Using phylogenetic probes for quantification of stable isotope labeling and microbial community analysis

Information

  • Patent Grant
  • 8906610
  • Patent Number
    8,906,610
  • Date Filed
    Tuesday, February 8, 2011
    13 years ago
  • Date Issued
    Tuesday, December 9, 2014
    9 years ago
Abstract
Herein is described methods for a high-sensitivity means to measure the incorporation of stable isotope labeled substrates into RNA following stable isotope probing experiments (SIP). RNA is hybridized to a set of probes such as phylogenetic microarrays and isotope incorporation is quantified such as by secondary ion mass spectrometer imaging (NanoSIMS).
Description
REFERENCE TO SEQUENCE LISTING AND TABLES

This application hereby incorporates the attached sequence listing in computer readable form and the attached Table 1 showing the sequences SEQ ID NOS:1-2805.


BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to methods of using probes and microarrays to measure multiple different stable isotopes in nucleic acids and identification and analysis of microbial communities.


2. Related Art


Identification of microorganisms responsible for specific metabolic processes remains a major challenge in environmental microbiology, one that requires the integration of multiple techniques.


Nucleic acid stable isotope probing (SIP) techniques (5, 6) are currently the most widely used means to directly connect specific substrate utilization to microbial identity, a grand challenge in the field of microbial ecology (7). For traditional SIP, natural microbial communities are incubated in the presence of a substrate enriched in a rare stable isotope (either 13C or 15N). The organisms, including their nucleic acids, incorporate the substrate and become isotopically enriched over time. Ultracentrifugation is used to separate isotopically enriched nucleic acids from lighter, unenriched nucleic acids for molecular analysis. In the past decade, these approaches have generated many advances in the understanding of microbial bioremediation, plant-microbe interactions and food web dynamics (8), yet they remain hindered by logistical drawbacks (9). These issues are intensified when working with density-gradient centrifugation of RNA, where the focus is on active organisms that are not necessarily replicating. Most notably, traditional DNA- and RNA-SIP isotope exposure risks fertilization effects by requiring high substrate concentrations in order to meet the sensitivity threshold of density gradient separation (in many systems>20% 13C DNA) (10) and is extremely difficult to perform with 15N labeled substrates (>40% 15N DNA required) (11). Other disadvantages include long exposure times (risking community cross-feeding), low-throughput (1-2 weeks lab processing time per sample batch), and incomplete quantification. Though related culture-independent approaches also have ideal qualities such as high sensitivity or in situ resolution (e.g. 13C-PLFA (12); EL FISH (13), FISH MAR (14), isotope arrays (15)), none combines high throughput, sensitivity, taxonomic resolution, and quantitative estimates of multiple stable isotope (15N and 13C) incorporation.


BRIEF SUMMARY OF THE INVENTION

The present invention provides a method for quantification of stable isotope labeling using phylogenetic probes.


In another aspect, the present invention comprises community analysis using such phylogenetic probes.


The methods described have the ability to track the update of carbon, nitrogen and oxygen in ribonucleic acids and providing insight into how microorganisms metabolize these elements. The methods as described can track the uptake of carbon and nitrogen simultaneously and also be applied to oxygen. There is no other known method that can track the uptake of carbon and nitrogen simultaneously.


A method for determination of stable isotope incorporation in a organism or a community of organisms comprising the steps of: (a) supplying an organism or said community of organisms with a stable isotope labeled substrate for a defined period of time; (b) extracting RNA from the organisms; (c) fragmenting said RNA; (d) labeling a fraction the fragmented RNA with a detectable label; (e) hybridizing the labeled RNA to a set of oligonucleotide probes; (f) detecting hybridization signal strength of labeled RNA hybridized to any of the oligonucleotide probes and identifying and selecting the hybridized oligonucleotide probes as a responsive set of probes; (g) hybridizing a fraction of unlabeled RNA to a second set of oligonucleotide probes comprising the responsive set of probes; (h) detecting the unlabeled RNA hybridized to the responsive set of probes to determine the stable isotope incorporation into the organism using spectrometry or spectroscopy.


In one embodiment, the organism is a bacterium, archaea, fungi, plant, arthropod, or nematode, or other eukaryote. In a specific embodiment, the organism is a bacterium.


In one embodiment, the stable-isotope labeled substrate is 3H, 13C 15N, and/or 18O.


Extraction of RNA can be carried out by physical and/or chemical cell lysis and affinity column purification. Fragmentation is generally carried out by using either enzymes or chemicals or heat or a combination of these. A fraction or aliquot of the RNA is then labeled with a fluorescent molecule or a non-fluorescent molecule. Fragmentation and labeling can occur in some embodiments concurrently.


In one embodiment, the set of oligonucleotide probes comprising an array of oligonucleotide probes attached to a substrate such as a microarray or chip. The labeled fragmented RNA can then be added to a hybridization solution and the hybridization solution contacted to the array of oligonucleotide probes to allow the labeled RNA to hybridize to the probes.


In one embodiment, the set of oligonucleotide probes comprising 16S rRNA phylogenetic oligonucleotide probes. The set of 16S rRNA phylogenetic probes further comprising probes from the 16S rRNA gene, 23S rRNA gene, 5S rRNA gene, 5.8S rRNA gene, 12S rRNA gene, 18S rRNA gene, 28S rRNA gene, gyrB gene, rpoB gene, fusA gene, recA gene, cox1 gene, nif13 gene, RNA molecules derived therefrom, or a combination thereof.


The array with the hybridized labeled RNA is imaged with a fluorescence scanner and fluorescence intensity measured for each probe feature and the detection of hybridization signal strength provides a determination of the genes present in a organism or genes and/or organisms present in the community of organisms. The detection of hybridization signal strength also provides a means for normalization of the isotope signals detected.


In one embodiment, the probes that hybridized to the labeled RNA are synthesized onto a second array of oligonucleotide probes comprising down-selected probes or responsive probes. The unlabeled RNA is hybridized to the second array hybridized unlabeled RNA are imaged with a with a secondary ion mass spectrometer and isotope ratios are measured for each probe feature.


The presently described methods provide high throughput, sensitivity, taxonomic resolution, and quantitative estimates of multiple stable isotope (15N and 13C) incorporation. In one embodiment, microbial identity and function are connected by isolating rRNA from individual taxa through hybridization to phylogenetic probes. In one embodiment, the probes are displayed on a substrate surface, such as a custom glass microarray. After hybridization, these probe features are then analyzed for isotope enrichment. In some embodiments, the probes are analyzed using analysis techniques including but not limited to, spectrometry, spectroscopy, and quantitative secondary ion mass spectrometry imaging.


Direct NanoSIMS analysis is made possible by implementing a new surface chemistry for synthesis of DNA on conductive material. With this approach, thousands of unique phylogenetic probes assaying hundreds of taxa can be quickly analyzed from a single sample.


The present methods may be used in applications such as the evaluation of how certain organisms metabolize cellulose and what enzymes they use to do this; evaluation of what organisms have the ability to degrade pollutants in an environmental sample such as oil using water samples from the recent Gulf oil spill; or a study of carbon sequestration.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A and 1B. Hybridization of extracted RNA from a single bacterial species (Pseudomonas stutzeri) grown on 13C-glucose as the sole carbon source. Each spot (and data point) represents a distinct probe specific for Pseudomonas. FIG. 1: (A) fluorescence image and (B) NanoSIMS isotopic enrichment image montage of a microarray hybridized with RNA from a single bacterial strain (Pseudomonas stutzeri) grown on 13C glucose.



FIG. 2A is a graph that shows that fluorescence and 13C enrichment are positively correlated demonstrating successful detection of labeled RNA in FIG. 1. FIGS. 2B and 2C show Chip-SIP analysis of two strains with differential isotopic enrichment demonstrating clear separation of the two taxa; Vibrio cholerae (gray squares), Bacillus cereus (gray triangles), background (black diamond). HCE=hybridization-corrected enrichment. Each point represents an individual probe spot's fluorescence intensity value (a measure of fluorescence) plotted against its isotopic enrichment measured by NanoSIMS. Error bars are SEMs based on total ion counts.



FIG. 3 shows two array images of RNA enriched with 0.5% 13C successfully detected by phylogenetic probes.



FIG. 4A shows two array images of Pseudomonas stutzeri grown on 25% 15N ammonium, Bacillus cereus grown on natural abundance ammonium; RNA extracted, mixed in equal concentrations, hybridized on array with phylogenetic probes. FIG. 4B shows a graph of the fluorescence intensity and 13C enrichment for Pseudomonas stutzeri grown on 100% 13C glucose, Vibrio cholera grown on 20% 13C glucose (images are not shown). A graph on the bottom panel shows one-way ANOVA analysis which demonstrates that the method is semi-quantitative because one taxa is more enriched than the other.



FIG. 5. San Francisco Bay water collected at Berkeley pier, incubated with 200 uM 15N ammonium for 24 hours. FIG. 5A shows array images of a marine microbes array designed using ARB (Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar et al. 2004. Nucl. Acids Res. 32:1363-1371); each row represents a different taxon. FIG. 5B is a graph showing the 15N enrichment in various taxa over time.



FIG. 6 is a graph showing the 13C enrichment in various taxa after incubation. San Francisco Bay water collected at Berkeley pier, incubated with 50 μM 13C amino acids (98% 13C), 30 μM fatty acids (98% 13C), and 10 mg L-1 starch (10% 13C) for 12 hours. Additional probes for larger phylogenetic groups (bacteria, Rhodobacteriacea, Planctomycetes, Marine Group A) designed using ARB.



FIG. 7 shows substrate incorporation detected by chip-SIP for a SF Bay estuarine microbial community incubated with 200 μM15N ammonium and 50 μM13C glucose for 24 hrs; A) 15N ammonium and B) 13C glucose incorporation for 3 taxa within the bacterial family Rhodobacteriaceae; each point is derived from a single probe spot's isotopic enrichment value plotted against fluorescence (a measurement of hybridization); C) relationship between ammonium and glucose incorporation for 16 taxa from two bacterial families; HCE=hybridization-corrected enrichment; arrows indicate taxa plotted in A and B.



FIG. 8A shows a network map of Chip-SIP analysis of the uptake patterns of three organic substrates by different bacterial taxa in an estuary, identifying substrate specialists and generalists; the thicknesses of the lines are proportional to the substrate incorporation rates based on HCE calculations (Flavo=Flavobacteriaceae, Roseo=Roseobacter, MarGrpA=Marine Group A). FIG. 8B shows a heat map relationship between substrate incorporation (green=detected, black=not detected) and 16S rRNA phylogeny for a subset of the Gammaproteobacteria, indicating taxa where physiological traits match phylogeny (Alteromonadales and Vibrionaceae) and where they do not (Oleispira).



FIG. 9 shows the relationship between array fluorescence (a metric of RNA hybridization) and 13C/12C enrichment (analyzed by NanoSIMS) of RNA from Pseudomonas stutzeri cultures grown separately on two levels of 13C-glucose as a sole carbon source and hybridized to an indium tin oxide (ITO) microarray. Each point represents data from a single probe location on the array. The fluorescence:enrichment relationship (i.e. hybridization corrected enrichment, “HCE”) is both highly significant (see regression statistics) and different between RNA from cultures with 100% 13C (gray) versus 5% 13C enriched cultures (dark gray).



FIG. 10: Relative incorporation of 15N-ammonium and 13C-glucose detected by chipSIP for a natural estuarine microbial community from the San Francisco Bay. Units are the slope of permil isotope enrichment over fluorescence (HCE=hybridization corrected enrichment). Each point is the average of probe spots representing the identified phyla. Error bars represent the standard error of the slope calculation.



FIG. 11: Relative incorporation of amino acids and nucleic acids detected by chip-SIP for a natural estuarine microbial community from the San Francisco Bay. Units are the slope of permil enrichment over fluorescence (HCE=hybridization corrected enrichment).



FIG. 12: Relative incorporation of amino acids and fatty acids detected by chip-SIP for a natural estuarine microbial community. Units are the slope of permil enrichment over fluorescence (HCE=hybridization corrected enrichment).



FIG. 13: Relative incorporation of fatty acids and nucleic acids detected by chip-SIP for a natural estuarine microbial community. Units are the slope of permil enrichment over fluorescence (HCE=hybridization corrected enrichment).





DETAILED DESCRIPTION

Initial experiments utilized a single bacterial strain (Pseudomonas stutzeri) grown on 13C glucose as the sole carbon source to determine the feasibility of successful hybridization of extracted RNA on the microarray surface, and detection of 13C from the hybridized RNA. FIG. 1 shows images of arrays of hybridization of extracted RNA from a single bacterial species (Pseudomonas stutzeri) grown on 13C-glucose as the sole carbon source. Each spot (and data point) represents a distinct probe specific for Pseudomonas. The results show fluorescence (a measure of how much RNA is hybridized) and 13C enrichment are positively correlated, demonstrating successful detection of labeled RNA with the Phylochip probe array.


Referring now to FIG. 3, the limits of prior detection methods of isotopic enrichment are not seen using the present probes and using such analysis methods as nanoSIMS (nanoscale secondary ion mass spectrometry). Traditional SIP (Stable Isotope Probing) requires approximately 10 atom % isotopic enrichment for detection (Radajewski S, Ineson P, Parekh N R & Murrell J C 2000. Nature 403: 646-649). We have successfully detected hybridized RNA from Pseudomonas stutzeri grown in 0.5 atom % 13C glucose. RNA enriched with 0.5% 13C successfully detected.



FIG. 4 shows results of experiments with artificial mixed communities. Before testing the method in the environment, we mixed RNA from different bacterial strains grown on different levels of 13C or 15N to determine cross-hybridization potential. An experiment was carried out with a simple two-member community: Pseudomonas stutzeri grown on 25% 15N ammonium, Bacillus cereus grown on natural abundance ammonium; RNA extracted, mixed in equal concentrations, hybridized on array featuring Phylochip probes. Experiment 2: Pseudomonas stutzeri grown on 100% 13C glucose, Vibrio cholera grown on 20% 13C glucose (images are not shown). The results of these two experiments shows that unlabeled taxa do not show isotopic signal in NanoSIMS, and that the present method can potentially be semi-quantitative (e.g. one taxon is more enriched than another).



