Diesel engines and other compression ignition engines are used to power light and heavy duty vehicles, locomotives, off-highway equipment, marine vessels and many industrial applications. Government regulations require the engines to meet certain standards for the exhaust emissions in each of these applications. Currently, the emission standards are for the nitrogen oxides NOx, hydrocarbons (HC), carbon monoxide (CO), and particulate matter (PM). Government agencies and industry standard setting groups are reducing the amount of allowed emissions in diesel engines in an effort to reduce pollutants in the environment. The environmental emissions regulations for these engines are becoming more stringent and difficult to meet, particularly for NOx and PM emissions. To meet this challenge, industry has developed many techniques to control the in-cylinder combustion process in addition to the application of after treatment devices to treat the engine-out exhaust gases and reduce the tail-pipe emissions. The emissions targets for the new production engines are even lower than the regulated emissions standards to account for the anticipated deterioration of the equipment during the life time of the engine after long periods of operation in the field. For example, proposed regulations for new heavy duty engines require additional NOx and diesel particulate emission reductions of over seventy percent from existing emission limits. These emission reductions represent a continuing challenge to engine design due to the NOx-diesel particulate emission and fuel economy tradeoffs associated with most emission reduction strategies. Emission reductions are also desired for the on and off-highway in-use fleets.
Traditionally, there have been two primary forms of reciprocating piston or rotary internal combustion engines. These forms are diesel and spark ignition engines. While these engine types have similar architecture and mechanical workings, each has distinct operating properties that are vastly different from each other. The diesel engine controls the start of combustion (SOC) by the timing of fuel injection. A spark ignited engine controls the SOC by the spark timing. As a result, there are important differences in the advantages and disadvantages of diesel and spark-ignited engines. The major advantage that a pre-mixed charge spark-ignited natural gas, or gasoline, engine (such as passenger car gasoline engines and lean burn natural gas engines) has over a diesel engine is the ability to achieve low NOx and particulate emissions levels. The major advantage that diesel engines have over premixed charge spark ignited engines is higher thermal efficiency.
One reason for the higher efficiency of diesel engines is the ability to use higher compression ratios than spark ignited engines because the compression ratio in spark ignited engines has to be kept relatively low to avoid knock. Typical diesel engines, however, cannot achieve the very low NOx and particulate emissions levels that are possible with premixed charge spark ignited engines. Due to the mixing controlled nature of diesel combustion, a large fraction of the fuel exists at a very fuel rich equivalence ratio, which is known to lead to particulate emissions. A second factor is that the combustion in diesel engines occurs when the fuel and air exist at a near stoichiometric equivalence ratio which leads to high temperatures. The high temperatures, in turn, cause higher NOx emissions. As a result, there is an urgent need to control the combustion process, not only to reduce the engine-out emissions, but also to produce the exhaust gas composition and temperature that would enhance the operation of the after treatment devices and improve their effectiveness.
The control of the in-cylinder combustion process can be achieved by optimizing the engine design and operating parameters. The engine design parameters include, but are not limited to engine compression ratio, stroke to bore ratio, injection system design, combustion chamber design (e.g., bowl design, reentrance geometry, squish area), intake and exhaust ports design, number of intake and exhaust valves, valve timing, and turbocharger geometry. For any specific engine design, the operating variables can also to be optimized. These variables include, but are not limited to, injection pressure, injection timing, number of injection events, (pilot, main, split-main, post injections or their combinations), injection rate in each event, duration of each event, dwell between the injection events, EGR (exhaust gas recirculation) ratio, EGR cooling, swirl ratio and turbocharger operating parameters.
Many types of after treatment devices have been developed, or are still under development to reduce the engine-out emissions such as NOx and PM in diesel engines. The effectiveness of each of the after treatment devices depends primarily on exhaust gas properties such as temperature and composition including the ratio between the different species such as NOx, hydrocarbons and carbon (soot). Here, also, the properties of the exhaust gases depend primarily on the combustion process.
The precise control of the combustion process in diesel engines requires a feed back signal indicative of the combustion process. Currently, the most commonly considered signal is the cylinder gas pressure, measured by a quartz crystal pressure transducer, or other types of pressure transducers. The use of the cylinder pressure transducers is limited to laboratory settings and can not be used in the production engine because of its high cost and limited durability under actual operating conditions.
