The present invention relates to methods and systems using magnetic attraction force to hold a detachable spray-extension tube along the side of an aerosol spray to prevent its misplacement or loss, when not being used.
Aerosol spray cans are widely used to dispense lubricants, paints and solvents. Spray can nozzles are designed to dispense a diffused spray. However some applications require a fine localized spray stream, in which case a plastic spray-extension tube can be inserted into a recessed hole provided in the spray nozzle to guide the spray stream as directed, as shown in
An aerosol spray lubricant, such as WD 40, is an example of the current state of art with a detachable plastic spray-extension tube that can be inserted into the nozzle for fine directed spray control. The detachable plastic spray-extension tube is usually attached to the side of the spray can with a piece of clear tape, to prevent its loss in shipping and handling before being purchased. However the attachment tape is not permanent, and often fails in use after purchase. As a result, detachable spray-extension tubes are frequently misplaced or lost by consumers.
Because misplacing or losing spray-extension tubes has been a common problem with aerosol spray cans, there are businesses selling replacement spray-extension tubes, and there have been a variety of concepts proposed and developed to prevent this problem.
For example, US Patent 20120240357 abstract discloses “An elastic band specially configured where the two ends are joined together to form an aperture for inserting and securing a plastic extension tube to an aerosol spray can.”
Furthermore, WD-40 Company developed a method for preventing misplacement or loss of spray-extension tubes when not being used. WD-40 Company markets their “Smart Straw™” product disclosed in U.S. Pat. No. D 536,970, which has a hinged plastic tube that can be rotated upward for fine guided spray control, or rotated downward to be out of the way for normal nozzle spraying and for safe stowing.
Although the Smart Straw™ design is elegant, it is an expensive solution. The premium cost of this solution adds to the consumer price for the product, and likely inhibits sales. Furthermore, this solution is a fully integrated product; so if the “Smart Straw™” device fails, the entire aerosol spray product may be rendered useless. What is needed is a very low cost and replaceable solution for affixing the straw to the can during shipping and storage and when the straw is not otherwise required for use.
Non-obvious new methods and systems are taught herein that are based on using magnetic attraction forces to affix the detachable spray-extension tube to the side of an aerosol spray can, as the means to prevent its misplacement or loss when not being used.
Novel new concepts are disclosed herein that use magnetism to create sufficient magnetic attraction force to affix the detachable spray-extension tube along the side of an aerosol spray can when not being used, as a method to prevent its misplacement or loss:
One concept is an inexpensive magnetized plastic spray-extension tube as illustrated in
Since a conventional round small diameter conventional plastic spray-extension tube will have little actual physical surface contact area with a much larger round diameter aerosol spray can, several magnetized spray-extension tube cross-sectional configurations, or shapes, are disclosed herein as shown in
Another concept is a separate removable magnetized sleeve as shown in
Another concept shown in
Although not shown, another concept is simply a strap of flexible magnetized ribbon that will affix a conventional spray extension tube against an aerosol can's side for safekeeping; yet it can be easily peeled away from the can to remove the tube, as needed. In this respect, key design features of both the durable magnetized clip and the flexible strap of magnetized ribbon concepts are that they are able to repeat their attachment, detachment, and reattachment functions multiple times without degradation of their magnetic attraction holding forces.
In another version of a reusable clip, a fastener feature is incorporated near the middle with a fastener designed as a channel to securely grasp and hold a spray-extension tube, as shown in
In contrast to prior art concepts having elastic bands that stretch completely around the aerosol can, the magnetized fasteners only need to span a small portion of the outer periphery surface of an aerosol can to securely hold a conventional spray-extension tube when it is not being used. Moreover, a very important fact is that magnetic attraction holding forces created by magnetism are not affected by lubricant or solvent residuals, or other contaminants such as dirt or grease that may be present on the aerosol can surface. Because of this advantage, magnetic attraction forces are totally unlike adhesive forces.
Although not shown, another version of a clip fastener design such as shown in
As another example, the openings for different size tubes could be distinct, incorporated next to one another. Designing the clip to accommodate different diameter tubes would be a useful feature, considering aerosol product producers often use different diameter tubes for different products, and having one clip design suitable for several different products is advantageous.
Finally, several concepts are disclosed for creating a magnetic receptive surface on spray containers that are made from non-magnetic material such as aluminum or plastic, instead of the traditional steel. These concepts create a magnetic receptive attachment surface that is suitable for enabling sufficient magnetic attraction force to affix a spray-extension tube to the container while using any of the magnetized concepts disclosed herein.