FIG. 5 shows the first trial of method with natural microbial communities: To apply the method to the environment, we designed a 16S rRNA and 18S rRNA microarray for common marine microbial taxa (bacteria, archaea, and protists) targeting specific phylotypes (approximately at the genus level). Estuarine samples were incubated in the presence of 15N ammonium and sampled over time. Application of the present method using the phylogenetic probes to samples collected in San Francisco Bay water collected at Berkeley pier, incubated with 200 uM 15N ammonium for 24 hours. Marine microbes array designed using ARB (Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar et al. 2004. Nucl. Acids Res. 32:1363-1371); each row represents a different taxon. FIGS. 5A and 5B show that different taxa incorporate ammonia at different rates. The microarray probes are found in the accompanying Sequence Listing and identified as SEQ ID NOS:1-2805.


Little is known about organic carbon incorporation patterns in marine and estuarine environments, partly because the dominant organisms are uncultured and cannot be directly interrogated in the laboratory. We used the Chip-SIP method to test whether different taxa incorporate amino acids, fatty acids, and starch for their carbon growth requirements.



FIG. 6 shows the use of Chip-SIP method to identify organic matter utilization in estuarine microbial communities in San Francisco Bay water collected at Berkeley pier. The samples were incubated with 50 μM 13C amino acids (98% 13C), 30 μM fatty acids (98% 13C), and 10 mg L-1 starch (10% 13C) for 12 hours. Additional probes for larger phylogenetic groups (bacteria, Rhodobacteriacea, Planctomycetes, Marine Group A) were designed using ARB. As shown in FIG. 6, different microbial taxa incorporated different substrates in situ. All tested substrates were incorporated by some bacteria. One taxon (acido4) appeared to be a generalist, while all other taxa demonstrated some degree of specificity in the substrates that were incorporated into biomass.


Thus, in one embodiment, the present invention provides methods for quantification of stable isotope labeling to observe and measure resource partitioning in microbial communities using phylogenetic probes. In one embodiment, the phylogenetic probes can be designed. In another embodiment, phylogenetic probes previously designed and provided in the previous applications hereby incorporated by reference can be used.


In one embodiment, such a method involves labeling microbial nucleic acids with stable isotope-labeled substrates (e.g, 13C-amino acids, cellulose or 15NH4). Current methods for stable-isotope probing require large quantities of label to be incorporated into nucleic acids prior to density gradient separation (e.g. refs. Radajewski S, Meson P, Parekh N R & Murrell J C 2000. Nature 403: 646-649; Manefield M., Whiteley, A. S., Griffiths, R. I. and Bailey, M. J. 2002. Appl. Environ. Microbiol. 68:5367-73), however the necessary quantities of labeled substrate often impose a significant disturbance on system energy and metabolite flux. The presently described approach is to capture ribosomal RNA using sequence specific probes targeting 16S rRNA (Brodie, E. L., T. Z. DeSantis, D. C. Joyner, S. M. Baek, J. T. Larsen, G. L. Andersen, T. C. Hazen, P. M. Richardson, D. J. Herman, T. K. Tokunaga, J. M. M. Wan, and M. K. Firestone. 2006. Appl. Environ. Microbiol. 72:6288-6298), and the captured RNA is then analyzed for isotope ratios. Microarrays represent the highest-throughput approach for RNA capture; combining this with analysis methods allows isotope ratios to be determined for potentially hundreds of species within complex communities.


In some embodiments, the methods provides for a method comprising steps as the following described process. An organism or multiple organisms, such as a community of organisms, are supplied with a stable-isotope (e.g., 3H, 13C, 15N, 18O) labeled substrate for a defined period of time. RNA is extracted from the organisms or community organisms using any number of established procedures as is known in the art.


The organism RNA is fragmented using known fragmentation methods including use of enzymes, chemicals or heat or a combination of these. A first fraction or an aliquot of fragmented RNA is labeled with a fluorescent molecule or a non-fluorescently labeled molecule such as biotin. This can occur concurrently with fragmentation in some embodiments.


The labeled fraction of fragmented RNA is added to a hybridization solution and hybridized to a microarray slide. Weakly bound RNA can be removed from the microarray surface by washing in solutions of varying stringency. The RNA that is hybridized to the probes are then imaged to detect hybridization signal strength and thereby quantify the labeled RNA to determine the community organism composition and also to correct and normalize the isotope signals in the RNA bound to each probe.


Currently the organism composition and normalization of isotope signal occurs on a different device than the fluorescent detection of hybridization signal strength and measurement of isotope ratio or isotope incorporation. In such a case, the fluorescent detection provides a subset of responsive probes that correlate to the presence of a specific gene and/or an organism in the sample or the community. After this detection, the organisms are identified and a down-selected probe analysis is carried out. New probes to identify an organism can be designed, or the same probes from the larger set of oligonucleotide probes can be used. For example, in some instances, sequence information generated from reverse-transcribed RNA (cDNA) from the same samples is used to select unique regions for probe design. The down-selected set of new or responsive probes is then synthesized and arrayed onto a separate substrate. A reserved fraction of RNA is then hybridized to the down-selected set of probes and imaged whereby the determination of the isotope incorporation into the organism using spectrometry or spectroscopy.


If a separate device to determine the isotope incorporation into the organism is not required, then a separate set of down-selected probes does not need to be made, but the determination made directly on the RNA hybridized to the larger set of probes.


These steps are meant to provide a basic process and one having skill the art should understand that optimizations and variations to the method are contemplated.


Examples of organisms that can be used in the present methods include but are not limited to, prokaryotic and eukaryotic organisms such as bacteria, archaea, fungi, plants, arthropods, nematodes, avians, mammals, and other eukaryotes, or viruses and phage. In one embodiment, the organism, multiple organisms or a community of organisms is bacteria, archaea, fungi, plants, arthropods, or nematodes. For larger organisms, a cell or tissue sample may be obtained and the RNA extracted from the sample.


The RNA extracted from the organisms may be the total RNA including ribosomal, messenger, and transfer RNA or it may be a subset of the total RNA.


The organisms are supplied with amino acids, cellulose or other labeled substrate containing a stable-isotope. Examples of such stable isotopes include but are limited to 3H, 13C, 15N, and/or 18O. Examples of such labeled substrate include 13C-amino acids, cellulose or 15NH4 labeled substrate.


The organisms are supplied the labeled substrate for a defined period of time, such as for several minutes, hours or days. In one embodiment, a microbial community is supplied a labeled substrate for a period of 12, 18, or 24 hours.


Extraction of RNA from the organisms are generally carried out using methods known in the art. Examples of RNA extraction methods for microbial communities are provided in the Examples. In one embodiment, physical and/or chemical cell lysis and affinity column purification is used to extract RNA from the organisms or the cell or tissue sample from the organisms.


Fragmentation of the RNA is often carried out using enzymes, chemicals or heat or any combination of these. A fraction or aliquot of the fragmented RNA is labeled with a fluorescent label for suitable detection or with a label having a known binding partner to which a detectable label can be attached. In another embodiment, the fragmented RNA is labeled with a fluorescent molecule such as Alexafluor 546. In some embodiments, the fragmented RNA is labeled with biotin to which a fluorescently labeled streptavidin can be bound.


After labeling a fraction of the RNA, hybridization of the fragmented labeled RNA to a set of oligonucleotide probes is carried out. The set of oligonucleotide probes is typically attached to a solid planar substrate or on a microarray slide. However, it is contemplated that the probes may be attached to spheres, or other beads or other types of substrates. The substrates often made of materials including but not limited to, silicon, glass, metals or semiconductor materials, polymers and plastics. The substrates may be coated with other metals or materials for specific properties. In one embodiment, the substrate is coated with indium tin oxide (ITO) to provide a conductive surface for NanoSIMS analysis. The oligonucleotide probes may be present in other analysis systems, including but not limited to bead or solution multiplex reaction platforms, or across multiple platforms, for example, Affymetrix GeneChip® Arrays, Illumina BeadChip® Arrays, Luminex xMAP® Technology, Agilent Two-Channel Arrays, MAGIChips (Analysis systems of Gel-immobilized Compounds) or the NanoString nCounter Analysis System. The Affymetrix (Santa Clara, Calif., USA) platform DNA arrays can have the oligonucleotide probes (approximately 25 mer) synthesized directly on the glass surface by a photolithography method at an approximate density of 10,000 molecules per μm2 (Chee et al., Science (1996) 274:610-614). Spotted DNA arrays use oligonucleotides that are synthesized individually at a predefined concentration and are applied to a chemically activated glass surface.


The oligonucleotide probes are probes generally of lengths that range from a few nucleotides to hundreds of bases in length, but are typically from about 10 mer to 50 mer, about 15 mer to 40 mer, or about 20 mer to about 30 mer in length.


In one embodiment, the oligonucleotide probes is a set of phylogenetic probes. In another embodiment, the phylogenetic probes comprising 16S rRNA phylogenetic probes. In one embodiment, the set of 16S rRNA phylogenetic probes further comprising probes from the 16S rRNA gene, 23S rRNA gene, 5S rRNA gene, 5.8S rRNA gene, 12S rRNA gene, 18S rRNA gene, 28S rRNA gene, gyrB gene, rpoB gene, fusA gene, recA gene, cox1 gene, nif13 gene, RNA molecules derived therefrom, or a combination thereof.


Features of phylogenetic microarrays of the invention include the use of multiple oligonucleotide probes for every known category of prokaryotic organisms for high-confidence detection, and the pairing of at least one mismatch probe for every perfectly matched probe to minimize the effect of nonspecific hybridization. In some embodiments, each perfect match probe corresponds to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more mismatch probes. These and other features, alone or in combination as described herein, make arrays of the invention extremely sensitive, allowing identification of very low levels of microorganisms.


Methods to design and select suitable probes and arrays for Chip-SIP analysis are described in detail in co-pending U.S. patent application Ser. No. 12/474,204, filed on May 28, 2009 published as US-2009-0291858-A1, and co-pending international application having application number PCT/US2010/040106, filed on Jun. 25, 2010, both of which are incorporated by reference in their entirety for all purposes.


In one embodiment, the 16s rRNA phylogenetic probes are provided on a microarray chip, such as the G2 Phylochip or the G3 Phylochip available from Phylotech, Inc. (Second Genome, Inc., San Francisco, Calif.) and Affymetrix (Santa Clara, Calif.).


Again, the RNA that is hybridized to the probes are then imaged to detect hybridization signal strength and thereby quantify the labeled RNA to determine the community organism composition and also to correct and normalize the isotope signals in the RNA bound to each probe.


In one embodiment, for analysis for microbial composition and normalization of isotope signals, microarrays hybridized with fluorescent/biotin labeled RNA are imaged with a fluorescence scanner and fluorescence intensity measured for each probe feature or “spot”. Arrays can be scanned using any suitable scanning device. Non-limiting examples of conventional microarray scanners include GeneChip Scanner 3000 or GeneArray Scanner, (Affymetrix, Santa Clara, Calif.); and ProScan Array (Perkin Elmer, Boston, Mass.); and can be equipped with lasers having resolutions of 10 pm or finer. The scanned image displays can be captured as a pixel image, saved, and analyzed by quantifying the pixel density (intensity) of each spot on the array using image quantification software (e.g., GeneChip Analysis system Analysis Suite, version 5.1 Affymetrix, Santa Clara, Calif.; and ImaGene 6.0, Biodiscovery Inc. Los Angeles, Calif., USA). For each probe, an individual signal value can be obtained through imaging parsing and conversion to xy-coordinates. Intensity summaries for each feature can be created and variance estimations among the pixels comprising a feature can be calculated.


With flow cytometry based detection systems, a representative fraction of microparticles in each sublot of microparticles can be examined. The individual sublots, also known as subsets, can be prepared so that microparticles within a sublot are relatively homogeneous, but differ in at least one distinguishing characteristic from microparticles in any other sublot. Therefore, the sublot to which a microparticle belongs can readily be determined from different sublots using conventional flow cytometry techniques as described in U.S. Pat. No. 6,449,562. Typically, a laser is shined on individual microparticles and at least three known classification parameter values measured: forward light scatter (C1) which generally correlates with size and refractive index; side light scatter (C2) which generally correlates with size; and fluorescent emission in at least one wavelength (C3) which generally results from the presence of fluorochrome incorporated into the labeled target sequence. Because microparticles from different subsets differ in at least one of the above listed classification parameters, and the classification parameters for each subset are known, a microparticle's sublot identity can be verified during flow cytometric analysis of the pool of microparticles in a single assay step and in real-time. For each sublot of microparticles representing a particular probe, the intensity of the hybridization signal can be calculated along with signal variance estimations after performing background subtraction.


In one embodiment, responsive probe-sets are then identified based on a set criteria. See FIG. 4 For example, when using the Phylochip array of probes, the responsive probe sets are identified based on probability of probe intensities originating in the positive or background intensity distributions. High confidence subfamilies identified with expected 98.4% True Positive Rate and 2.4% False Positive Rate. Probes targeting most probable taxa in high confidence subfamilies are ranked based on quality criteria such as the lowest potential for cross-hybridization across network of putatively present taxa and the greatest difference between Perfect Match (PM) and Mismatch (MM) probe intensities. Ranked PM probes plus corresponding MM probes are synthesized onto an array and then hybridized to a reserved fraction of the RNA isolated from the organism or sample.


Various methods of mass spectrometry may be used in addition to detection using the present phylogenetic probes, such as nanoSIMS (nanoscale secondary ion mass spectrometry) or time-of-flight secondary ion mass spectrometry or other methods or means of spectrometry or spectroscopy. In other embodiments, the use of spectroscopic methods that may be employed include Raman spectroscopy or reflectance or absorbance spectroscopy. In one preferred embodiment, for analysis of isotope incorporation into organisms, microarrays hybridized with non-fluorescently labeled RNA are imaged with a secondary ion mass spectrometer, such as a SIMS or NanoSIMS device. In a specific embodiment, the NanoSIMS device is a NimbleGen MAS and the probe array is synthesized onto ITO-coated slides suitable for NanoSIMS analysis.


