking and evaluation based on repeated user feedback received at operation 1708.
At operation 1812, a browse map is referenced to determine user feedback, both explicit and implicit, regarding presented candidates. At operation 1814, one or more organizations are added to the search query, with the organizations being ones who have been co-viewed during the same browsing session as an organization identified in one or more of the desired hire documents, by using the browse map.
At operation 1904, a search is performed using a search query, resulting in one or more result documents. Like with the desired hire documents, the result documents may be member profiles in an example embodiment. In one example embodiment, operation 1904 can be performed using some of the operations described above with respect to
At operation 1906, one or more query-based features are produced from the one or more result documents using the search query. As described above, this may include features such as TF-IDF.
At operation 1908, one or more desired hire-based features may be produced from the one or more result documents using the one or more desired hire documents. As described above, the desired hire-based features may include skill similarity, headline matching, headline similarity, and/or browsemap similarity.
At operation 1910, the one or more query-based features and the one or more desired hire-based features are input to a combined ranking model, outputting ranking scores for each of the one or more result member profiles. The combined ranking model may be trained using similar query-based and desired hire-based features from sample result documents as well as sample search queries and labels.
At operation 1912, the one or more result documents are ranked based on the ranking score. At operation 1914, display of the one or more top ranked result documents on a computer display is caused.
At operation 2008, the generated labels are fed into a machine learning algorithm to train a combined ranking model used to output ranking scores for search result member profiles.
At operation 2106, one or more query-based features are produced from the one or more result documents using the search query. At operation 2108, one or more desired hire-based features are produced from the one or more result documents using the one or more desired hire documents. At operation 2110, the one or more query-based features and the one or more desired hire-based features are input to a combined ranking model. The combined ranking model is trained by a machine learning algorithm to output a ranking score for each of the one or more result documents. The combined ranking model includes weights assigned to each of the one or more query-based features and each of the one or more desired hire-based features.
At operation 2112, the one or more result documents are ranked based on the ranking scores. At operation 2114, display of one or more top ranked documents on a computer display is caused. At operation 2116, one or more refinements to the search are received. The refinements can include explicit and implicit user feedback. At operation 2118, the weights assigned to each of the one or more query-based features are dynamically trained to increase as more refinements are received, and the weights assigned to each of the one or more desired hire-based features are dynamically trained to be altered (e.g., increased or decreased) as more refinements are received. This dynamic training may utilize a decay function based on, for example, time or number of refinements.
Certain embodiments are described herein as including logic or a number of components, blocks, modules, or mechanisms. Blocks may constitute machine components implemented as a combination of software modules (e.g., code embodied on a machine-readable medium) and hardware modules. A ‘hardware module’ is a tangible unit capable of performing certain operations and may be configured or arranged in a certain physical manner. In various example embodiments, one or more computer systems (e.g., a standalone computer system, a client computer system, or a server computer system) or one or more hardware modules of a computer system (e.g., a processor or a group of processors) may be configured by software (e.g., an application or application portion) as a hardware module that operates to perform certain operations as described herein.
In some embodiments, a hardware module may be implemented mechanically, electronically, or any suitable combination thereof. For example, a hardware module may include dedicated circuitry or logic that is permanently configured to perform certain operations. For example, a hardware module may be a special-purpose processor, such as a Field-Programmable Gate Array (FPGA) or an Application Specific Integrated Circuit (ASIC). A hardware module may also include programmable logic or circuitry that is temporarily configured by software to perform certain operations. For example, a hardware module may include software executed by a general-purpose processor or other programmable processor. Once configured by such software, hardware modules become specific machines (or specific components of a machine) uniquely tailored to perform the configured functions and are no longer general-purpose processors. It will be appreciated that the decision to implement a hardware module mechanically, in dedicated and permanently configured circuitry, or in temporarily configured circuitry (e.g., configured by software) may be driven by cost and time considerations.
