This application is related to the following co-pending U.S. Patent Applications filed on the same day as the present application and having the same assignee: “On-Chip Adaptive Voltage Compensation,” (U.S. patent application Ser. No. 11/671,485); “Using Temperature Data for Instruction Thread Direction,” (U.S. patent application Ser. No. 11/671,640); “Using Performance Data for Instruction Thread Direction,” (U.S. patent application Ser. No. 11/671,627); “Integrated Circuit Failure Prediction,” (U.S. patent application Ser. No. 11/671,599); “Instruction Dependent Dynamic Voltage Compensation,” (U.S. patent application Ser. No. 11/671,579); “Temperature Dependent Voltage Source Compensation,” (U.S. patent application Ser. No. 11/671,568); “Fan Speed Control from Adaptive Voltage Supply,” (U.S. patent application Ser. No. 11/671,555); and “Digital Adaptive Voltage Supply,” (U.S. patent application Ser. No. 11/671,531); each assigned to the IBM Corporation and herein incorporated by reference.
1. Technical Field
The present invention relates in general to a system and method for instruction thread distribution. In particular, the present invention relates to a system and method for directing instruction thread distribution according to the measured IR (voltage) drop data of the circuitry to execute the instructions.
2. Description of the Related Art
Many modern data processing systems include multiple central processing unit cores in the system. These data processing systems will execute instructions of a single program across these multiple central processing unit cores. The single program includes many instructions to be executed in the central processing units. One technique to employ the multiple central processing unit cores in the execution of these instructions is to divide the instructions into groups of instructions or threads. Then each thread is directed to a central processing unit for execution. Several prior art patents address the use of instruction threads in a processor and the control of execution of these instruction threads. These patents include U.S. Pat. No. 7,093,109 entitled “Network Processor which makes Thread Execution Control Decisions Based on Latency Event Lengths”; U.S. Pat. No. 6,076,157 entitled “Method and Apparatus to Force a Thread Switch in a Multithreaded Processor”; U.S. Pat. No. 6,212,544 entitled “Altering Thread Priorities in a Multithreaded Processor”; and U.S. Pat. No. 6,625,637 entitled “Deterministic and Preemptive Thread Scheduling and Its Use in the Debugging Multithreaded Applications.”
In a multiple central processing unit data processing system, it is helpful to know the physical conditions of the central processing unit cores that will be receiving the instruction threads. To obtain the maximum performance within the data processing system, distribution of the instruction threads for execution should be made to the central processing units that are able to execute these instruction threads efficiently. One physical condition of the central processing unit cores is measured IR drop within the core circuitry. IR drop is defined as average current times the resistance of the power distribution network in a chip. It is a voltage drop across the power distribution network. Therefore, IR drop varies directly as average current or resistance of the power distribution network varies. The average current is a function of the switching activity, frequency and the applied power supply voltage. The power distribution network resistance varies directly with temperature. The higher the measured core IR drop, the less efficient the central processing unit will be.
In accordance with the present invention, a method for dispatching instructions in a data processing system having multiple central processing units where each central processing unit provides IR drop data, the method including the steps of receiving the measured IR drop data from the central processing units, selecting a central processing unit according to the received IR drop data, and dispatching instructions from memory to the selected central processing unit.
In one embodiment of the present invention, a data processing system is provided, that includes several central processing unit cores, a memory including program instructions for execution by a central processing unit, a selection circuit connected to receive IR drop data provided by the central processing units, and selecting a central processing unit according to the IR drop data received, and an instruction dispatch a circuit connected to the memory and the central processing units to the selected central processing unit.
The present invention may be better understood, and its numerous objects, features, and advantages made apparent to those skilled in the art by referencing the accompanying drawings.
The following is intended to provide a detailed description of an example of the invention and should not be taken to be limiting of the invention itself. Rather, any number of variations may fall within the scope of the invention, which is defined in the claims following the description.