In some embodiments, sequence information generated from reverse-transcribed RNA (cDNA) from the same samples is used to select unique regions for probe design.


In another embodiment, the array of probes is synthesized on a substrate coated with Indium Tin Oxide (ITO) to provide a conductive surface for NanoSIMS analysis. For example, ranked PM probes plus corresponding MM probes are synthesized using the NimbleGen MAS on ITO-coated slides suitable for NanoSIMS analysis.


Current and future research will focus on the cellulose-degrading and N-fixing microorganisms found in the guts of the passalid beetle Odontotaenius disjunctus. This microbial community represents a naturally-selected highly-efficient lignocellulose degrading consortium, including Pichia stipitis, a yeast with high capacity for xylose fermentation (Nardi, J. B., C. M. Bee, L. A. Miller, N. H. Nguyen, S.-O. Suh, and M. Blackwell. 2006. Arthropod Struct. Devel. 35:57-68; Suh, S.-O., J. V. McHugh, D. Pollock, and M. Blackwell. 2005. Mycolog. Res. 109:261-265). RNA from beetles have been analyzed with LBNL's Phylochip (Brodie, E. L., T. Z. DeSantis, D. C. Joyner, S. M. Baek, J. T. Larsen, G. L. Andersen, T. C. Hazen, P. M. Richardson, D. J. Herman, T. K. Tokunaga, J. M. M. Wan, and M. K. Firestone. 2006. Appl. Environ. Microbiol. 72:6288-6298) and probes are being chosen for analysis based on signal intensity relative to background.


We have demonstrated the capability of the Chip-SIP method to link phylogenetic identity and biogeochemical function. We have achieved this by incubating natural microbial communities in the presence of isotope-enriched substrates and analyzing rRNA from those communities for isotopic enrichment in a taxon-specific manner using phylogenetic microarrays. This method can be applied to all microbial systems to advance our understanding of the microorganisms involved in the sequestration of soil and marine carbon, the deconstruction of biofuel feedstocks, biodegradation of organic pollutants and bioimmobilization of radionuclides and heavy metals.


In another embodiment, the phylogenetic probes and the present methods can be used by detecting how the labeled isotope is incorporated or expressed in an organism for resource partitioning. Observing what organisms are actively consuming of a labeled substrate can provide for identifying contaminant degraders, organisms metabolizing biofuel feed stocks and soil/marine organic matter, and optimizing or monitoring biostimulation of microbes for bioremediation as further examples.


EXAMPLE 1
Applying a Chip-SIP Method to a Marine Microbial Community

To test the chip-SIP approach, we grew a single bacterial strain (Pseudomonas stutzeri) in a minimal medium with 13C-glucose as the sole carbon source and extracted its RNA. After fluorescent labeling, the RNA was hybridized to a microarray probe set consisting of >100 sequences targeting different regions of the P. stutzeri 16S rRNA gene. Measured isotopic enrichment of these probe spots strongly depended on the efficiency of target RNA hybridization, as quantified by fluorescence (FIGS. 1A, 1B). This correlation is the result of dilution of the target RNA isotopic signal by the background of unenriched oligonucleotide probes. Thus, if less target RNA hybridizes to the array surface, higher dilution results in a lower measured isotopic enrichment. Relative isotopic enrichment of RNA from an organism can be quantified based on the slope of the enrichment:fluorescence relationship for a single probe set. We refer to this value as the hybridization-corrected enrichment (HCE; FIG. 9).


Before applying chip-SIP to natural communities, we sought to test its sensitivity and ability to discriminate a mixture of differentially labeled bacterial taxa. Two bacterial strains, Vibrio cholerae and Bacillus cereus, were grown separately to different 15N and 13C isotopic enrichments, then their combined RNA was hybridized to an array consisting of probe sets targeting each organism. Both 13C (FIG. 2B) and 15N (FIG. 2C) enrichment can easily be distinguished for each taxon based on their respective HCEs, which were significantly different (ANCOVA; p<0.0001). By integrating the results from each organism's probe set (10-20 probes/taxon), the HCE values allow the direct comparison of isotopic incorporation between two or more taxa on a single array. Notably, we successfully detected isotopic enrichments as low as 0.5% 13C RNA (half of background 13C) and 0.1% 15N RNA (one third of background 15N), enrichment levels that traditional SIP techniques currently cannot resolve (8, 10).


EXAMPLE 2
Materials and Methods

These present example describes the materials and methods used in the Examples.


Growth of Single Strains and Incubation of Field Samples.


Strains of Pseudomonas stutzeri ATTC 11607, Vibro cholerae ATCC 14104, and Bacillus cereus D17 were grown from −80° C. frozen stock in Luria-Bertani (LB) broth at 37° C. until late log phase, and transferred into 12C glucose-amended M9 minimal medium until late log phase. Then, a 10 μl aliquot was inoculated into 10 ml of M9 enriched in 13C glucose and/or 15N ammonium and the culture was again grown until late log phase. An enrichment of 10% 13C indicates 10% of the glucose in the medium was 99% enriched in 13C, and 90% of the glucose had natural carbon (1.1% 13C and 98.9% 12C). Cells were centrifuged, washed, and frozen at −80° C. Bulk measurements (by Isotope Ratio Mass Spectrometry) showed that Pseudomonas cells grown in full 13C glucose were enriched between 680,000 and 900,000 permil, equivalent to 90 atm %.


For field experiments, surface water was collected at the public pier in Berkeley, Calif. USA (37°51′46.67″N, 122°19′3.23″W) and immediately brought back to the laboratory i cooler. Glass bottles (500 ml) were filled without air space and dark incubated at 14° C. For the first set of experiments, samples were simultaneously incubated with 50 μM 99 atm % 13C glucose and 200 μM 99 atm % 15N ammonium, and subsamples harvested after 2, 6, and 24 hrs by filtration through a 0.22 polycarbonate filter which was then immediately frozen at −80° C. Background concentrations of ammonium in San Francisco bay range from 1-14 μM (1); typically estuarine glucose concentrations are 5-100 nM (2). For the second set of experiments, water samples were incubated as described above with 8 μM mixed amino acids (99 atm % 13C and 99 atm % 15N labeled; Omicron), 500 μg L−1 algal fatty acids (98 atm % 13C; Omicron), or 50 μg L−1 nucleic acids (90 atm % 13C; RNeasy extract from 13C Pseudomonas stutzeri), collected by filtration after 12 hrs and frozen at −80° C. These substrate additions were designed to result in concentrations at the high end of what is typically measured in estuarine environments: 2-7 μM amino acids (3), 25 μg L−1 fatty acids (4) and 10 μg L−1 DNA (5).


RNA Extraction and Labeling.


RNA from pelleted cells (laboratory strains) and filters (field samples) was extracted with the Qiagen RNEasy kit according to manufacturer's instructions, with slight modifications for the field samples. Filters were incubated in 200 μL TE buffer with 5 mg mL−1 lysozyme and vortexed for 10 min at RT. RLT buffer (800 μL, Qiagen) was added, vortexed, centrifuged, and the supernatant was transferred to a new tube. Ethanol (560 μl) was added, mixed gently, and the sample was applied to the provided minicolumn. The remaining manufacturer's protocol was subsequently followed. At this point, RNA samples were split: one fraction saved for fluorescent labeling (see below), the other was kept unlabeled for NanoSIMS analysis. This procedure was used because the fluorescent labeling protocol introduces background carbon (mostly 12C) that dilutes the 13C signal (data not shown). Alexafluor 546 labeling was done with the Ulysis kit (Invitrogen) for 10 min at 90° C. (2 μL RNA, 10 μL labeling buffer, 2 μL Alexafluor reagent), followed by fragmentation. All RNA (fluorescently labeled or not) was fragmented using 5× fragmentation buffer (Affymetrix) for 10 min at 90° C. before hybridization. Labeled RNA was purified using a Spin-OUT™ minicolumn (Millipore), and RNA was concentrated by ethanol precipitation to a final concentration of 500 ng μL−1.


Target Taxa Selection by PhyloC Hip Analysis and De Novo Probe Design.


RNA extracts from SF Bay SIP experiment samples were treated with DNAse I and reverse-transcribed to produce cDNA using the Genechip Expression 3′ amplification one-cycle cDNA synthesis kit (Affymetrix). The cDNA was PCR amplified with bacterial and archaeal primers, fragmented, fluorescently labeled, and hybridized to the G2 PhyloChip which is described by E. L. Brodie et al., in “Application of a high-density oligonucleotide microarray approach to study bacterial population dynamics during uranium reduction and reoxidation.” Appl. Environ. Microbiol. 72, 6288 (2006) hereby incorporated by reference, and commercially available from Affymetrix (Santa Clara, Calif.) through Second Genome (San Francisco, Calif.).


Taxa (16S operating taxonomic units, OTU) considered to be present in the samples were identified based on 90% of the probes for that taxon being responsive, defined as the signal of the perfect match probe>1.3 times the signal from the mismatch probe. From approximately 1500 positively identified taxa, we chose a subset of 100 taxa commonly found in marine environments to target with chip-SIP. We also did not target OTUs previously identified from soil, sewage, and bioreactors as our goal was to characterize the activity of marine microorganisms. Using the Greengenes database (7) implemented in ARB (8), we designed 25 probes (25 bp long), to create a ‘probe set’ for each taxon (Table 1; SEQ ID NOS: 1-2805), as well as general probes for the three domains of life. Probes for single laboratory strains (Pseudomonas stutzeri, Bacillus cereus, and Vibrio cholerae) were also designed with ARB (Table 1).


Microarray Synthesis and Hybridization.


A custom conductive surface for the microarrays was used to eliminate charging during SIMS analysis. Glass slides coated with indium-tin oxide (ITO; Sigma) were treated with an alkyl phosphonate hydroxy-linker (patent pending) to provide a starting substrate for DNA synthesis. Custom-designed microarrays (spot size=17 μm) were synthesized using a photolabile deprotection strategy (9) on the LLNL Maskless Array Synthesizer (Roche Nimblegen, Madison, Wis.). Reagents for synthesis (Roche Nimblegen) were delivered through the Expedite (PerSeptive Biosystems) system. For quality control (to determine that DNA synthesis was successful), slides were hybridized with complimentary Arabidopsis calmodulin protein kinase 6 (CPK6) labeled with Cy3 (Integrated DNA Technologies), which hybridized to fiducial marks, probe spots with the complementary sequence synthesized throughout the array area. Probes targeting microbial taxa were arranged in a densely packed formation to decrease the total area analyzed by imaging secondary ion mass spectrometry (NanoSIMS). For array hybridization, RNA samples in 1× Hybridization buffer (NimbleGen) were placed in Nimblegen X4 mixer slides and incubated inside a Maui hybridization system (BioMicro® Systems) for 18 hrs at 42° C. and subsequently washed according to manufacturer's instructions (NimbleGen). Arrays with fluorescently labeled RNA were imaged with a Genepix 4000B fluorescence scanner at pmt=650 units. Arrays with non-fluorescently labeled RNA were marked with a diamond pen and also imaged with the fluorescence scanner to subsequently navigate to the analysis spots in the NanoSIMS. These spots were observable in the fluorescence image because fiducial probe spots were synthesized around the outline of the area to be analyzed by NanoSIMS. Prior to NanoSIMS analysis, samples were not metal coated to avoid further dilution of the RNA's isotope ratio or loss of material. Slides were trimmed and mounted in custom-built stainless steel holders.


NanoSIMS Analyses.


Secondary ion mass spectrometry analysis of microarrays hybridized with 13C and/or 15N rRNA was performed at LLNL with a Cameca NanoSIMS 50 (Cameca, Gennevilliers, France). A Cs+ primary ion beam was used to enhance the generation of negative secondary ions. Carbon and nitrogen isotopic ratios were determined by electrostatic peak switching on electron multipliers in pulse counting mode, alternately measuring 12C14N and 12C15N simultaneously for the 15N/14N ratio, and then simultaneously measuring 12C14N and 13C14N for the 13C/12C ratio. We used this peak switching strategy because the secondary ion count rate for the CN species in these samples is 5-10 times higher than any of the other carbon species (e.g., C, CH, C2), and therefore higher precision was achieved even though total analytical time was split between the two CN species at mass 27. If only one isotopic ratio was needed, peak switching was not performed. Mass resolution was set to ˜10,000 mass resolving power to minimize the contribution of isobaric interferences to the species of interest (e.g., 11B16O contribution to 13C14N< 1/100; 13C2 contribution to 12C14N< 1/1000). Analyses were performed in imaging mode to generate digital ion images of the sample for each ion species. Analytical conditions were optimized for speed of analysis, ability to spatially resolve adjacent hybridization locations, and analytical stability. The primary beam current was 5 to 7 pA Cs+, which yielded a spatial resolution of 200-400 nm and a maximum count rate on the detectors of ˜300,000 cps 12C14N. Analysis area was 50×50 μm2 with a pixel density of 256×256 with 0.5 or 1 ms/pixel dwell time. For peak switching, one scan of the analysis area was made per species set, resulting in two scans per analytical cycle. With these conditions, reproducible secondary ion ratios could be measured for a maximum of 4 cycles through the two sets of measurements before the sample was largely consumed. Data were collected for 2 to 4 cycles. Based on total counts for the analyzed cycles, we achieved precision of 2-3% for 13C14N and 1-4% for 15N12C, depending on the enrichment and hybridization intensity. A single microarray analysis of approximately 2500 probes, with an area of 0.75 mm2 and the acquisition of 300 images, was carried out using the Cameca software automated chain analysis in 16 hours. Ion images were stitched together and processed to generate isotopic ratios with custom software (LIMAGE, L. Nittler, Carnegie Institution of Washington). Ion counts were corrected for detector dead time on a pixel by pixel basis. Hybridization locations were selected by hand or with the auto-ROI function, and ratios were calculated for the selected regions over all cycles to produce the location isotopic ratios. Isotopic ratios were converted to delta values using δ=[(Rmeas/Rstandard)−1]×1000, where Rmeas is the measured ratio and Rstandard is the standard ratio (0.00367 for 15N/14N and 0.011237 for 13C/12C). Data were corrected for natural abundance ratios measured in unhybridized locations of the sample.