Accordingly, as used herein, according to certain embodiments, the term ‘hardware module’ should be understood to encompass a tangible entity, be that an entity that is physically constructed, permanently configured (e.g., hardwired), or temporarily configured (e.g., programmed) to operate in a certain manner or to perform certain operations described herein. As used herein, ‘hardware-implemented module’ refers to a hardware module. Considering embodiments in which hardware modules are temporarily configured (e.g., programmed), each of the hardware modules need not be configured or instantiated at any one instance in time. For example, where a hardware module comprises a general-purpose processor configured by software to become a special-purpose processor, the general-purpose processor may be configured as respectively different special-purpose processors (e.g., comprising different hardware modules) at different times. Software accordingly configures a particular processor or processors, for example, to constitute a particular hardware module at one instance of time and to constitute a different hardware module at a different instance of time.
Hardware modules can provide Information to, and receive information from, other hardware modules. Accordingly, the described hardware modules may be regarded as being communicatively coupled. Where multiple hardware modules exist contemporaneously, communications may be achieved through signal transmission (e.g., over appropriate circuits and buses) between two or more of the hardware modules. In embodiments in which multiple hardware modules are configured or instantiated at different times, communications between such hardware modules may be achieved, for example, through the storage and retrieval of information in memory structures to which the multiple hardware modules have access. For example, one hardware module may perform an operation and store the output of that operation in a memory device to which it is communicatively coupled. A further hardware module may then, at a later time, access the memory device to retrieve and process the stored output. Hardware modules may also initiate communications with input or output devices, and can operate on a resource (e.g., a collection of information).
The various operations of example methods described herein may be performed, at least partially, by one or more processors that are temporarily configured (e.g., by software) or permanently configured to perform the relevant operations. Whether temporarily or permanently configured, such processors may constitute processor-implemented modules that operate to perform one or more operations or functions described herein. As used herein, ‘processor-implemented module’ refers to a hardware module implemented using one or more processors.
Similarly, the methods described herein may be at least partially processor-implemented, with a particular processor or processors being an example of hardware. For example, at least some of the operations of a method may be performed by one or more processors or processor-implemented modules. Moreover, the one or more processors may also operate to support performance of the relevant operations in a ‘cloud computing’ environment or as a ‘software as a service’ (SaaS). For example, at least some of the operations may be performed by a group of computers (as examples of machines including processors), with these operations being accessible via a network (e.g., the Internet) and via one or more appropriate interfaces (e.g., an API).
The performance of certain of the operations may be distributed among the processors, not only residing within a single machine, but also deployed across a number of machines. In some example embodiments, the processors or processor-implemented modules may be located in a single geographic location (e.g., within a home environment, an office environment, or a server farm). In other example embodiments, the processors or processor-implemented modules may be distributed across a number of geographic locations.
The modules, methods, applications, and so forth described in conjunction with
Software architectures are used in conjunction with hardware architectures to create devices and machines tailored to particular purposes. For example, a particular hardware architecture coupled with a particular software architecture will create a mobile device, such as a mobile phone, tablet device, or so forth. A slightly different hardware and software architecture may yield a smart device for use in the ‘internet of things,’ while yet another combination produces a server computer for use within a cloud computing architecture. Not all combinations of such software and hardware architectures are presented here, as those of skill in the art can readily understand how to implement the inventive subject matter in different contexts from the disclosure contained herein.
In the example architecture of
The operating system 2414 may manage hardware resources and provide common services. The operating system 2414 may include, for example, a kernel 2428, services 2430, and drivers 2432. The kernel 2428 may act as an abstraction layer between the hardware and the other software layers. For example, the kernel 2428 may be responsible for memory management, processor management (e.g., scheduling), component management, networking, security settings, and so on. The services 2430 may provide other common services for the other software layers. The drivers 2432 may be responsible for controlling or interfacing with the underlying hardware. For Instance, the drivers 2432 may include display drivers, camera drivers, Bluetooth® drivers, Hash memory drivers, serial communication drivers (e.g., Universal Serial Bus (USB) drivers), Wi-Fi® drivers, audio drivers, power management drivers, and so forth depending on the hardware configuration.