Described herein is, among other things, an inexpensive direct indicator of NOx in the cylinder of compression ignition engines during the combustion process, which requires no or just minor modifications in the cylinder head and gives a signal that can be used to control the combustion process and engine-out exhaust gases, particularly NOx, in diesel engines and the like.
In an embodiment, NOx emissions formed in a combustion chamber of a compression ignition engine is determined by receiving an ion current signal indicating the concentration of ions in the combustion chamber and determining the NOx emissions based upon a derived relationship between the ion current signal and the NOx emissions. The engine may be controlled based in part upon the derived NOx emissions.
The relationship is derived by receiving an ion current signal from an ion current sensor and NOx exhaust emissions data obtained from NOx emissions measuring equipment, comparing the ion current signal to the NOx emissions data, and fitting a function through the NOx emissions data and ion current data. This may be accomplished by creating a plot of the NOx emissions versus ion current magnitude and fitting a function through the plot. In one embodiment, the function is a volume fraction of NOx per unit of ion current.
The relationship between the NOx emissions and ion current is derived for each chamber of the compression ignition engine in one embodiment. This is accomplished by receiving an ion current signal indicating the concentration of ions in each of the cylinders and NOx emissions data and deriving the relationship that is, in one embodiment, a volume fraction of NOx per unit of ion current flowing in the one of the plurality of cylinders. Other functions may be derived for the relationship. For each cylinder, parameters for fuel injection, EGR (exhaust gas recirculation) rate and others are adjusted based upon the derived NOx emissions in the cylinder indicated by the ion current.
Additional features and advantages will be made apparent from the following detailed description of illustrative embodiments, which proceeds with reference to the accompanying figures.
The accompanying drawings incorporated in and forming a part of the specification illustrate several aspects of the technologies described herein, and together with the description serve to explain the principles of the technologies. In the drawings:
While the techniques will be described in connection with certain embodiments, there is no intent to limit it to those embodiments. On the contrary, the intent is to cover all alternatives, modifications and equivalents as included within the spirit and scope of the invention as defined by the appended claims.
The apparatus and method described herein determines NOx emissions based upon the ion current produced during the compression process in compression ignition engines of different designs while running on conventional, alternate, or renewable diesel fuel without requiring the use of an in-cylinder NOx sensor or NOx measurement in the exhaust.
Referring initially to
The ion sensing apparatus 118 has two electrodes, electrically insulated, spaced apart and exposed to the combustion products inside the cylinder of diesel engines. It can be in the form of a spark plug with a central electrode and one or more side electrodes that are spaced apart, a glow plug insulated from the engine body where each of the glow plug and engine body acts as an electrode, a combined plasma generator and ion sensor, etc. The ion sensing apparatus 118 receives an electric voltage provided by driver 104 between the two electrodes, which causes a current to flow between the two electrodes in the presence of nitrogen oxides and other combustion products that are between the two electrodes. The driver 104 provides power to the ion sensing apparatus 118. The driver 104 may also provide a high energy discharge to keep the ion sensing detection area of the ion sensing apparatus clean from fuel contamination and carbon buildup. While shown separate from the fuel injector 112, the ion sensing apparatus 118 may be integrated with the fuel injector 112.
The ionization module contains circuitry for detecting and analyzing the ionization signal. In the illustrated embodiment, as shown in
The ion current signal can be correlated to the level of NOx emission and in-cylinder pressure produced during combustion. Turning now to
In the sample shown, the ion current reaches a peak (point 146) after 3 CAD (crank angle degree) from its starting point. Up to this point, combustion occurs in the premixed combustion fraction of the charge. The amount of the charge that is burnt during this period and the corresponding rise in temperature depend on many factors including the total lengths of the ignition delay and the cool flame periods, the rate of fuel injection, and the rates of fuel evaporation and mixing with the fresh oxygen in the charge. The ion current reaches a fairly high peak in about three crank angle degrees, or about 0.3 ms, after which it dropped, reached a bottom value (point 148), started to increase again at a slower rate and reached a second peak (point 150) at 10° aTDC (after top dead center). This indicates that the rate of formation of the ions leading to the second peak is much slower than that for the first peak. The slower rate of formation of ions leading to the second peak can be attributed to the slower rate of mixing of the unburned fuel with the rest of the charge, the drop in temperature of the combustion products caused by the piston motion in the expansion stroke, and to the increase in the cooling losses to the cylinder walls. Since the ionization in the second peak follows the same characteristics as the mixing-controlled and diffusion-controlled combustion fractions, it is reasonable to consider that it is caused by this combustion regime. Here the ionization is caused by a combination of the chemi-ionization and the thermal ionization. Following the second peak, the ionization signal decreases at a slow rate, caused by the gradual drop in the gas temperature during the expansion stroke. In this figure, the ionization was detected during about 30 to 40 crank angle degrees.