The present invention provides a system to measure temperature within a single central processing unit. This is actually accomplished by providing an adaptive power supply (APS) for each central processing unit. Each of these adaptive power supplies determines operating conditions on an integrated circuit and adjust voltage (Vdd) provided to the integrated circuit to either increase performance of the integrated circuit or save power expended by the integrated circuit.
In a preferred embodiment of these adaptive power supplies, three physical condition measurements are made. The first is temperature, which is measured by a thermal diode on the surface of the integrated circuit. The second is the IR (voltage) drop measured by two ring oscillator circuits and the third is the frequency performance of the integrated circuit measured by a single loop oscillator compared to stored predetermined performance values.
The complete control signal provided to the voltage regulation circuit is:
Total Vdd scaling=Frequency response scaling+Temperature related Vdd scaling+IR drop related scaling
All of the measurement circuits are contained on the surface of this integrated circuit device in the preferred embodiment. These measurements are then used to scale an input control signal to a voltage regulation circuit also contained on the surface of the integrated circuit device or alternatively on another integrated circuit. The output of this voltage regulation device provides the integrated circuit operating voltage (Vdd). Thus the voltage supplied to the integrated circuit can be adjusted to either save power or increase performance dynamically during the operation of the chip by under program control. Further the integrated circuit voltage and, therefore, performance can be changed in anticipation of operating environment changes such as a sleep state or the execution of instructions requiring high circuit performance.
This is a dynamic method of varying voltage that takes into account the specifics of the semiconductor manufacturing process, temperature and IR drop effects simultaneously. This method uses available on-chip data to compute adjustment in voltage necessary to either meet target performance or decrease power consumption. The two goals are met using the same circuit. Another advantage of using this method is the flexibility it offers to the users in terms of programmability. On chip voltage can be artificially varied by writing into special registers which provide values used by the power management circuitry to provide the supply voltage Vdd. This feature can be helpful when expecting instructions that require high circuit performance, essentially providing an “on-Demand” performance capability. In other words, to provide on request, additional circuit supply voltage to increase circuit performance.
This method is not limited to a specific technology or type of circuit. It can be applied to a broad type of integrated circuits, especially those that need to deliver higher performance at lower power consumption.
This method also offers reduction in test time for identifying yield and voltage per module. It is a dynamic solution unlike previous static solutions (fuses, etc) that takes into account effects of IR drop.
To measure the process on the substrate, a ring oscillator connected to a temperature compensated voltage source (ex: a bandgap reference) is used. In this case, for a given temperature, the pulse width produced by the ring oscillator is a function of the process on the substrate since temperature and voltage are constant. By using a bandgap reference, the voltage applied to a ring oscillator can be kept constant. But the temperature of the substrate depends upon internal and external operating conditions and it cannot be held constant. To eliminate the effects of varying temperature, another scheme is used in this invention.
First, a target predicted circuit performance number (pcpn) is chosen. This number represents the expected circuit performance based on expected semiconductor manufacturing process. This number represents circuit performances expected under nominal applied voltage across the entire operating temperature range. For this pcpn, a simulation of the ring oscillator supplied by a constant voltage from a bandgap reference is carried out for the entire operating temperature range. This simulation yields pulse widths that are generated at a fixed voltage and pcpn values where only the temperature is varied across the entire operating temperature range. If the substrate pcpn is identical to the desired target performance, then the substrate would also yield identical pulse widths for each value of the operating temperature range.
If the substrate pcpn is different than the desired target performance, then the pulse widths produced by the substrate will be either shorter or longer than those produced by simulation depending upon whether the substrate pcpn was faster or slower than the desired target performance. So a comparison has to be made between the pulse width generated by the ring oscillator on the substrate with a simulated value of the pulse with at the value of the substrate temperature at a fixed voltage. The expected pulse width values at the desired target process for each temperature value within the desired operating temperature range are stored in a Look Up Table (LUT) (for example, 118 in
This resulting pulse width value from the delay lookup table circuit 118 provides a voltage scaling signal in digital form which is converted to an analog voltage signal by D to A converter 122. This scaling voltage signal is provided to a voltage regulator 130 over line 124. The operation result of the circuit 125 would be to increase or decrease the resulting voltage of regulator circuit 130 (chip Vdd) based upon the measured temperature of the integrated circuit measured by thermal diode 102.