The libraries 2416 may provide a common infrastructure that may be utilized by the applications 2420 and/or other components and/or layers. The libraries 2416 typically provide functionality that allows other software modules to perform tasks in an easier fashion than by interfacing directly with the underlying operating system 2414 functionality (e.g., kernel 2428, services 2430, and/or drivers 2432). The libraries 2416 may include system libraries 2434 (e.g., C standard library) that may provide functions such as memory allocation functions, string manipulation functions, mathematic functions, and the like. In addition, the libraries 2416 may include API libraries 2436 such as media libraries (e.g., libraries to support presentation and manipulation of various media formats such as MPEG4, H.264, MP3, AAC, AMR, JPG, PNG), graphics libraries (e.g., an OpenGL framework that may be used to render 2D and 3D graphic content on a display), database libraries (e.g., SQLite that may provide various relational database functions), web libraries (e.g., WebKit that may provide web browsing functionality), and the like. The libraries 2416 may also include a wide variety of other libraries 2438 to provide many other APIs to the applications 2420 and other software components/modules.
The frameworks 2418 (also sometimes referred to as middleware) may provide a higher-level common infrastructure that may be utilized by the applications 2420 and/or other software components/modules. For example, the frameworks 2418 may provide various graphic user interface (GUI) functions, high-level resource management, high-level location services, and so forth. The frameworks 2418 may provide a broad spectrum of other APIs that may be utilized by the applications 2420 and/or other software components/modules, some of which may be specific to a particular operating system or platform.
The applications 2420 include built-in applications 2440 and/or third party applications 2442. Examples of representative built-in applications 2440 may include, but are not limited to, a contacts application, a browser application, a book reader application, a location application, a media application, a messaging application, and/or a game application. The third party applications 2442 may include any of the built-in applications 2440 as well as a broad assortment of other applications. In a specific example, the third party application 2442 (e.g., an application developed using the Android™ or iOS™ software development kit (SDK) by an entity other than the vendor of the particular platform) may be mobile software running on a mobile operating system such as iOS™, Android™, Windows® Phone, or other mobile operating systems. In this example, the third party application 2442 may invoke the API calls 2424 provided by the mobile operating system such as the operating system 2414 to facilitate functionality described herein.
The applications 2420 may utilize built-in operating system 2414 functions (e.g., kernel 2428, services 2430, and/or drivers 2432), libraries 2416 (e.g., system libraries 2434, API libraries 2436, and other libraries 2438), and frameworks/middleware 2418 to create user interfaces to interact with users of the system. Alternatively, or additionally, in some systems, interactions with a user may occur through a presentation, layer, such as the presentation layer 2444. In these systems, the application/module ‘logic’ can be separated from the aspects of the application/module that interact with a user.
Some software architectures utilize virtual machines. In the example of
The machine 2500 may include processors 2510, memory/storage 2530, and I/O components 2550, which may be configured to communicate with each other such as via a bus 2502. In an example embodiment, the processors 2510 (e.g., a Central Processing Unit (CPU), a Reduced Instruction Set Computing (RISC) processor, a Complex Instruction Set Computing (CISC) processor, a Graphics Processing Unit (GPU), a Digital Signal Processor (DSP), an ASIC, a Radio-Frequency Integrated Circuit (RFIC), another processor, or any suitable combination thereof) may include, for example, a processor 2512 and a processor 2514 that may execute the instructions 2516. The term ‘processor’ is intended to include multi-core processors that may comprise two or more independent processors (sometimes referred to as ‘cores’) that may execute instructions contemporaneously. Although
The memory/storage 2530 may include a memory 2532, such as a main memory, or other memory storage, and a storage unit 2536, both accessible to the processors 2510 such as via the bus 2502. The storage unit 2536 and memory 2532 store the instructions 2516 embodying any one or more of the methodologies or functions described herein. The instructions 2516 may also reside, completely or partially, within the memory 2532, within the storage unit 2536, within at least one of the processors 2510 (e.g., within the processor's cache memory), any suitable combination thereof, during execution thereof by the machine 2500. Accordingly, the memory 2532, the storage unit 2536, and the memory of the processors 2510 are examples of machine-readable media.