Magnetism is used to create magnetic attraction forces that will affix a detachable spray-extension tube (also referred to as a straw) to an aerosol spray can as the method to prevent its misplacement or loss, when not being used. Several inexpensive new and novel concepts using magnetism are disclosed. For example, a magnetized detachable plastic spray-extension tube configuration shown in
Manufacturers skilled in the art will be able to inexpensively produce the disclosed magnetized plastic spray-extension tubes and/or magnetized devices that are suitable implementations. In most cases, the manufacturing technology involved will be similarly related to that used in making inexpensive plastic refrigerator magnets, or flexible magnetized plastic sheets used for creating removable signs that magnetically attach to vehicles or other metal surfaces, which are formed from a thermoplastic rubber or a plastic material that is compounded with ferromagnetic material such as fine iron particles, magnetite (Fe3O4), hematite (Fe2O3), or ferric oxide (Fe2O4), which are relatively weak but low cost magnetic materials. Stronger magnetic materials such as iron (Fe), alnico (containing Al, Ni and Co), neodymium (Nd), or some alloys of rare earth metals are also available for use, but they are generally more expensive. After compounding, two-dimensional cross-sectional plastic magnetic products such as tubes, or tube-holding devices disclosed herein can be produced using an extrusion process, as an example. In a final step the extruded product is magnetized, or polarized, by strong external magnetic fields to induce a pattern of magnetic alignment of the embedded magnetic material.
An example of a magnetized plastic sheet is shown in
The Inventors developed an extruded clip design (80) similar to that shown in
The initially produced MagStraw™ clips, which were 0.5 inches wide and 0.75 inches long, had more than sufficient magnetic holding force for securely affixing the straw to the side of the can. Furthermore because of the MagStraw™ clip's low weight, it could remain attached to the spray-extension tube while being used as illustrated in
The clip's profile was designed such that the nominal gap of the channel holding the straw is slightly smaller than the straw itself, so when the straw is inserted, it is held more firmly in place due to the opposing forces of the walls of the channel in the flexible clip.
Furthermore, the nominal concave contour of the magnetized mating surface (83) is slightly flatter than the convex curvature of the can it would mate to, such that when the straw is inserted, it will force the mating surface shape into a slightly sharper concave radius, more closely matching the can's curvature, and therefore increasing the magnetic attraction forces holding them together. The MagStraw™ clips proved be an inexpensive solution to the fundamental problem and well suited for the safekeeping application.
The calculated magnetic holding force in g's (gravitational force) of the initially produced MagStraw™ clip follows: The magnetized extruded material had a holding force of approximately 60 pounds per square foot (or 0.4156 pounds per square inch). The contacting surface area of the initially produced MagStraw™ clip is 0.375 square inches, giving a holding force of 0.1558 pounds. Since the total weight of the MagStraw™ clip with an inserted conventional plastic straw weighed 0.0043 pounds, the calculated magnetic holding force is equivalent to a 36.24 g-force. A holding force of one-g will hold the clip and straw from falling off the can's surface when held upside down, while higher levels will provide increased adherence to the can, if accidently dropped, so the holding force of 36.24 g-force is more than adequate for typical applications. It is to be appreciated that calculations included herein are merely examples, and are not intended to limit the invention.
Because the overall magnetic holding force of a clip is largely determined by the design of the magnetized surface area, cost savings are possible by accepting a lower designed holding force and clip area, so that less material, and/or a lower ratio of iron composition in the material may be used to reduce cost.
It should be clear that other magnetized designs are possible in accordance with the innovations disclosed herein for accommodating different sized tubes and aerosol cans and different configurations. For example, a magnetized clip, somewhat similar to that shown in
One embodiment is to magnetize the tube itself. Although a magnetized round small diameter plastic spray-extension tube as shown in
According to the following definition: “tube—a long, hollow object that is used especially to control the flow of a liquid or gas”, a tube does not have to be round. Increasing the actual surface contact area and/or narrowing the gap between the surfaces of a magnetized spray-extension tube and an aerosol spray can will improve the magnetic attraction holding force. Several cross-sectional shapes, or configurations of spray-extension tubes shown in
For optimal operation, the shape of the receptacle in a spray can nozzle matches the shape of the insertion end of the spray-extension tube configuration, or shape chosen to provide firm assured insertion. However a spray nozzle receptacle can be designed so that it will accommodate both a round conventional small diameter Configuration A spray-extension tube and, as well, one of the flattened magnetized Configurations B or C. In doing so, a dual accommodating spray nozzle design could become a unique marketing feature for the manufacturer.
We can calculate the magnetic holding force in g's (gravitational force) of a magnetized Configuration C tube as follows: A conventional small round 0.084 inch OD plastic spray-extension tube that is 4.5 inches long that is made with polypropylene having a specific gravity of 0.946 gram/cm3, weighs 0.0007 pounds. An equivalent size square magnetized Configuration C tube has a 36% larger volume and a higher specific gravity of 3.5 gram/cm3 because of its magnetic material composition. As a result a magnetized Configuration C tube would weigh 0.00422 pounds. The surface contact area of Configuration C tube may be 0.3825 square inches, giving us a magnetic holding force of 0.1819 pounds, or the equivalent of 43.1 g-force.