Digital temperature sensors are based on the principle that the base-emitter voltage, VBE, of a diode-connected transistor is inversely proportional to its temperature. When operated over temperature, VBE exhibits a negative temperature coefficient of approximately −2 mV/° C. In practice, the absolute value of VBE varies from transistor to transistor. To nullify this variation, the circuit would have to calibrate each individual transistor. A common solution to this problem is to compare the change in VBE of the transistor when two different current values are applied to the emitter of the transistor.
Temperature measurements are made using a diode that is fed by 2 current sources, one at a time. Typically the ratio of these current sources is 10:1. The temperature measurement requires measuring the difference in voltage across the diode produced by applying two current sources.
Line 206 is connected to a “sample and hold” circuit 209 to sample and hold a voltage output of the thermal diode 208. The address counter circuit 222 operates identically to the address counter, circuit 110 of
The frequency response of the integrated circuit (or performance of the integrated circuit) can be measured by using the output of a band gap voltage connected ring oscillator 304 on line 305 of
Returning to path 524, the frequency response value measured in block 510 is provided in path 528 to both the integration block 512 and to the compare block 520 by line 538 as discussed in
Digital Implementation of the Adaptive Voltage Supply
The bandgap reference circuit 618 and the Vdd reference circuit 632 are similar to those discussed and illustrated as block 325 in
One distinction from the adaptive voltage supply illustrated in
In a similar manner, block 902 controls the process value that is used by the adaptive voltage supply. When a software control is implemented, a signal is provided on line 904 to the decision block 906. If an override by a software input is to take place, then the software input value in block 912 is provided by line 916 to the write process register 918 instead of the measured process of block 914. As shown, the inputted measured process value in block 914 is received via line 934 from the difference circuit 932 at this point. The software controls both the write process register in block 918 and the write IR drop register in block 966. Both the IR drop data and the process data are summed in block 936 to provide the overall voltage scaling signal that is output to the voltage regulator at 938 to provide the Vdd supply voltage to the integrated circuit.
Also in a similar manner, block 970 provides a user or software override in order to provide a substituted temperature value in place of the measured temperature value. This is done by providing a signal on line 974 to a decision process 972 if the software is to override the measured value, a signal is sent online 978, to access the software provided temperature value in block 982, which is written by line 984 into the write temperature register 986. However if there is no software or user override, the decision block 972 provides a signal on line 976 to the register 980 which receives the temperature from line 924 as previously discussed.
It should also be apparent to those skilled in the art that the use of weight registers also provides a greater degree of software control over the operation of the adaptive voltage supply. Therefore by accessing these registers, the power supervisor can both monitor and regulate the operation of each of the adaptive voltage supplies that are contained on the integrated circuit.
When multiple central processing unit cores are contained in the data processing system and each central processing unit core includes its own adaptive power supply, circuitry can be provided to collect data from each of the adaptive power supplies and provide it to supervisory software to enhance the efficient operation of the data processing system. One example is the use of IR drop data obtained from the adaptive power supplies distributed on the central processing units. It has been determined that the central processing units with lower IR drop will execute instructions more efficiently. The IR drop information can be used to select a central processing unit for executing a group of instructions or instructions in a thread. This is illustrated in
While this discussed embodiment shows only a single voltage control circuit on the integrated circuit, it should be apparent that multiple voltage control circuits may be utilized to provide different voltages to different portions of the integrated circuit. This is illustrated in
While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that, based upon the teachings herein, changes and modifications may be made without departing from this invention and its broader aspects. Therefore, the appended claims are to encompass within their scope all such changes and modifications as are within the true spirit and scope of this invention. Furthermore, it is to be understood that the invention is solely defined by the appended claims. It will be understood by those with skill in the art that if a specific number of an introduced claim element is intended, such intent will be explicitly recited in the claim, and in the absence of such recitation no such limitation is present. For non-limiting example, as an aid to understanding, the following appended claims contain usage of the introductory phrases “at least one” and “one or more” to introduce claim elements. However, the use of such phrases should not be construed to imply that the introduction of a claim element by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim element to inventions containing only one such element, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an”; the same holds true for the use in the claims of definite articles.