Data Analyses.


For each taxon, isotopic enrichment of individual probe spots was plotted against fluorescence and the linear regression slope was calculated with the y-intercept constrained to natural isotope abundances (zero permil for 15N data and −20 permil for 13C data). This calculated slope (permil/fluorescence), which we refer to as the ‘hybridization-corrected enrichment (HCE), is a metric that can be used to compare the relative incorporation of a given substrate by different taxa. It should be noted that due to the different natural concentrations of 13C and 15N, and more importantly, different background contributions from the microarray, HCEs for 15N substrates and 13C substrates are not comparable. To construct a network diagram (e.g. FIG. 8A), taxa with HCEs having standard errors not overlapping with zero and with >30 permil enrichment were included (all others were discarded) using Cytoscape software (10). For analyses of marine bacterial genomic information, genomes of marine bacterial isolates were selected in the Joint Genome Institute's Integrated Microbial Genomes (IM-G) database and word-searched for the presence of amino acid, fatty acid, and nucleoside transporters and extracellular nucleases. Results are summarized in Table S2. For phylogenetic relationships (FIG. 8B), the global 16S rRNA phylogeny in the Greengenes database (7) was opened in ARB (8) and all taxa except the targets of the array analysis were removed with the taxon pruning function.


EXAMPLE 3
Viability of Chip-SIP on a San Francisco Bay Sample

In a second set of experiments, we tested the viability of chip-SIP for a diverse natural community, using a sample from the San Francisco (SF) Bay, a eutrophic estuary. The bay water was incubated in the dark with micromolar concentrations of 15N ammonium and 13C glucose for 24 hrs, a timescale long enough to ensure detectable isotopic labeling of the dominant active community. We expected the most active taxa to incorporate these substrates, as they are of small molecular weight, do not require extracellular breakdown before uptake, and directly feed into central carbon and nitrogen metabolic pathways. This chip-SIP array consisted of 2500 probes targeting 100 microbial taxa selected from a PhyloChip analysis of the same sample (Table 1; 16). Based on RNA fluorescence, we positively detected 73 taxa. As in the experiments with laboratory cultures, the relationship between fluorescence and isotopic incorporation for each taxon was positive and linear for both 15N and 13C (e.g. FIGS. 7A, 7B for three Rhodobacteraceae probes sets), demonstrating that different members of the same bacterial families could incorporate different levels of 15N from ammonium and 13C from glucose. Though these substrate concentrations may have favored copiotrophs (17), we detected the model oligotroph Pelagibacter (FIGS. 10, 18). This result demonstrates that even oligotrophic organisms retained a presence and detectable biogeochemical activity in this highly eutrophic environment.


An advantage of chip-SIP's ability to detect 13C and 15N on the same array is its potential to uncover physiological diversity, based on the relative incorporation of two substrates incubated simultaneously. Our ability to measure taxon-specific substrate incorporation allowed us to reveal that the relationship between ammonium and glucose incorporation was linear: organisms with high ammonium incorporation (high 15N HCEs) also exhibited high glucose incorporation (high 13C HCEs), and vice versa (FIGS. 7C, 10). A previous experiment illustrated an analogous pattern using lower resolution bulk measurements comparing marine water samples amended with different levels of glucose and ammonium(19). The authors found that community wide C/N assimilation was constant, irrespective of the absolute amount of substrates added. Our data revealed that this pattern also occurs within the same water sample, in which different microbial populations represent physiologically distinct components of the community. We also showed that relatively broad phylogenetic clades (family level, in this case) did not correspond to substrate incorporation patterns: members of the same bacterial family were scattered throughout the HCE distribution. For example, members of the Flavobacteriaceae did not incorporate less (or more) substrate than the Rhodobacteraceae, because within each family, there were taxa with both high and low incorporation (FIG. 7C).


EXAMPLE 4
Viability of Chip-SIP on a San Francisco Bay Sample

Marine microorganisms, most of which remain uncultivated, control the release, transformation, and remineralization of ˜50 Gigatons of fixed carbon annually, resulting in biological carbon sequestration to the deep sea (P. Falkowski et al., The global carbon cycle: a test of our knowledge of earth as a system. Science 290, 291 (2000)). Identifying the microbes responsible for C cycling processes in the marine microbial loop and the factors affecting C cycling rates in marine ecosystems is a critical precursor to the development of predictive models of microbial responses to environmental perturbations (e.g., pollution, nutrient inputs or global change). Currently, the ecological niches of marine microorganisms, heterotrophic bacteria in particular, are often categorized as “copiotrophic” or “oligotrophic” depending on their predominant location, for example high-nutrient and particle-rich coasts versus low-nutrient open oceans, or warm, well-lit, productive surface waters versus the cold, dark deep (S. J. Giovannoni, U. Stingl, Molecular diversity and ecology of microbial plankton. Nature 437, 343 (2005)). The advent of 16S rRNA sequencing and environmental genomics have revolutionized marine microbial ecology by assembling a “parts list” of genetic diversity (M. S. Rappé, P. F. Kemp, S. J. Giovannoni, Phylogenetic diversity of marine coastal picoplankton 16S rRNA genes cloned from the continental shalf off Cape Hatteras, N.C. Limnol. Oceanogr. 42, 811 (1997)) and functional capability (E. F. DeLong et al., Community genomics among stratified microbial assemblages in the ocean's Interior. Science 311, 496 (2006)), but the goal of linking phylogenetic identity and in situ functional roles of uncultivated microorganisms remains largely unattained. In addition, while the comparative ‘omics strategy to gain ecosystem functional information has been fruitful, it relies on sequence comparison rather than direct measurements of biogeochemical activity. To gain a mechanistic understanding of microbial control of biogeochemical cycles in the ocean and elsewhere, it is necessary to move beyond microbial diversity or metagenomic surveys towards trait-based functional studies that directly and simultaneously measure the biogeochemical activities of hundreds of microbial taxa in their native environment.


In a third set of experiments, we compared predicted and actual substrate use of three organic substrates by a diverse natural community, an example of the type of experiment that can eventually lead to more realistic models of marine food web structure (20). In this case, we applied chip-SIP to another set of SF Bay samples incubated separately with isotopically-labeled amino acids, nucleic acids, and fatty acids. These substrates make up a significant proportion of photoautotrophic biomass (21) that provide the majority of fixed carbon substrates for the marine microbial food web.


We detected isotopic enrichment of at least one of the three added substrates in 52 out of the 81 taxa with positive RNA hybridization (FIGS. 10-13). A network diagram, based on the measured HCE values, illustrates the movement of organic matter between substrates and microbial taxa, and clearly indicates generalists that incorporated all three substrates versus specialist consumers of only one substrate (FIG. 8A). Our analysis reveals that generalists and specialists were not necessarily distinguishable based on 16S phylogeny. In other words, members of a bacterial family could be generalists while others specialists. Such an analysis, which includes quantitative information (visualized by the thickness of the lines connecting substrates to taxa), is a substantial step forward in our understanding of organic matter flow in the microbial loop.


To compare genome-predicted potential biogeochemical activity to our measured substrate incorporation data, we examined the presence of genes involved in the extracellular degradation or transport of these substrates in the sequenced genomes of marine bacterial isolates (Table 2). Table 2 is shown below:









TABLE S2







presence of identified amino acid transporters, extracellular nucleases, and nucleoside


and fatty acid transport in 110 genomes of marine bacterial isolates. Word searches performed


with Joint Genome Institute's Integrated Microbial Genomes (IMG) online at IMG JGI website.












Amino acid
Extracellular
Nucleoside
Fatty acid


Genome
transport
nuclease
transport
transport






Agreia sp. PHSC20C1

Y
N
N
N



Algoriphagus sp. PR1

Y
N
Y
Y



Aurantimonas sp. SI85-9A1

Y
N
N
N



Bacillus sp. B14905

Y
N
Y
N



Bacillus sp. NRRL B-14911

Y
N
Y
N



Bacillus sp. SG-1

Y
Y
Y
N



Beggiatoa sp. PS

Y
N
N
Y



Bermanella marisrubri

Y
N
N
Y



Blastopirellula marina DSM 3645

Y
Y
N
N



Caminibacter mediatlanticus TB-2

Y
N
N
N



Candidatus Blochmannia

Y
N
N
N



pennsylvanicus BPEN




Candidatus Pelagibacter ubique

Y
N
N
N


HTCC1002



Carnobacterium sp. AT7

Y
N
Y
Y



Congregibacter litoralis KT71

Y
N
Y
N



Croceibacter atlanticus HTCC2559

Y
Y
Y
N



Cyanothece sp. CCY 0110

Y
N
Y
N



Dokdonia donghaensis MED134

Y
Y
Y
N



Erythrobacter litoralis HTCC2594

Y
N
Y
Y



Erythrobacter sp. NAP1

Y
N
N
N



Erythrobacter sp. SD-21

Y
N
Y
N



Finegoldia magna ATCC 29328

Y
N
N
N



Flavobacteria bacterium BAL38

Y
N
N
Y



Flavobacteria bacterium BBFL7

N
Y
N
N



Flavobacteriales bacterium ALC-1

Y
N
Y
N



Flavobacteriales bacterium HTCC2170

Y
N
Y
N



Fulvimarina pelagi HTCC2506

Y
N
N
Y



Hoeflea phototrophica DFL-43

Y
N
N
Y



Hydrogenivirga sp. 128-5-R1-1

Y
N
N
N



Idiomarina baltica OS145

Y
Y
N
Y



Janibacter sp. HTCC2649

Y
Y
N
N



Kordia algicida OT-1

Y
Y
N
Y



Labrenzia aggregata IAM 12614

Y
N
N
N



Leeuwenhoekiella blandensis MED217

Y
N
Y
N



Lentisphaera araneosa HTCC2155

Y
N
N
Y



Limnobacter sp. MED105

Y
N
N
Y



Loktanella vestfoldensis SKA53

Y
N
N
N



Lyngbya sp. PCC 8106

Y
Y
Y
N


marine gamma proteobacterium
Y
Y
Y
Y


HTCC2080


marine gamma proteobacterium
Y
N
N
N


HTCC2143


marine gamma proteobacterium
Y
N
N
N


HTCC2148


marine gamma proteobacterium
Y
N
N
N


HTCC2207



Marinobacter algicola DG893

Y
Y
N
Y



Marinobacter sp. ELB17

Y
N
N
Y



Marinomonas sp. MED121

Y
Y
N
N



Mariprofundus ferrooxydans PV-1

Y
N
N
Y



Methylophilales bacterium HTCC2181

N
N
N
N



Microscilla marina ATCC 23134

Y
Y
Y
N



Moritella sp. PE36

Y
Y
Y
Y



Neptuniibacter caesariensis

Y
N
N
N



Nisaea sp. BAL199

Y
N
N
Y



Nitrobacter sp. Nb-311A

Y
N
N
N



Nitrococcus mobilis Nb-231

Y
N
N
N



Nodularia spumigena CCY9414

Y
N
N
N



Oceanibulbus indolifex HEL-45

Y
N
Y
Y



Oceanicaulis alexandrii HTCC2633

Y
N
N
N



Oceanicola batsensis HTCC2597

Y
Y
N
N



Oceanicola granulosus HTCC2516

Y
Y
Y
N



Parvularcula bermudensis HTCC2503

Y
Y
Y
N



Pedobacter sp. BAL39

Y
N
N
Y



Pelotomaculum thermopropionicum SI

Y
N
N
N



Phaeobacter gallaeciensis 2.10

Y
N
N
N



Phaeobacter gallaeciensis BS107

Y
N
N
N



Photobacterium angustum S14

Y
Y
Y
Y



Photobacterium profundum 3TCK

Y
Y
Y
Y



Photobacterium sp. SKA34

Y
Y
Y
Y



Planctomyces maris DSM 8797

Y
Y
N
N



Plesiocystis pacifica SIR-1

Y
N
Y
Y



Polaribacter irgensii 23-P

Y
Y
Y
N



Polaribacter sp. MED152

Y
Y
Y
N



Prochlorococcus marinus AS9601

N
N
N
N



Prochlorococcus marinus MIT 9211

Y
N
N
N



Prochlorococcus marinus MIT 9301

N
N
N
N



Prochlorococcus marinus MIT 9303

Y
N
N
N



Prochlorococcus marinus MIT 9515

Y
N
N
N



Prochlorococcus marinus NATL1A

Y
N
N
N



Pseudoalteromonas sp. TW-7

Y
N
Y
Y



Pseudoalteromonas tunicata D2

Y
N
Y
Y



Psychroflexus torquis ATCC 700755

Y
Y
N
N



Psychromonas sp. CNPT3

Y
N
N
Y



Reinekea sp. MED297

Y
Y
N
N



Rhodobacterales bacterium HTCC2150

Y
Y
Y
N



Rhodobacterales bacterium HTCC2654

Y
N
N
N



Rhodobacterales sp. HTCC2255

Y
N
Y
N



Roseobacter litoralis Och 149

Y
N
N
N



Roseobacter sp. AzwK-3b

Y
N
N
N



Roseobacter sp. CCS2

Y
Y
N
N



Roseobacter sp. MED193

Y
N
N
N



Roseobacter sp. SK209-2-6

Y
N
Y
N



Roseovarius nubinhibens ISM

Y
N
N
N



Roseovarius sp. 217

Y
Y
Y
Y



Roseovarius sp. HTCC2601

Y
N
Y
N



Roseovarius sp. TM1035

Y
N
N
N



Sagittula stellata E-37

Y
Y
N
N



Shewanella benthica KT99

Y
Y
N
Y



Sphingomonas sp. SKA58

Y
N
Y
Y



Sulfitobacter sp. EE-36

Y
N
N
N



Sulfitobacter sp. NAS-14.1

Y
N
N
N



Synechococcus sp. BL107

Y
N
N
N



Synechococcus sp. RS9916

Y
N
N
N



Synechococcus sp. RS9917

Y
N
N
N



Synechococcus sp. WH 5701

Y
N
N
N



Synechococcus sp. WH 7805

Y
N
N
N



Ulvibacter sp. SCB49

Y
Y
N
Y



Vibrio alginolyticus 12G01

Y
Y
Y
Y



Vibrio campbellii AND4

Y
N
Y
Y



Vibrio harveyi HY01

Y
N
Y
Y



Vibrio shilonii AK1

Y
Y
Y
Y



Vibrio sp. MED222

Y
Y
Y
Y



Vibrio splendidus 12B01

Y
Y
Y
Y



Vibrionales bacterium SWAT-3

Y
Y
Y
Y









Incorporation of leucine and other amino acids is routinely used as a proxy for bacterial production in aquatic systems (22) and metatranscriptomic evidence suggests most marine bacterial taxa incorporate amino acids directly (23). As nearly all genomes of marine bacteria (106/110) possess annotated putative amino acid transporters, we expected most of the active microbes in the SF Bay system would incorporate amino acids. Bacterial uptake of single nucleosides (e.g. thymidine) is ubiquitous and used to measure rates of growth (24), but only a few studies have examined longer nucleic acid molecules as a source of carbon or nitrogen for microbial metabolism (see ref. 25 as a recent example). Considering that half (55/110) of fully sequenced marine bacterial genomes contain at least one identified nucleoside transporter or extracellular nuclease, we expected nucleic acid incorporation could be a common phenomenon in the environment. Finally, we also chose to examine fatty acid incorporation because marine bacterial isolates commonly reveal high lipase activity (26), although only 38/110 sequenced bacterial genomes contained identified lipid transporters. In addition, comparative genomics has shown that oligotrophic marine bacterial genomes contain significantly more genes for lipid metabolism and fatty acid degradation than copiotrophic genomes (27). If oligotrophs favor fatty acid incorporation, we hypothesized that it would be less common than amino acid incorporation in our samples since a eutrophic estuary should favor copiotrophs.