The rates of formation of both the ions and NOx depend on many engine design parameters and the properties of the fuel used to run the engine. The design parameters may vary from one engine to another and include, but are not limited to, the following: compression ratio, bore to stroke ratio, surface to volume ratio of the combustion chamber, inlet and exhaust ports and valves design, valve timing, combustion chamber design, injection system design parameters and cooling system design parameters. The injection systems parameters include, but are not limited to, injection pressure, nozzle geometry, intrusion in the combustion chamber, number of nozzle holes, their size, and shape and included spray angle. The important fuel properties that affect the combustion process, NOx formation and ion current include hydrogen to carbon ratio, distillation range, volatility and cetane number. As a result, variations in the design parameters from one engine to another and in the fuel properties affect the cylinder gas temperature and pressure, mixture formation, and the distribution of the equivalence ratio in the combustion chamber, all of which affect the formation of ions and NOx.
From the foregoing, it can be seen that ion current can be used to determine NOx. It can also be seen that the ion current signal should be calibrated with respect to NOx emissions in each engine make and type and for each of the fuel types used. Turning now to
Turning now to
Turning now to
Turning now to
From the foregoing, it can be seen that a relationship between NOx emissions and ion current magnitudes can be determined and used in the control of diesel engines. The ion current is compared to measured NOx emissions to determine the relationship. The relationship is then used during operation by determining NOx emissions from the measured ion current.
The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
Preferred embodiments of this invention are described herein, including the best mode known to the inventor for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventor expects skilled artisans to employ such variations as appropriate, and the inventor intends for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
Number | Name | Date | Kind |
---|---|---|---|
4308519 | Garcea et al. | Dec 1981 | A |
4359893 | Kizler et al. | Nov 1982 | A |
4663717 | Kobayashi et al. | May 1987 | A |
5451385 | Hansel et al. | Sep 1995 | A |
5652520 | Kawamoto et al. | Jul 1997 | A |
5734094 | Matsubara et al. | Mar 1998 | A |
5801534 | Hohner et al. | Sep 1998 | A |
5914604 | Bahr et al. | Jun 1999 | A |
6011397 | Yasuda | Jan 2000 | A |
6029627 | VanDyne | Feb 2000 | A |
6043660 | Bahr et al. | Mar 2000 | A |
6075366 | Yasuda | Jun 2000 | A |
6089077 | Daniels et al. | Jul 2000 | A |
6104195 | Yoshinaga et al. | Aug 2000 | A |
6279538 | Herweg et al. | Aug 2001 | B1 |
6311672 | Morishita et al. | Nov 2001 | B1 |
6348799 | Herweg et al. | Feb 2002 | B1 |
6375828 | Ando et al. | Apr 2002 | B2 |
6502391 | Hirota et al. | Jan 2003 | B1 |
6505500 | Elgh et al. | Jan 2003 | B1 |
6550312 | Hohner et al. | Apr 2003 | B1 |
6557537 | Ikeda et al. | May 2003 | B2 |
6646230 | Girlando et al. | Nov 2003 | B2 |
6666069 | Raichle et al. | Dec 2003 | B2 |
6832472 | Huang et al. | Dec 2004 | B2 |
6848421 | Karau et al. | Feb 2005 | B1 |
6986342 | Thomas | Jan 2006 | B2 |
6994073 | Tozzi et al. | Feb 2006 | B2 |
7043353 | Takemura et al. | May 2006 | B2 |
7089922 | Lindner | Aug 2006 | B2 |
20060016417 | Kuo et al. | Jan 2006 | A1 |
20070079817 | VanDyne et al. | Apr 2007 | A1 |
Number | Date | Country |
---|---|---|
WO 2005044382 | May 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20080040020 A1 | Feb 2008 | US |