Number | Name | Date | Kind |
---|---|---|---|
4417470 | McCracken et al. | Nov 1983 | A |
4712087 | Traa | Dec 1987 | A |
5029305 | Richardson | Jul 1991 | A |
5375146 | Chalmers | Dec 1994 | A |
5451894 | Guo | Sep 1995 | A |
5457719 | Guo et al. | Oct 1995 | A |
5737342 | Ziperovich | Apr 1998 | A |
5818380 | Ito | Oct 1998 | A |
5844826 | Nguyen | Dec 1998 | A |
5852616 | Kubinec | Dec 1998 | A |
5959564 | Gross, Jr. | Sep 1999 | A |
5990725 | LoCascio | Nov 1999 | A |
6034631 | Gross, Jr. | Mar 2000 | A |
6037732 | Alfano et al. | Mar 2000 | A |
6047248 | Georgiou et al. | Apr 2000 | A |
6058502 | Sakaguchi | May 2000 | A |
6070074 | Perahia et al. | May 2000 | A |
6076157 | Borkenhagen et al. | Jun 2000 | A |
6111414 | Chatterjee et al. | Aug 2000 | A |
6125334 | Hurd | Sep 2000 | A |
6141762 | Nicol et al. | Oct 2000 | A |
6172611 | Hussain | Jan 2001 | B1 |
6212544 | Borkenhagen et al. | Apr 2001 | B1 |
6218977 | Friend | Apr 2001 | B1 |
6351601 | Judkins, III | Feb 2002 | B1 |
6429796 | Buckley | Aug 2002 | B1 |
6481974 | Horng et al. | Nov 2002 | B2 |
6591210 | Lorenz | Jul 2003 | B1 |
6625635 | Elnozahy | Sep 2003 | B1 |
6713996 | Di Iorio | Mar 2004 | B2 |
6721581 | Subramanian | Apr 2004 | B1 |
6721892 | Osborn | Apr 2004 | B1 |
6724214 | Manna et al. | Apr 2004 | B2 |
6838917 | Brass et al. | Jan 2005 | B2 |
6859113 | Giousouf et al. | Feb 2005 | B2 |
6897673 | Savage et al. | May 2005 | B2 |
7086058 | Luick | Aug 2006 | B2 |
7093109 | Davis et al. | Aug 2006 | B1 |
7096140 | Nozuyama et al. | Aug 2006 | B2 |
7100061 | Halepete et al. | Aug 2006 | B2 |
7174194 | Chauvel et al. | Feb 2007 | B2 |
7184936 | Bhandari | Feb 2007 | B1 |
7211977 | Squibb | May 2007 | B2 |
7228446 | Jorgenson et al. | Jun 2007 | B2 |
7256622 | Dronavalli | Aug 2007 | B2 |
7282966 | Narendra et al. | Oct 2007 | B2 |
7307439 | Takamiya et al. | Dec 2007 | B2 |
7321254 | Li | Jan 2008 | B2 |
7330081 | Asa et al. | Feb 2008 | B1 |
7330983 | Chaparro et al. | Feb 2008 | B2 |
7429129 | St. Pierre | Sep 2008 | B2 |
7437581 | Grochowski et al. | Oct 2008 | B2 |
7696917 | Matsuura | Apr 2010 | B2 |
7734939 | Kolinummi et al. | Jun 2010 | B2 |
20020046399 | Debling | Apr 2002 | A1 |
20020065049 | Chauvel et al. | May 2002 | A1 |
20030030483 | Seki et al. | Feb 2003 | A1 |
20030057986 | Amick | Mar 2003 | A1 |
20030067334 | Brass et al. | Apr 2003 | A1 |
20030079150 | Smith et al. | Apr 2003 | A1 |