In general terms, our results agree with predictions made from available marine genomic data: amino acids were the most commonly incorporated (46 taxa), followed by nucleic acids (32 taxa) and then fatty acids (18 taxa). However, the chip-SIP and genomic data did not always concur. For example, all the Vibrio genomes we examined contain putative enzymes for the utilization of the three substrates tested (Table 2), yet chip-SIP indicates the Vibrio taxa we detected incorporated only amino acids (FIG. 8A). In this case, genomic potential did not indicate activity. With a relatively high level of taxonomic detail, chip-SIP showed that over 10% of the active taxa in this sample (6 out of 52) did not incorporate amino acid-derived 15N into their RNA, even though amino acids are considered a ubiquitous substrate for marine bacteria (22, 23). Indeed, if rates of marine bacterial carbon production based on leucine incorporation are underestimates, this could have significant implications for global carbon modeling efforts. Our analyses also revealed that bacteria commonly incorporate carbon (and presumably nitrogen) from external nucleic acid sources. This complements previous work that identified nucleic acids as a source of phosphorus for marine bacteria, (28). Nucleic acids have C/N ratios lower than phytoplankton-derived organic matter and most amino acids (average C/N of RNA=2.5, POM=6.6, amino acids=3.6). This makes them an ideal resource for bacteria that have relatively high nitrogen requirements. Fatty acids, which contain no nitrogen, were less commonly incorporated than either amino acids or nucleic acids, although we did identify one taxon (uncultivated Alphaproteobacterial clade NAC1-6) that incorporated this substrate but not the others. Such measurements of taxon-specific substrate incorporation within complex communities, along with data gleaned from genomic sequencing, could clearly be useful during the selection of strategies for isolation of previously uncultured microbial taxa.


A frequently accepted, although increasingly controversial view in microbial ecology (29), maintains that 16S phylogeny is closely related to functional role. It is widely assumed that taxa that are closely related by 16S phylogeny are more likely to be functionally similar than to taxa more phylogenetically distant. This concept has been a major assumption of microbial ecology research, without which 16S diversity surveys lose their functional context. Chip-SIP allowed us to test this assumption by matching functional in situ resource use to 16S phylogenetic relationships.


As an example, we mapped substrate utilization data across a subset of the Gammaproteobacterial phylogeny (FIG. 8B) and observed taxon specific responses. For the well characterized and previously cultivated copiotrophic organisms of the genera Vibrio and Alteromonas, patterns of resource use matched 16S phylogeny quite well: all taxa incorporated amino acids, and several Alteromonas taxa incorporated nucleic acids, while no taxon incorporated fatty acids (FIG. 8B). In this case, 16S based phylogeny correlates with resource use. However, in other phylogenetic groups there is a clear decoupling between phylogeny and biogeochemical function. The three taxa identified from the Oleispira group exhibited completely different substrate incorporation patterns (FIG. 8B): one incorporated amino acids and fatty acids, the second incorporated only nucleic acids, while the third incorporated both fatty acids and nucleic acids. Based on these data, it would be impossible to predict the resource use of a different Oleispira taxon. This decoupling between phylogenetic similarity and measured substrate incorporation illustrates the limitation of using 16S phylogenetic information to predict functional resource utilization.


Based on the success of these initial experiments, chip-SIP may facilitate great strides in our understanding of the functional mechanisms that underlie patterns of microbial diversity. Using this high resolution, high-sensitivity approach, we have revealed patterns of resource utilization in an estuarine community with critical implications for our understanding of carbon cycling in marine environments. These data considerably expand upon previous studies that have identified marine bacterial resource partitioning based on seasonal and small-scale spatial habitat use (30) by adding relative rates of substrate utilization as a critical component of the bacterial niche.


REFERENCES



  • 1. P. Falkowski et al., The global carbon cycle: a test of our knowledge of earth as a system. Science 290, 291 (2000).

  • 2. S. J. Giovannoni, U. Stingl, Molecular diversity and ecology of microbial plankton. Nature 437, 343 (2005).

  • 3. M. S. Rappé, P. F. Kemp, S. J. Giovannoni, Phylogenetic diversity of marine coastal picoplankton 16S rRNA genes cloned from the continental shalf off Cape Hatteras, N.C. Limnol. Oceanogr. 42, 811 (1997).

  • 4. E. F. DeLong et al., Community genomics among stratified microbial assemblages in the ocean's Interior. Science 311, 496 (2006).

  • 5. S. Radajewski, P. Ineson, N. R. Parekh, J. C. Murrell, Stable-isotope probing as a tool in microbial ecology. Nature 403, 646 (2000).

  • 6. M. Manefield, A. S. Whiteley, R. I. Griffiths, M. J. Bailey, RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl. Environ. Microbiol. 68, 5367 (2002).

  • 7. J. Neufeld, M. Wagner, J. Murrell, Who eats what, where and when? Isotope-labelling experiments are coming of age. ISME J. 1, 103 (2007).

  • 8. J. C. Murrell, A. S. Whiteley, Stable isotope probing and related technologies. (ASM Press, Washington D.C., 2010).

  • 9. M. G. Dumont, J. C. Murrell, Stable isotope probing: linking microbial identity to function. Nat. Rev. Microbiol. 3, 499 (2005).

  • 10. O. Uhlik, K. Jecná, M. B. Leigh, M. Macková, T. Macek, DNA-based stable isotope probing: a link between community structure and function. Sci. Total Environ. 407, 3611 (2009).

  • 11. S. L. Addison, I. R. McDonald, G. Lloyd-Jones, Stable isotope probing: technical considerations when resolving 15N-labeled RNA in gradients. J. Microbiol. Methods 80, 70 (2010).

  • 12. H. T. S. Boschker et al., Direct linking of microbial populations to specific biogeochemical processes by 13C-labelling of biomarkers. Nature 392, 801 (1998).

  • 13. S. Behrens et al., Linking microbial phylogeny to metabolic activity at the single-cell level by using enhanced element labeling-catalyzed reporter deposition fluorescence in situ hybridization (EL-FISH) and NanoSIMS. Appl. Environ. Microbiol. 74, 3143 (2008).

  • 14. C. C. Ouverney, J. A. Fuhrman, Combined microautoradiography-16S rRNA probe technique for determination of radioisotope uptake by specific microbial cell types in situ. Appl. Environ. Microbiol. 65, 1746 (1999).

  • 15. J. Adamczyk et al., The isotope array, a new tool that employs substrate-mediated labeling of rRNA for determination of microbial community structure and function. Appl. Environ. Microbiol. 69, 6875 (2003).

  • 16. E. L. Brodie et al., Application of a high-density oligonucleotide microarray approach to study bacterial population dynamics during uranium reduction and reoxidation. Appl. Environ. Microbiol. 72, 6288 (2006).

  • 17. C. Suttle, J. A. Fuhrman, D. G. Capone, Rapid ammonium cycling and concentration-dependent partitioning of ammonium and phosphate: implications for carbon transfer in planktonic communities. Limnol. Oceanogr. 35, 424 (1990).

  • 18. M. S. Rappe, S. A. Connon, K. L. Vergin, S. J. Giovannoni, Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418, 630 (2002).

  • 19. J. C. Goldman, M. R. Dennett, Ammonium regeneration and carbon utilization by marine bacteria grown on mixed substrates. Mar. Biol. 109, 369 (1991).

  • 20. L. R. Pomeroy, P. J. l. Williams, F. Azam, J. E. Hobbie, The microbial loop. Oceanogr. 20, (2007).

  • 21. M. J. Fernandez-Reiriz et al., Biomass production and variation in the biochemical profile (total protein, carbohydrates, RNA, lipids and fatty acids) of seven species of marine microalgae. Aquacult. 83, 17 (1989).

  • 22. D. Kirchman, E. K'nees, R. Hodson, Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Appl. Environ. Microbiol. 49, 599 (1985).

  • 23. R. S. Poretsky, S. Sun, X. Mou, M. A. Moran, Transporter genes expressed by coastal bacterioplankton in response to dissolved organic carbon. Envir. Microbiol. 12, 616 (2010).

  • 24. J. A. Fuhrman, F. Azam, Bacterioplankton secondary production estimates for coastal waters of British Columbia, Canada, Antarctica, and California, USA. Appl. Environ. Microbiol. 39, 1085 (1980).

  • 25. J. T. Lennon, Diversity and metabolism of marine bacteria cultivated on dissolved DNA. Appl. Environ. Microbiol. 73, 2799 (2007).

  • 26. J. Martinez, D. C. Smith, G. F. Steward, F. Azam, Variability in ectohydrolytic enzyme activities of pelagic marine bacteria and its significance for substrate processing in the sea. Aquat. Microb. Ecol. 10, 223 (1996).

  • 27. F. M. Lauro et al., The genomic basis of trophic strategy in marine bacteria. Proc. Natl. Acad. Sci. U.S.A 106, 15527 (2009).

  • 28. J. W. Ammerman, F. Azam, Bacterial 5-nucleotidase in aquatic ecosystems: a novel mechanism of phosphorus regeneration. Science 227, 1338 (1985).

  • 29. W. F. Doolittle, O. Zhaxybayeva, On the origin of prokaryotic species. Genome Res. 19, 744 (2009).

  • 30. D. E. Hunt et al., Resource partitioning and sympatric differentiation among closely related bacterioplankton. Science 320, 1081 (2008).



REFERENCES FOR EXAMPLE 2



  • 1. R. C. Dugdale, F. P. Wilkerson, V. E. Hogue, A. Marchi, The role of ammonium and nitrate in spring bloom development in San Francisco Bay. Estuar. Coast. Shelf Sci. 73, 17 (2007).

  • 2. R. B. Hanson, J. Snyder, Glucose exchanges in a salt marsh estuary: biological activity and chemical measurements. Limnol. Oceanogr. 25, 633 (1980).

  • 3. R. Evens, J. Braven, A seasonal comparison of the dissolved free amino acid levels in estuarine and English Channel waters. Sci. Total Environ. 76, 69 (1988).

  • 4. T. B. Stauffer, W. G. Macintyre, Dissolved fatty acids in the James River estuary, Virginia, and adjacent ocean waters. Chesap. Sci. 11, 216 (1970).

  • 5. M. F. DeFlaun, J. H. Paul, W. H. Jeffrey, Distribution and molecular weight of dissolved DNA in subtropical estuarine and oceanic environments. Mar. Ecol. Prog. Ser. 38, 65 (1987).

  • 6. E. L. Brodie et al., Application of a high-density oligonucleotide microarray approach to study bacterial population dynamics during uranium reduction and reoxidation. Appl. Environ. Microbiol. 72, 6288 (2006).

  • 7. T. Z. DeSantis et al., Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB. Appl. Environ. Microbiol. 72, 5069 (2006).

  • 8. W. Ludwig et al., ARB: a software environment for sequence data. Nucl. Acids Res. 32, 1363 (2004).

  • 9. S. Singh-Gasson et al., Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array. Nat. Biotech. 17, 974 (1999).

  • 10. M. S. Cline et al., Integration of biological networks and gene expression data using Cytoscape. Nat. Protocols 2, 2366 (2007).



The above examples are provided to illustrate the invention but not to limit its scope. Other variants of the invention will be readily apparent to one of ordinary skill in the art and are encompassed by the appended claims. All publications, databases, and patents cited herein are hereby incorporated by reference for all purposes.