The magnetic material suitable for clips, sleeves, or straps may not be optimal for magnetized straws. Although iron is an inexpensive magnetic material widely used with polyethylene in producing refrigerator magnets, it is reasonable to assume the magnetic holding force per unit area is proportional to the amount of iron in the plastic. Tradeoffs are possible by reducing the iron content to produce a less dense material and accepting a lower holding force.
As an example, if the iron content is reduced to 20%, the magnetic holding force of the Configuration C calculated in [0046] would be lower at 0.0438 pounds. But at the same time, the specific gravity of the material would be reduced to 2.33 grams/cm3, which results in a lower Configuration C tube weight of 0.0028 pounds. As a result, the 20% example composition results in a magnetized spray tube with a lower holding force that is equivalent 15.59 g-force. The optimum material composition for magnetized spray tubes could be varied based on the application and cost factors.
Co-extrusion allows different materials to be extruded together to maximize overall properties. As shown in
The durable interchangeable permanent magnetic clip shown conceptually in
For some applications a more robust design using different materials may be desirable, since some inexpensive materials may become prone to softening and becoming ‘sticky’ over time and/or in high temperature conditions, and/or because the materials may be slightly porous and prone to absorbing solvents or other contaminants, and/or because this form of magnetization can be lost in the presence of other magnetic fields. However from the description provided herein, those skilled in the art could perceive further improvements, changes and modifications. Such improvements, changes and modifications within the skill of the art are intended to be covered by the appended claims.
Furthermore it may be advantageous to incorporate an additional material in the compound prepared for production that would not affect performance or appearance of the final product, but could be detected by other means. For examples: (1) a dye added to the plastic that would not show visibly in the finished product, but could be detected by its fluoresce, or glow signature under black light that gives off energetic ultraviolet light; or (2) a small amount of another material that would not appear visually, but could be detected by analytical means. The purpose of adding these materials may be to locate the parts in a dark environment, for example, or otherwise make it possible to track and validate what materials have been used in making the final products.
Up to this point, the innovations described herein have been described in the context of functioning with an aerosol spray can made from steel, which is a magnetic receptive material ideally suited for the application. However for spray cans, or other types of containers that are not made with magnetic receptive material, there are other embodiments possible: the concept of incorporating a non-magnetized ferrous magnetic receptive surface on the outer periphery of a nonmagnetic container that would be suitable to securely hold any of the magnetized concepts disclosed herein (e.g., a magnetized plastic spray-extension tube or a magnetized sleeve or strap or clip), to affix the tube and prevent its misplacement or loss, when it is not being used.
The added ferrous magnetic receptive surface for magnetic attachment could be confined to a small segment on the outer surface of the container for this purpose. As examples, vertically oriented segments for holding magnetized spray-extension tubes, or horizontally oriented segments for magnetized clips, sleeves, or straps, etc. The magnetic receptive surface segment could be created by simply attaching a strip of a ferrous metal tape with a pressure-sensitive adhesion, or by applying a magnetic receptive paint that contains fine ferrous particles. Many paint companies, including Rust-Oleum (http://www.rustoleum.com/product-catalog/consumer-brands/specialty/magnetic/) formulate and market magnetic receptive paints that would be suitable for this embodiment. The receptive surface can be artistically incorporated into the label on the container.
Alternatively, for spray cans that are not steel, a receptive surface that is magnetized may be applied with adhesive, and a tube that contains non-magnetized ferrous material can be held on that surface of the can, or alternatively a conventional plastic tube can be held to that surface with any of the forms of clips, sleeves, or straps discussed herein that is made with ferrous materials.
Although the innovations disclosed have been mainly described in terms of a spray-extension tube for a lubricant like WD-40, it should be understood that they are equally useful for affixing tubes to other surfaces, such as the side of a toolbox, with minor modifications. Furthermore, it should be understood the innovations disclosed are equally useful for holding other detachable devices by magnetic attraction force, other than straws and spray cans. There may be advantages for product marketing and/or distribution in having an extrusion die or mold design that would allow more than one clip (or sleeve, for example) to be extruded or molded simultaneously side by side, but only slightly attached to one another so that they could be easily separated later. One advantage of this would be to reduce the tendency for the devices to magnetically mate with one another when shipped or packaged near one another. It should be understood that only certain embodiments have been described and that numerous substitutions, alternatives, dimensional changes, and modifications are permissible without departing from the scope of the innovations.
This application claims priority to and the benefits of U.S. Provisional Patent Application 61/999,341 dated Jul. 24, 2014; U.S. Provisional Patent Application 62/122,952 dated Nov. 2, 2014; and U.S. Provisional Patent Application 62/176,449 dated Feb. 20, 2015, entitled USING MAGNETISM TO SECURE THE DETACHABLE SPRAY-EXTENSION TUBE TO AN AEROSOL SPRAY CAN. The above-identified provisional patent applications are incorporated herein by reference in their entirety for all purposes.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/000078 | 7/21/2015 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61999341 | Jul 2014 | US | |
62122952 | Nov 2014 | US | |
62176449 | Feb 2015 | US |