As used herein, ‘machine-readable medium’ means a device able to store instructions and data temporarily or permanently and may include, but is not limited to, random-access memory (RAM), read-only memory (ROM), buffer memory, flash memory, optical media, magnetic media, cache memory, other types of storage (e.g., Erasable Programmable Read-Only Memory (EEPROM)), and/or any suitable combination thereof. The term ‘machine-readable medium’ should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, or associated caches and servers) able to store the instructions 2516. The term ‘machine-readable medium’ shall also be taken to include any medium, or combination of multiple media, that is capable of storing instructions (e.g., instructions 2516) for execution by a machine (e.g., machine 2500), such that the instructions, when executed by one or more processors of the machine (e.g., processors 2510), cause the machine to perform any one or more of the methodologies described herein. Accordingly, a ‘machine-readable medium’ refers to a single storage apparatus or device, as well as ‘cloud-based’ storage systems or storage networks that include multiple storage apparatus or devices. The term ‘machine-readable medium’ excludes signals per se.
The I/O components 2550 may include a wide variety of components to receive input, provide output, produce output, transmit information, exchange information, capture measurements, and so on. The specific I/O components 2550 that are included in a particular machine will depend on the type of machine. For example, portable machines such as mobile phones will likely include a touch input device or other such input mechanisms, while a headless server machine will likely not include such a touch input device. It will be appreciated that the I/O components 2550 may include many other components that are not shown in
In further example embodiments, the I/O components 2550 may Include biometric components 2556, motion components 2558, environmental components 2560, or position components 2562, among a wide array of other components. For example, the biometric components 2556 may include components to detect expressions (e.g., hand expressions, facial expressions, vocal expressions, body gestures, or eye tracking), measure biosignals (e.g., blood pressure, heart rate, body temperature, perspiration, or brain waves), identify a person (e.g., voice identification, retinal identification, facial identification, fingerprint identification, or electroencephalogram based identification), and the like. The motion components 2558 may include acceleration sensor components (e.g., accelerometer), gravitation sensor components, rotation sensor components (e.g., gyroscope), and so forth. The environmental components 2560 may include, for example, illumination sensor components (e.g., photometer), temperature sensor components (e.g., one or more thermometers that detect ambient temperature), humidity sensor components, pressure sensor components (e.g., barometer), acoustic sensor components (e.g., one or more microphones that detect background noise), proximity sensor components (e.g., infrared sensors that detect nearby objects), gas sensors (e.g., gas detection sensors to detect concentrations of hazardous gases for safety or to measure pollutants in the atmosphere), or other components that may provide indications, measurements, or signals corresponding to a surrounding physical environment. The position components 2562 may include location sensor components (e.g., a Global Position System (GPS) receiver component), altitude sensor components (e.g., altimeters or barometers that detect air pressure from which altitude may be derived), orientation sensor components (e.g., magnetometers), and the like.
Communication may be implemented using a wide variety of technologies. The I/O components 2550 may include communication components 2564 operable to couple the machine 2500 to a network 2580 or devices 2570 via a coupling 2582 and a coupling 2572, respectively. For example, the communication components 2564 may include a network interface component or other suitable device to interface with the network 2580. In further examples, the communication components 2564 may include wired communication components, wireless communication components, cellular communication components, Near Field Communication (NFC) components, Bluetooth® components (e.g., Bluetooth® Low Energy), Wi-Fi® components, and other communication components to provide communication via other modalities. The devices 2570 may be another machine or any of a wide variety of peripheral devices (e.g., a peripheral device coupled via a USB).
Moreover, the communication components 2564 may detect identifiers or include components operable to detect identifiers. For example, the communication components 2564 may include Radio Frequency Identification (RFID) tag reader components, NFC smart tag detection components, optical reader components (e.g., an optical sensor to detect one-dimensional bar codes such as Universal Product Code (UPC) bar code, multi-dimensional bar codes such as Quick Response (QR) code, Aztec code, Data Matrix, Dataglyph, MaxiCode, PDF417, Ultra Code, UCC RSS-2D bar code, and other optical codes), or acoustic detection components (e.g., microphones to identify tagged audio signals). In addition, a variety of information may be derived via the communication components 2564, such as location via Internet Protocol (IP) geolocation, location via Wi-Fi® signal triangulation, location via detecting an NFC beacon signal that may indicate a particular location, and so forth.