TABLE 1







list of probes specific for laboratory bacterial strains


and San Francisco Bay natural community












SEQUENCE_ID
PROBE_SEQUENCE
SEQUENCE_ID
PROBE_SEQUENCE
SEQUENCE_ID 
PROBESEQUENCE





Pstutzeri_1
TAACCGTCCCCCCGAAGGTTAGACT
Vcholerae_1
AACTTAACCACCTTCCTCCCTACTG
Bcereus_1
TCCACCTCGCGGTCTTGCAGCTCTT





Pstutzeri_2
GGTAACCGTCCCCCCGAAGGTTAGA
Vcholerae_2
GTAGGTAACGTCAAATGATTAAGGT
Bcereus_2
GCCTTTCAATTTCGAACCATGCGGT





Pstutzeri_3
TGGTAACCGTCCCCCCGAAGGTTAG
Vcholerae_3
TGTAGGTAACGTCAAATGATTAAGG
Bcereus_3
CTCTTAATCCATTCGCTCGACTTGC





Pstutzeri_4
GTAACCGTCCCCCCGAAGGTTAGAC
Vcholerae_4
TAACTTAACCACCTTCCTCCCTACT
Bcereus_4
CCACCTCGCGGTCTTGCAGCTCTTT





Pstutzeri_5
ACTCCGTGGTAACCGTCCCCCCGAA
Vcholerae_5
ACTTAACCACCTTCCTCCCTACTGA
Bcereus_5
CTCTGCTCCCGAAGGAGAAGCCCTA





Pstutzeri_6
CACTCCGTGGTAACCGTCCCCCCGA
Vcholerae_6
TTAACTTAACCACCTTCCTCCCTAC
Bcereus_6
CCGCCTTTCAATTTCGAACCATGCG





Pstutzeri_7
TCACTCCGTGGTAACCGTCCCCCCG
Vcholerae_7
TAAGGTATTAACTTAACCACCTTCC
Bcereus_7
TCTGCTCCCGAAGGAGAAGCCCTAT





Pstutzeri_8
ACCGTCCCCCCGAAGGTTAGACTAG
Vcholerae_8
CTGTAGGTAACGTCAAATGATTAAG
Bcereus_8
ACCTGTCACTCTGCTCCCGAAGGAG





Pstutzeri_9
ATCACTCCGTGGTAACCGTCCCCCC
Vcholerae_9
CTTAACCACCTTCCTCCCTACTGAA
Bcereus_9
GCTCTTAATCCATTCGCTCGACTTG





Pstutzeri_10
CCGTGGTAACCGTCCCCCCGAAGGT
Vcholerae_10
ATTAACTTAACCACCTTCCTCCCTA
Bcereus_10
CGCCTTTCAATTTCGAACCATGCGG





Pstutzeri_11
CTCCGTGGTAACCGTCCCCCCGAAG
Vcholerae_11
AAGGTATTAACTTAACCACCTTCCT
Bcereus_11
ACTCTGCTCCCGAAGGAGAAGCCCT





Pstutzeri_12
CCGTCCCCCCGAAGGTTAGACTAGC
Vcholerae_12
TTAACCACCTTCCTCCCTACTGAAA
Bcereus_12
GCTCCCGAAGGAGAAGCCCTATCTC





Pstutzeri_13
CCACCACCCTCTGCCATACTCTAGC
Vcholerae_13
CTTCTGTAGGTAACGTCAAATGATT
Bcereus_13
TCACTCTGCTCCCGAAGGAGAAGCC





Pstutzeri_14
TCCACCACCCTCTGCCATACTCTAG
Vcholerae_14
TATTAACTTAACCACCTTCCTCCCT
Bcereus_14
TCTTAATCCATTCGCTCGACTTGCA





Pstutzeri_15
TTCCACCACCCTCTGCCATACTCTA
Vcholerae_15
ACGACGTACTTTGTGAGATTCGCTC
Bcereus_15
CTGCTCCCGAAGGAGAAGCCCTATC





Pstutzeri_16
AATTCCACCACCCTCTGCCATACTC
Vcholerae_16
TACGACGTACTTTGTGAGATTCGCT
Bcereus_16
TAATCCATTCGCTCGACTTGCATGT





Pstutzeri_17
AAATTCCACCACCCTCTGCCATACT
Vcholerae_17
ACTACGACGTACTTTGTGAGATTCG
Bcereus_17
CACTCTGCTCCCGAAGGAGAAGCCC





Pstutzeri_18
GAAATTCCACCACCCTCTGCCATAC
Vcholerae_18
CTACGACGTACTTTGTGAGATTCGC
Bcereus_18
GGTCTTGCAGCTCTTTGTACCGTCC





Pstutzeri_19
ATTCCACCACCCTCTGCCATACTCT
Vcholerae_19
GACTACGACGTACTTTGTGAGATTC
Bcereus_19
TGCTCCCGAAGGAGAAGCCCTATCT





Pstutzeri_20
GGAAATTCCACCACCCTCTGCCATA
Vcholerae_20
AGGTATTAACTTAACCACCTTCCTC
Bcereus_20
CTTAATCCATTCGCTCGACTTGCAT





Pstutzeri_21
CAGGAAATTCCACCACCCTCTGCCA
Vcholerae_21
GGTATTAACTTAACCACCTTCCTCC
Bcereus_21
TTAATCCATTCGCTCGACTTGCATG





Pstutzeri_22
AGGAAATTCCACCACCCTCTGCCAT
Vcholerae_22
GTATTAACTTAACCACCTTCCTCCC
Bcereus_22
CTCCCGAAGGAGAAGCCCTATCTCT





Pstutzeri_23
CAGTGTCAGTATTAGCCCAGGTGGT
Vcholerae_23
CGCGGTATCGCTGCCCTCTGTATAC
Bcereus_23
GTCACTCTGCTCCCGAAGGAGAAGC





Pstutzeri_24
TCAGTATTAGCCCAGGTGGTCGCCT
Vcholerae_24
TCGCGGTATCGCTGCCCTCTGTATA
Bcereus_24
CACCTCGCGGTCTTGCAGCTCTTTG





Pstutzeri_25
TCAGTGTCAGTATTAGCCCAGGTGG
Vcholerae_25
CTTGTCAGTTTCAAATGCGATTCCT
Bcereus_25
GTCTTGCAGCTCTTTGTACCGTCCA





Pstutzeri_26
TGTCAGTATTAGCCCAGGTGGTCGC
Vcholerae_26
TTGTCAGTTTCAAATGCGATTCCTA
Bcereus_26
TGTCACTCTGCTCCCGAAGGAGAAG





Pstutzeri_27
GTCAGTATTAGCCCAGGTGGTCGCC
Vcholerae_27
GCGGTATCGCTGCCCTCTGTATACG
Bcereus_27
TCCCGAAGGAGAAGCCCTATCTCTA





Pstutzeri_28
CCTCAGTGTCAGTATTAGCCCAGGT
Vcholerae_28
CCTGGGCATATCCGGTAGCGCAAGG
Bcereus_28
CGGTCTTGCAGCTCTTTGTACCGTC





Pstutzeri_29
CTCAGTGTCAGTATTAGCCCAGGTG
Vcholerae_29
TCCCACCTGGGCATATCCGGTAGCG
Bcereus_29
TCAAAATGTTATCCGGTATTAGCCC





Pstutzeri_30
ACCTCAGTGTCAGTATTAGCCCAGG
Vcholerae_30
GGCATATCCGGTAGCGCAAGGCCCG
Bcereus_30
CCTGTCACTCTGCTCCCGAAGGAGA





Pstutzeri_31
GTGTCAGTATTAGCCCAGGTGGTCG
Vcholerae_31
ACCTGGGCATATCCGGTAGCGCAAG
Bcereus_31
TTCAAAATGTTATCCGGTATTAGCC





Pstutzeri_32
AGTGTCAGTATTAGCCCAGGTGGTC
Vcholerae_32
CTGGGCATATCCGGTAGCGCAAGGC
Bcereus_32
CACCTGTCACTCTGCTCCCGAAGGA





Pstutzeri_33
CACCTCAGTGTCAGTATTAGCCCAG
Vcholerae_33
CCCACCTGGGCATATCCGGTAGCGC
Bcereus_33
TCTTGCAGCTCTTTGTACCGTCCAT





Pstutzeri_34
GCACCTCAGTGTCAGTATTAGCCCA
Vcholerae_34
TGGGCATATCCGGTAGCGCAAGGCC
Bcereus_34
CTGTCACTCTGCTCCCGAAGGAGAA





Pstutzeri_35
CGCACCTCAGTGTCAGTATTAGCCC
Vcholerae_35
GGGCATATCCGGTAGCGCAAGGCCC
Bcereus_35
GCGGTCTTGCAGCTCTTTGTACCGT





Pstutzeri_36
TTCGCACCTCAGTGTCAGTATTAGC
Vcholerae_36
GCATATCCGGTAGCGCAAGGCCCGA
Bcereus_36
CGCGGTCTTGCAGCTCTTTGTACCG





Pstutzeri_37
TCGCACCTCAGTGTCAGTATTAGCC
Vcholerae_37
CCACCTGGGCATATCCGGTAGCGCA
Bcereus_37
AGCTCTTAATCCATTCGCTCGACTT





Pstutzeri_38
AATGCGTTAGCTGCGCCACTAAGAT
Vcholerae_38
CATATCCGGTAGCGCAAGGCCCGAA
Bcereus_38
ACCTCGCGGTCTTGCAGCTCTTTGT





Pstutzeri_39
CACCACCCTCTGCCATACTCTAGCT
Vcholerae_39
CACCTGGGCATATCCGGTAGCGCAA
Bcereus_39
TCGCGGTCTTGCAGCTCTTTGTACC





Pstutzeri_40
ACACAGGAAATTCCACCACCCTCTG
Vcholerae_40
ATATCCGGTAGCGCAAGGCCCGAAG
Bcereus_40
CTCGCGGTCTTGCAGCTCTTTGTAC





Pstutzeri_41
CACAGGAAATTCCACCACCCTCTGC
Vcholerae_41
TATCCGGTAGCGCAAGGCCCGAAGG
Bcereus_41
TGCACCACCTGTCACTCTGCTCCCG





Pstutzeri_42
ACAGGAAATTCCACCACCCTCTGCC
Vcholerae_42
TCCCCTGCTTTGCTCTTGCGAGGTT
Bcereus_42
ATGCACCACCTGTCACTCTGCTCCC





Pstutzeri_43
GAAGTTAGCCGGTGCTTATTCTGTC
Vcholerae_43
GTCCCCTGCTTTGCTCTTGCGAGGT
Bcereus_43
ACCACCTGTCACTCTGCTCCCGAAG





Pstutzeri_44
GAAAGTTCTCTGCATGTCAAGGCCT
Vcholerae_44
CCGAAGGTCCCCTGCTTTGCTCTTG
Bcereus_44
GCACCACCTGTCACTCTGCTCCCGA





Pstutzeri_45
AAAGTTCTCTGCATGTCAAGGCCTG
Vcholerae_45
GGTCCCCTGCTTTGCTCTTGCGAGG
Bcereus_45
CACCACCTGTCACTCTGCTCCCGAA





Pstutzeri_46
TCTCTGCATGTCAAGGCCTGGTAAG
Vcholerae_46
GAAGGTCCCCTGCTTTGCTCTTGCG
Bcereus_46
CATAAGAGCAAGCTCTTAATCCATT





Pstutzeri_47
GTTCTCTGCATGTCAAGGCCTGGTA
Vcholerae_47
AGGTCCCCTGCTTTGCTCTTGCGAG
Bcereus_47
CCTCGCGGTCTTGCAGCTCTTTGTA





Pstutzeri_48
AGTTCTCTGCATGTCAAGGCCTGGT
Vcholerae_48
CGAAGGTCCCCTGCTTTGCTCTTGC
Bcereus_48
CCACCTGTCACTCTGCTCCCGAAGG





Pstutzeri_49
AAGTTCTCTGCATGTCAAGGCCTGG
Vcholerae_49
AAGGTCCCCTGCTTTGCTCTTGCGA
Bcereus_49
AAGAGCAAGCTCTTAATCCATTCGC





Pstutzeri_50
CTCTGCATGTCAAGGCCTGGTAAGG
Vcholerae_50
CCCCTGCTTTGCTCTTGCGAGGTTA
Bcereus_50
CGAAGGAGAAGCCCTATCTCTAGGG





Pstutzeri_51
TTCTCTGCATGTCAAGGCCTGGTAA
Vcholerae_51
TCTAGGGCACAACCTCCAAGTAGAC
Bcereus_51
AAGCTCTTAATCCATTCGCTCGACT





Pstutzeri_52
CTGCATGTCAAGGCCTGGTAAGGTT
Vcholerae_52
CTCTAGGGCACAACCTCCAAGTAGA
Bcereus_52
TAAGAGCAAGCTCTTAATCCATTCG





Pstutzeri_53
TCTGCATGTCAAGGCCTGGTAAGGT
Vcholerae_53
CCTCTAGGGCACAACCTCCAAGTAG
Bcereus_53
ATAAGAGCAAGCTCTTAATCCATTC





Pstutzeri_54
TACTCACCCGTCCGCCGCTGAATCA
Vcholerae_54
CGACGTACTTTGTGAGATTCGCTCC
Bcereus_54
CCCGAAGGAGAAGCCCTATCTCTAG





Pstutzeri_55
CAGCCATGCAGCACCTGTGTCAGAG
Vcholerae_55
TCAGTTTCAAATGCGATTCCTAGGT
Bcereus_55
CCGAAGGAGAAGCCCTATCTCTAGG





Pstutzeri_56
ACAGCCATGCAGCACCTGTGTCAGA
Vcholerae_56
AGTTTCAAATGCGATTCCTAGGTTG
Bcereus_56
CAAGCTCTTAATCCATTCGCTCGAC





Pstutzeri_57
GACAGCCATGCAGCACCTGTGTCAG
Vcholerae_57
TGTCAGTTTCAAATGCGATTCCTAG
Bcereus_57
AAGGAGAAGCCCTATCTCTAGGGTT





Pstutzeri_58
CTGGAAAGTTCTCTGCATGTCAAGG
Vcholerae_58
GTTTCAAATGCGATTCCTAGGTTGA
Bcereus_58
GAAGGAGAAGCCCTATCTCTAGGGT





Pstutzeri_59
TGGAAAGTTCTCTGCATGTCAAGGC
Vcholerae_59
CTAGCTTGTCAGTTTCAAATGCGAT
Bcereus_59
GCAAGCTCTTAATCCATTCGCTCGA