20030126476 | Greene et al. | Jul 2003 | A1 |
20030184399 | Lanoue et al. | Oct 2003 | A1 |
20040023688 | Bazarjani et al. | Feb 2004 | A1 |
20040025061 | Lawrence | Feb 2004 | A1 |
20040090216 | Carballo et al. | May 2004 | A1 |
20040183613 | Kurd et al. | Sep 2004 | A1 |
20040268280 | Eleyan et al. | Dec 2004 | A1 |
20050114056 | Patel et al. | May 2005 | A1 |
20050116733 | Barr et al. | Jun 2005 | A1 |
20050134394 | Liu | Jun 2005 | A1 |
20050174102 | Saraswat et al. | Aug 2005 | A1 |
20050178133 | Henry et al. | Aug 2005 | A1 |
20050209740 | Vann, Jr. | Sep 2005 | A1 |
20050273290 | Asano et al. | Dec 2005 | A1 |
20050278520 | Hirai et al. | Dec 2005 | A1 |
20050289367 | Clark et al. | Dec 2005 | A1 |
20060066376 | Narendra | Mar 2006 | A1 |
20060149974 | Rotem et al. | Jul 2006 | A1 |
20060197697 | Nagata | Sep 2006 | A1 |
20060247873 | Fung et al. | Nov 2006 | A1 |
20060263913 | Marshall | Nov 2006 | A1 |
20070006007 | Woodbridge et al. | Jan 2007 | A1 |
20070074216 | Adachi et al. | Mar 2007 | A1 |
20070192650 | Shiota | Aug 2007 | A1 |
20070260895 | Aguilar et al. | Nov 2007 | A1 |
20080004755 | Dunstan et al. | Jan 2008 | A1 |
20080071493 | Wang | Mar 2008 | A1 |
20080136400 | Chi et al. | Jun 2008 | A1 |
Number | Date | Country |
---|---|---|
1716161 | Jan 2006 | CN |
09-097874 | Apr 1997 | JP |
2006-018758 | Jan 2006 | JP |
WO 2006072106 | Jun 2006 | WO |
Entry |
---|
McGowen, “Adaptive Designs for Power and Thermal Optimization”, Nov. 2005, pp. 118-121. |
Gupta and Rincon-Mora, “Predicting the Effects of Error Sources in Bandgap Reference Circuits and Evaluating Their Design Implications” IEEE's Midwest Symposium on Circuits and Systems (MWSCAS), vol. 3, pp. 575-578, Tulsa, Oklahoma, 2002. |
http://en.wikipedia.org/wiki/Bandgap—voltage—reference. |
PCT International Search Report, mailed Feb. 5, 2008, for PCT application EP2008/050919, 3 pages. |
Schweber, A/D and D/A Converters: Critical links that just keep getting better, Apr. 1989, 4 pages. |
PCT International Search Report, mailed oJun. 16, 2008, for PCT application EP2008/050922, 4 pages. |
Moore, B.D.; “Tradeoffs in Selecting IC Temperature Sensors”; 1999; Elsevier Science; pp. 181-184. |
Sasaki et al.; “−1/+0.8 C Error, Accurate Temperature Sensor using 90nm IV CMOS for On-Line Termal Monitoring of VLSI circuits”; 2006; IEEE; pp. 9-12. |
Number | Date | Country | |
---|---|---|---|
20080189516 A1 | Aug 2008 | US |