In various example embodiments, one or more portions of the network 2580 may be an ad hoc network, an intranet, an extranet, a virtual private network (VPN), a local area network (LAN), a wireless LAN (WLAN), a WAN, a wireless WAN (WWAN), a metropolitan area network (MAN), the Internet, a portion of the Internet, a portion of the Public Switched Telephone Network (PSTN), a plain old telephone service (POTS) network, a cellular telephone network, a wireless network, a Wi-Fi® network, another type of network, or a combination of two or more such networks. For example, the network 2580 or a portion of the network 2580 may include a wireless or cellular network and the coupling 2582 may be a Code Division Multiple Access (CDMA) connection, a Global System for Mobile communications (GSM) connection, or another type of cellular or wireless coupling. In this example. the coupling 2582 may implement any of a variety of types of data transfer technology, such as Single Carrier Radio Transmission Technology (1×RTT), Evolution-Data Optimized (EVDO) technology, General Packet Radio Service (GPRS) technology, Enhanced Data rates for GSM Evolution (EDGE) technology, third Generation Partnership Project (3GPP) including 3G, fourth generation wireless (4G) networks, Universal Mobile Telecommunications System (UMTS), High Speed Packet Access (HSPA), Worldwide Interoperability for Microwave Access (WiMAX), Long Term Evolution (LTE) standard, others defined by various standard-setting organizations, other long range protocols, or other data transfer technology.
The instructions 2516 may be transmitted or received over the network 2580 using a transmission medium via a network interface device (e.g., a network interface component included in the communication components 2564) and utilizing any one of a number of well-known transfer protocols (e.g., HTTP). Similarly, the instructions 2516 may be transmitted or received using a transmission medium via the coupling 2572 (e.g., a peer-to-peer coupling) to the devices 2570. The term ‘transmission medium’ shall be taken to include any intangible medium that is capable of storing, encoding, or carrying the instructions 2516 for execution by the machine 2500, and includes digital or analog communications signals or other intangible media to facilitate communication of such software.
Throughout this specification, plural instances may implement components, operations, or structures described as a single instance. Although individual operations of one or more methods are illustrated and described as separate operations, one or more of the individual operations may be performed concurrently, and nothing requires that the operations be performed in the order illustrated. Structures and functionality presented as separate components in example configurations may be implemented as a combined structure or component. Similarly, structures and functionality presented as a single component may be implemented as separate components. These and other variations, modifications, additions, and improvements fall within the scope of the subject matter herein.
Although an overview of the inventive subject matter has been described with reference to specific example embodiments, various modifications and changes may be made to these embodiments without departing from the broader scope of embodiments of the present disclosure. Such embodiments of the inventive subject matter may be referred to herein, individually or collectively, by the term ‘Invention’ merely for convenience and without intending to voluntarily limit the scope of this application to any single disclosure or inventive concept if more than one is, in fact, disclosed.
The embodiments illustrated herein are described in sufficient detail to enable those skilled in the art to practice the teachings disclosed. Other embodiments may be used and derived therefrom, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. The Detailed Description, therefore, is not to be taken in a limiting sense, and the scope of various embodiments is defined only by the appended claims, along with the full range of equivalents to which such claims are entitled.
As used herein, the term ‘or’ may be construed in either an inclusive or exclusive sense. Moreover, plural instances may be provided for resources, operations, or structures described herein as a single instance. Additionally, boundaries between various resources, operations, modules, engines, and data stores are somewhat arbitrary, and particular operations are illustrated in a context of specific Illustrative configurations. Other allocations of functionality are envisioned and may fall within a scope of various embodiments of the present disclosure. In general, structures and functionality presented as separate resources in the example configurations may be implemented as a combined structure or resource. Similarly, structures and functionality presented as a single resource may be implemented as separate resources. These and other variations, modifications, additions, and improvements fall within a scope of embodiments of the present disclosure as represented by the appended claims. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.
This application claims the benefit of priority to U.S. Provisional Patent Application No. 62/459,703 entitled “Using Feedback to Re-weight Candidate Features in a Streaming Environment”, [reference number 901989-US-PSP (3080H83PRV)] filed Feb. 16, 2017, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62459703 | Feb 2017 | US |