Pstutzeri_60
GGAAAGTTCTCTGCATGTCAAGGCC
Vcholerae_60
TCTAGCTTGTCAGTTTCAAATGCGA
Bcereus_60
AGCAAGCTCTTAATCCATTCGCTCG





eukaryotes_1
AACTAAGAACGGCCATGCACCACCA
sphingo_1_1
CCAGCTTGCTGCCCTCTGTACCATC
alpha_7_1
ACATCTCTGTTTCCGCGACCGGGAT





eukaryotes_2
CACCAACTAAGAACGGCCATGCACC
sphingo_1_2
CAGCTTGCTGCCCTCTGTACCATCC
alpha_7_2
CATCTCTGTTTCCGCGACCGGGATG





eukaryotes_3
CCAACTAAGAACGGCCATGCACCAC
sphingo_1_3
GCCAGCTTGCTGCCCTCTGTACCAT
alpha_7_3
AAACATCTCTGTTTCCGCGACCGGG





eukaryotes_4
ACCAACTAAGAACGGCCATGCACCA
sphingo_1_4
TGCCAGCTTGCTGCCCTCTGTACCA
alpha_7_4
GAAACATCTCTGTTTCCGCGACCGG





eukaryotes_5
CCACCAACTAAGAACGGCCATGCAC
sphingo_1_5
CAGTTTACGACCCAGAGGGCTGTCT
alpha_7_5
AGAAACATCTCTGTTTCCGCGACCG





eukaryotes_6
TCCACCAACTAAGAACGGCCATGCA
sphingo_1_6
AGCAGTTTACGACCCAGAGGGCTGT
alpha_7_6
AACATCTCTGTTTCCGCGACCGGGA





eukaryotes_7
CAACTAAGAACGGCCATGCACCACC
sphingo_1_7
AAGCAGTTTACGACCCAGAGGGCTG
alpha_7_7
ATCTCTGTTTCCGCGACCGGGATGT





eukaryotes_8
CTCCACCAACTAAGAACGGCCATGC
sphingo_1_8
GCAGTTTACGACCCAGAGGGCTGTC
alpha_7_8
CTGCCACTGTCCACCCGAGCAAGCT





eukaryotes_9
TTGGAGCTGGAATTACCGCGGCTGC
sphingo_1_9
CCGCCTACCTCTAGTGTATTCAAGC
alpha_7_9
CCACTGTCCACCCGAGCAAGCTCGG





eukaryotes_10
TCAGGCTCCCTCTCCGGAATCGAAC
sphingo_1_10
CATTCCGCCTACCTCTAGTGTATTC
alpha_7_10
GCCACTGTCCACCCGAGCAAGCTCG





eukaryotes_11
TCTCAGGCTCCCTCTCCGGAATCGA
sphingo_1_11
TGCTGTTGCCAGCTTGCTGCCCTCT
alpha_7_11
AAACCTCTAGGTAGATACCCACGCG





eukaryotes_12
TATTGGAGCTGGAATTACCGCGGCT
sphingo_1_12
GCTGTTGCCAGCTTGCTGCCCTCTG
alpha_7_12
CCAAACCTCTAGGTAGATACCCACG





eukaryotes_13
ATTGGAGCTGGAATTACCGCGGCTG
sphingo_1_13
TTGCTGTTGCCAGCTTGCTGCCCTC
alpha_7_13
GTCTGCCACTGTCCACCCGAGCAAG





eukaryotes_14
TAAGAACGGCCATGCACCACCACCC
sphingo_1_14
CACATTCCGCCTACCTCTAGTGTAT
alpha_7_14
CCACCCGAGCAAGCTCGGGTTTCTC





eukaryotes_15
CTAAGAACGGCCATGCACCACCACC
sphingo_1_15
GTCACATTCCGCCTACCTCTAGTGT
alpha_7_15
TGCCACTGTCCACCCGAGCAAGCTC





eukaryotes_16
ACTAAGAACGGCCATGCACCACCAC
sphingo_1_16
TCACATTCCGCCTACCTCTAGTGTA
alpha_7_16
CAAACCTCTAGGTAGATACCCACGC





eukaryotes_17
CTCAGGCTCCCTCTCCGGAATCGAA
sphingo_1_17
GCTTTCGCTTAGCCGCTAACTGTGT
alpha_7_17
TCTGCCACTGTCCACCCGAGCAAGC





eukaryotes_18
CTATTGGAGCTGGAATTACCGCGGC
sphingo_1_18
CGCTTTCGCTTAGCCGCTAACTGTG
alpha_7_18
CGTCTGCCACTGTCCACCCGAGCAA





eukaryotes_19
AAGAACGGCCATGCACCACCACCCA
sphingo_1_19
TCGCTTAGCCGCTAACTGTGTATCG
alpha_7_19
TCCGAACCTCTAGGTAGATTCCCAC





eukaryotes_20
AGGCTCCCTCTCCGGAATCGAACCC
sphingo_1_20
TTCGCTTAGCCGCTAACTGTGTATC
alpha_7_20
CACCCGAGCAAGCTCGGGTTTCTCG





eukaryotes_21
CAGGCTCCCTCTCCGGAATCGAACC
sphingo_1_21
CTTTCGCTTAGCCGCTAACTGTGTA
alpha_7_21
ACCCGAGCAAGCTCGGGTTTCTCGT





eukaryotes_22
GCTATTGGAGCTGGAATTACCGCGG
sphingo_1_22
CTGTTGCCAGCTTGCTGCCCTCTGT
alpha_7_22
CCGTCTGCCACTGTCCACCCGAGCA





eukaryotes_23
TTTCTCAGGCTCCCTCTCCGGAATC
sphingo1_23
GTTGCCAGCTTGCTGCCCTCTGTAC
alpha_7_23
CCGAACCTCTAGGTAGATTCCCACG





eukaryotes_24
GGCTCCCTCTCCGGAATCGAACCCT
sphingo_1_24
TGTTGCCAGCTTGCTGCCCTCTGTA
alpha_7_24
AACCTCTAGGTAGATACCCACGCGT





eukaryotes_25
CACTCCACCAACTAAGAACGGCCAT
sphingo_1_25
CGCTTAGCCGCTAACTGTGTATCGC
alpha_7_25
TCCACCCGAGCAAGCTCGGGTTTCT





archaea_1
TTGTGGTGCTCCCCCGCCAATTCCT
sphingo_2_1
TCACCGCTACACCCCTCGTTCCGCT
alpha_8_1
CTGCCACTGTCCACCCGAGCAAGCT





archaea_2
TGCTCCCCCGCCAATTCCTTTAAGT
sphingo_2_2
GCTATCGGCGTTCTGAGGAATATCT
alpha_8_2
GCCACTGTCCACCCGAGCAAGCTCG





archaea_3
CGCGCCTGCTGCGCCCCGTAGGGCC
sphingo_2_3
CGCTATCGGCGTTCTGAGGAATATC
alpha_8_3
AAACCTCTAGGTAGATACCCACGCG





archaea_4
TTTCGCGCCTGCTGCGCCCCGTAGG
sphingo_2_4
TCGGCGTTCTGAGGAATATCTATGC
alpha_8_4
GTCTGCCACTGTCCACCCGAGCAAG





archaea_5
TCGCGCCTGCTGCGCCCCGTAGGGC
sphingo_2_5
TTCACCGCTACACCCCTCGTTCCGC
alpha_8_5
CCACCCGAGCAAGCTCGGGTTTCTC





archaea_6
TTCGCGCCTGCTGCGCCCCGTAGGG
sphingo_2_6
TTTCACCGCTACACCCCTCGTTCCG
alpha_8_6
TGCCACTGTCCACCCGAGCAAGCTC





archaea_7
GTGCTCCCCCGCCAATTCCTTTAAG
sphingo_2_7
TCGCTTTCGCTTAGCCACTTACTGT
alpha_8_7
CAAACCTCTAGGTAGATACCCACGC





archaea_8
GCTCCCCCGCCAATTCCTTTAAGTT
sphingo_2_8
CGGCGTTCTGAGGAATATCTATGCA
alpha_8_8
TCTGCCACTGTCCACCCGAGCAAGC





archaea_9
GCGCCTGCTGCGCCCCGTAGGGCCT
sphingo_2_9
AACTAATGGGGCGCATGCCCATCCC
alpha_8_9
ACTGTCCACCCGAGCAAGCTCGGGT





archaea_10
CGCCTGCTGCGCCCCGTAGGGCCTG
sphingo_2_10
CGCTTAGCCACTTACTGTATATCGC
alpha_8_10
CCACTGTCCACCCGAGCAAGCTCGG





archaea_11
GCCTGCTGCGCCCCGTAGGGCCTGG
sphingo_2_11
ACTAATGGGGCGCATGCCCATCCCG
alpha_8_11
CCAAACCTCTAGGTAGATACCCACG





archaea_12
GTTTCGCGCCTGCTGCGCCCCGTAG
sphingo_2_12
GCCATGCAGCACCTCGTATAGAGTC
alpha_8_12
GTCCACCCGAGCAAGCTCGGGTTTC





archaea_13
CTTGTGGTGCTCCCCCGCCAATTCC
sphingo_2_13
AGCCATGCAGCACCTCGTATAGAGT
alpha_8_13
TCCACCCGAGCAAGCTCGGGTTTCT





archaea_14
GGTTTCGCGCCTGCTGCGCCCCGTA
sphingo_2_14
CAGCCATGCAGCACCTCGTATAGAG
alpha_8_14
CGTCTGCCACTGTCCACCCGAGCAA





archaea_15
AGGTTTCGCGCCTGCTGCGCCCCGT
sphingo_2_15
ACAGCCATGCAGCACCTCGTATAGA
alpha_8_15
TGTCCACCCGAGCAAGCTCGGGTTT





archaea_16
CCTGCTGCGCCCCGTAGGGCCTGGA
sphingo_2_16
CTTACTTGTCAGCCTACGCACCCTT
alpha_8_16
ACCTCTAGGTAGATACCCACGCGTT





archaea_17
CCTTGTGGTGCTCCCCCGCCAATTC
sphingo_2_17
ACTTACTTGTCAGCCTACGCACCCT
alpha_8_17
CACCCGAGCAAGCTCGGGTTTCTCG





archaea_18
CCCCTTGTGGTGCTCCCCCGCCAAT
sphingo_2_18
CCACTGACTTACTTGTCAGCCTACG
alpha_8_18
TAAGCCGTCTGCCACTGTCCACCCG





archaea_19
ACCCCTTGTGGTGCTCCCCCGCCAA
sphingo_2_19
CACTGACTTACTTGTCAGCCTACGC
alpha_8_19
ACCCGAGCAAGCTCGGGTTTCTCGT





archaea_20
CCCTTGTGGTGCTCCCCCGCCAATT
sphingo_2_20
GACTTACTTGTCAGCCTACGCACCC
alpha_8_20
CCGTCTGCCACTGTCCACCCGAGCA





archaea_21
CACCCCTTGTGGTGCTCCCCCGCCA 
sphingo_2_21
TGACTTACTTGTCAGCCTACGCACC
alpha_8_21
AACCTCTAGGTAGATACCCACGCGT





archaea_22
GTGTGTGCAAGGAGCAGGGACGTAT
sphingo_2_22
CTGACTTACTTGTCAGCCTACGCAC
alpha_8_22
GCCGTCTGCCACTGTCCACCCGAGC





archaea_23
TGTGTGCAAGGAGCAGGGACGTATT
sphingo_2_23
ACTGACTTACTTGTCAGCCTACGCA
alpha_8_23
TAGATACCCACGCGTTACTAAGCCG





archaea_24
CGGTGTGTGCAAGGAGCAGGGACGT
sphingo_2_24
CCATGCAGCACCTCGTATAGAGTCC
alpha_8_24
AAGCCGTCTGCCACTGTCCACCCGA





archaea_25
GGTGTGTGCAAGGAGCAGGGACGTA
sphingo_2_25
CGCTTTCGCTTAGCCACTTACTGTA
alpha_8_25
GTAGATACCCACGCGTTACTAAGCC





bacteria_1
CGCTCGTTGCGGGACTTAACCCAAC
sphingo_3_1
AGTTTCCTCGAGCTATGCCCCAGTT
alpha_9_1
TCTCCGGCGACCAAACTCCCCATGT





bacteria_2
GCTCGTTGCGGGACTTAACCCAACA
sphingo_3_2
CGAGTTTCCTCGAGCTATGCCCCAG
alpha_9_2
CGTCTCCGGCGACCAAACTCCCCAT





bacteria_3
GACTTAACCCAACATCTCACGACAC
sphingo_3_3
GTTTCCTCGAGCTATGCCCCAGTTA
alpha_9_3
GTCTCCGGCGACCAAACTCCCCATG





bacteria_4
AACCCAACATCTCACGACACGAGCT
sphingo_3_4
TTTCCTCGAGCTATGCCCCAGTTAA
alpha_9_4
CTCCGGCGACCAAACTCCCCATGTC





bacteria_5
ACTTAACCCAACATCTCACGACACG
sphingo_3_5
GAGTTTCCTCGAGCTATGCCCCAGT
alpha_9_5
GCCGTCTCCGGCGACCAAACTCCCC





bacteria_6
TAACCCAACATCTCACGACACGAGC
sphingo_3_6
TCGAGTTTCCTCGAGCTATGCCCCA
alpha_9_6
TCCGGCGACCAAACTCCCCATGTCA





bacteria_7
GGACTTAACCCAACATCTCACGACA
sphingo_3_7
TTACCGAAGTAAATGCTGCCCCTCG
alpha_9_7
CCGTCTCCGGCGACCAAACTCCCCA





bacteria_8
CTTAACCCAACATCTCACGACACGA
sphingo_3_8
GTTGCTAGCTCTACCCTAAACAGCG
alpha_9_8
CGCCGTCTCCGGCGACCAAACTCCC





bacteria_9
TTAACCCAACATCTCACGACACGAG
sphingo_3_9
AGTTGCTAGCTCTACCCTAAACAGC
alpha_9_9
CCGGCGACCAAACTCCCCATGTCAA





bacteria_10
GGGACTTAACCCAACATCTCACGAC
sphingo_3_10
CCATTTACCGAAGTAAATGCTGCCC
alpha_9_10
ACGCCGTCTCCGGCGACCAAACTCC





bacteria_11
ACTGCTGCCTCCCGTAGGAGTCTGG
sphingo_3_11
CATTTACCGAAGTAAATGCTGCCCC
alpha_9_11
GAACTGAAGGACGCCGTCTCCGGCG





bacteria_12
CTCGTTGCGGGACTTAACCCAACAT
sphingo_3_12
CGCCATTTACCGAAGTAAATGCTGC
alpha_9_12
CGGCGACCAAACTCCCCATGTCAAG





bacteria_13
CGGGACTTAACCCAACATCTCACGA
sphingo_3_13
TTGCTAGCTCTACCCTAAACAGCGC
alpha_9_13
GTCGGCAGCCTCCCTTACGGGTCGG





bacteria_14
TCGTTGCGGGACTTAACCCAACATC
sphingo_3_14
GCCATTTACCGAAGTAAATGCTGCC
alpha_9_14
GGTCGGCAGCCTCCCTTACGGGTCG





bacteria_15
CGTTGCGGGACTTAACCCAACATCT
sphingo_3_15
TCCTCGAGCTATGCCCCAGTTAAAG
alpha_9_15
TGGTCGGCAGCCTCCCTTACGGGTC





bacteria_16
GTTGCGGGACTTAACCCAACATCTC
sphingo_3_16
TTCCTCGAGCTATGCCCCAGTTAAA
alpha_9_16
TCGGCAGCCTCCCTTACGGGTCGGC





bacteria_17
TGCGGGACTTAACCCAACATCTCAC
sphingo_3_17
CAGTTGCTAGCTCTACCCTAAACAG
alpha_9_17
GTGGTCGGCAGCCTCCCTTACGGGT





bacteria_18
TTGCGGGACTTAACCCAACATCTCA
sphingo_3_18
TGCTAGCTCTACCCTAAACAGCGCC
alpha_9_18
CGTGGTCGGCAGCCTCCCTTACGGG





bacteria_19
CCCCACTGCTGCCTCCCGTAGGAGT
sphingo_3_19
CCGTCAGATCCTCTCGCAAGAGTAT
alpha_9_19
CGGCAGCCTCCCTTACGGGTCGGCG





bacteria_20
GCGGGACTTAACCCAACATCTCACG
sphingo_3_20
CTCGAGCTATGCCCCAGTTAAAGGT
alpha_9_20
CGCACCTCAGCGTCAGATCCGGACC





bacteria_21
GCGCTCGTTGCGGGACTTAACCCAA
sphingo_3_21
CCTCGAGCTATGCCCCAGTTAAAGG
alpha_9_21
AATCTTTCCCCCTCAGGGCTTATCC





bacteria_22
TCCCCACTGCTGCCTCCCGTAGGAG
sphingo_3_22
CCAGTTGCTAGCTCTACCCTAAACA
alpha_9_22
CGAACTGAAGGACGCCGTCTCCGGC





bacteria_23
ATTCCCCACTGCTGCCTCCCGTAGG
sphingo_3_23
TCTCTCTGGATGTCACTCGCATTCT
alpha_9_23
TACCCTCTTCCGATCTCTAGCCTAG





bacteria_24
TTCCCCACTGCTGCCTCCCGTAGGA
sphingo_3_24
ATCTCTCTGGATGTCACTCGCATTC
alpha_9_24
GGCAGCCTCCCTTACGGGTCGGCGA





bacteria_25
ACCCAACATCTCACGACACGAGCTG
sphingo_3_25
CTCTCTGGATGTCACTCGCATTCTA
alpha_9_25
GGCGACCAAACTCCCCATGTCAAGG





rhodobacter_1
TCCCCAGGCGGAATGCTTAATCCGT
caldithrix_1_1
ACTCCTCAGAGCTTCATCGCCCACG
alpha_10_1
CGCACCTGAGCGTCAGATCTAGTCC





rhodobacter_2
CTCCCCAGGCGGAATGCTTAATCCG
caldithrix_1_2
CTCCTCAGAGCTTCATCGCCCACGC
alpha_10_2
TCGCACCTGAGCGTCAGATCTAGTC





rhodobacter_3
ACTCCCCAGGCGGAATGCTTAATCC
caldithrix_1_3
AACAGGGCTTTACACTCCTCAGAGC
alpha_10_3
CGTGCGCCACTCTCCAGTTCCCGAA





rhodobacter_4
CCCCAGGCGGAATGCTTAATCCGTT
caldithrix_1_4
CACTCCTCAGAGCTTCATCGCCCAC
alpha_10_4
CCGTGCGCCACTCTCCAGTTCCCGA





rhodobacter_5
CACCGCGTCATGCTGTTACGCGATT
caldithrix_1_5
ACAGGGCTTTACACTCCTCAGAGCT
alpha_10_5
CCCGTGCGCCACTCTCCAGTTCCCG





rhodobacter_6
TCACCGCGTCATGCTGTTACGCGAT
caldithrix_1_6
ACACTCCTCAGAGCTTCATCGCCCA
alpha_10_6
CTGAGCGTCAGATCTAGTCCAGGTG





rhodobacter_7
ATTCACCGCGTCATGCTGTTACGCG
caldithrix_1_7
CAGGGCTTTACACTCCTCAGAGCTT
alpha_10_7
TTCGCACCTGAGCGTCAGATCTAGT





rhodobacter_8
TAGCCCAACCCGTAAGGGCCATGAG
caldithrix_1_8
TCCTCAGAGCTTCATCGCCCACGCG
alpha_10_8
CCAACCGTTATCCCCCACTAAGAGG





rhodobacter_9
TACTCCCCAGGCGGAATGCTTAATC
caldithrix_1_9
TACACTCCTCAGAGCTTCATCGCCC
alpha_10_9
TCCAACCGTTATCCCCCACTAAGAG





rhodobacter_10
AGCCCAACCCGTAAGGGCCATGAGG
caldithrix_1_10
CTTCTGGCACTCCCGACTTTCATGG
alpha_10_10
GCACCTGAGCGTCAGATCTAGTCCA





rhodobacter_11
GCCCAACCCGTAAGGGCCATGAGGA
caldithrix_1_11
TTACACTCCTCAGAGCTTCATCGCC
alpha_10_11
CCTGAGCGTCAGATCTAGTCCAGGT





rhodobacter_12
AACGTATTCACCGCGTCATGCTGTT
caldithrix_1_12
CCTCAGAGCTTCATCGCCCACGCGG
alpha_10_12
GTTAGCCCACCGTCTTCGGGTAAAA





rhodobacter_13
TTCACCGCGTCATGCTGTTACGCGA
caldithrix_1_13
CCTAACAGGGCTTTACACTCCTCAG
alpha_10_13
CCACTAAGAGGTAGGTCCCCACGCG





rhodobacter_14
ACCGCGTCATGCTGTTACGCGATTA
caldithrix_1_14
AGGGCTTTACACTCCTCAGAGCTTC
alpha_10_14
TGAGCGTCAGATCTAGTCCAGGTGG





rhodobacter_15
GCGGAATGCTTAATCCGTTAGGTGT
caldithrix_1_15
TTCTGGCACTCCCGACTTTCATGGC
alpha_10_15
ATCCCCCACTAAGAGGTAGGTCCCC





rhodobacter_16
CCAACCCGTAAGGGCCATGAGGACT
caldithrix_1_16
TCTGGCACTCCCGACTTTCATGGCG
alpha_10_16
GCTTTCACCCCTGACTGGCAAGACC





rhodobacter_17
CCCAGGCGGAATGCTTAATCCGTTA
caldithrix_1_17
CTCAGAGCTTCATCGCCCACGCGGC
alpha_10_17
CAACCGTTATCCCCCACTAAGAGGT





rhodobacter_18
CCCAACCCGTAAGGGCCATGAGGAC
caldithrix_1_18
GGGCTTTACACTCCTCAGAGCTTCA
alpha_10_18
GCGTCACCGAAATCGAAATCCCGAC





rhodobacter_19
AATTCCACTCACCTCTCTCGAACTC
caldithrix_1_19
CTCCTAACAGGGCTTTACACTCCTC
alpha_10_19
TGCGTCACCGAAATCGAAATCCCGA





rhodobacter_20
GAATTCCACTCACCTCTCTCGAACT
caldithrix_1_20
CTGGCACTCCCGACTTTCATGGCGT
alpha_10_20
CGTCACCGAAATCGAAATCCCGACA





rhodobacter_21
TATTCACCGCGTCATGCTGTTACGC
caldithrix_1_21
TCAGAGCTTCATCGCCCACGCGGCG
alpha_l0_21
CTGCGTCACCGAAATCGAAATCCCG





rhodobacter_22
ACGTATTCACCGCGTCATGCTGTTA
caldithrix_1_22
ACCTCTACAGCAGTCCCGAAGGAAG
alpha_10_22
TTTCGCACCTGAGCGTCAGATCTAG





rhodobacter_23
GAACGTATTCACCGCGTCATGCTGT
caldithrix_1_23
CCCTCCTAACAGGGTTTTACACTCC
alpha_10_23
CTTTCACCCCTGACTGGCAAGACCG





rhodobacter_24
GGAATTCCACTCACCTCTCTCGAAC
caldithrix_1_24
GGTCGAAACCTCCAACACCTAGTGC
alpha_10_24
CTAAAAGGTTAGCCCACCGTCTTCG





rhodobacter_25
GTAGCCCAACCCGTAAGGGCCATGA
caldithrix_1_25
GTCGAAACCTCCAACACCTAGTGCC
alpha_10_25
CCCACTAAGAGGTAGGTCCCCACGC





margrpA_1
ACGAAGTTAGCCGGTGCTTTCTTGT
chloroflexi_1_1
TCTCCGAGGAGTCGTTCCAGTTTCC
alpha_12_1
CCGTGCGCCACTCTATAAATAGCGT





margrpA_2
CACGAAGTTAGCCGGTGCTTTCTTG
chloroflexi_1_2
CTCCGAGGAGTCGTTCCAGTTTCCC
alpha_12_2
CCCGTGCGCCACTCTATAAATAGCG





margrpA_3
GTTACTCACCCGTTCGCCAGTTTAC
chloroflexi_1_3
ACGAATGGGTTTGACACCACCCACA
alpha_12_3
CCAACCGTTATCCCGCAGAAAAAGG





margrpA_4
TAAGGGACATACTGACTTGACATCA
chloroflexi_1_4
CGAATGGGTTTGACACCACCCACAC
alpha_12_4
CCCGCAGAAAAAGGCAGGTTCCCAC





margrpA_5
ATAAGGGACATACTGACTTGACATC
chloroflexi_1_5
CTCTCCGAGGAGTCGTTCCAGTTTC
alpha_12_5
ACCGTTATCCCGCAGAAAAAGGCAG





margrpA_6
AAGGGACATACTGACTTGACATCAT
chloroflexi_1_6
TCCGAGGAGTCGTTCCAGTTTCCCT
alpha_12_6
CAACCGTTATCCCGCAGAAAAACGC





margrpA_7
TTACTCACCCGTTCGCCAGTTTACT
chloroflexi_1_7
GAATGGGTTTGACACCACCCACACC
alpha_12_7
CGTTCCAAACCGTTATCCCGCAGAA





margrpA_8
CGTTACTCACCCGTTCGCCAGTTTA
chloroflexi_1_8
GCTCTCCGAGGAGTCGTTCCAGTTT
alpha_12_8
CCGCAGAAAAAGGCAGGTTCCCACG





margrpA_9
GCGTTACTCACCCGTTCGCCAGTTT
chloroflexi_1_9
CCGAGGAGTCGTTCCAGTTTCCCTT
alpha_12_9
CGCAGAAAAAGGCAGGTTCCCACGC





margrpA_10
CGCGTTACTCACCCGTTCGCCAGTT
chloroflexi_1_10
CGCTCTCCGAGGAGTCGTTCCAGTT
alpha_12_10
CCGTTATCCCGCAGAAAAAGGCAGG





margrpA_11
ACATACTGACTTGACATCATCCCCA
chloroflexi_1_11
AATGGGTTTGACACCACCCACACCT
alpha_12_11
CGTTATCCCGCAGAAAAAGGCAGGT





margrpA_12
TACTGACTTGACATCATCCCCACCT
chloroflexi_1_12
CGAGGAGTCGTTCCAGTTTCCCTTC
alpha_12_12
ACCCGTGCGCCACTCTATAAATAGC





margrpA_13
GGACATACTGACTTGACATCATCCC
chloroflexi_1_13
AGGAGTCGTTCCAGTTTCCCTTCAC
alpha_12_13
CACCCGTGCGCCACTCTATAAATAG





margrpA_14
GACATACTGACTTGACATCATCCCC
chloroflexi_1_14
GAGGAGTCGTTCCAGTTTCCCTTCA
alpha_12_14
TCCCGCAGAAAAAGGCAGGTTCCCA





margrpA_15
ATACTGACTTGACATCATCCCCACC
chloroflexi_1_15
CGCTTTGCGACATGAGCGTCAGGTT
alpha_12_15
GCAGAAAAAGGCAGGTTCCCACGCG





margrpA_16
CATACTGACTTGACATCATCCCCAC
chloroflexi_1_16
TGAGCGTCAGGTTCAATGCCAGGGT
alpha_12_16
GGAAACCAAACTCCCCATGTCAAGG





margrpA_17
AGGGACATACTGACTTGACATCATC
chloroflexi_1_17
ACGCTTTGCGACATGAGCGTCAGGT
alpha_12_17
CCTCCTGCAAGCAGGTTAGCTCACC





margrpA_18
GGGACATACTGACTTGACATCATCC
chloroflexi_1_18
TCCCCACGCTTTGCGACATGAGCGT
alpha_12_18
TTTCGCGCCTCAGCGTCAAAATCGG





margrpA_19
ACGCGTTACTCACCCGTTCGCCAGT
chloroflexi_1_19
TCAGGTTCAATGCCAGGGTACCGCT
alpha_12_19
TTCGCGCCTCAGCGTCAAAATCGGA





margrpA_20
GCACGAAGTTAGCCGGTGCTTTCTT
chloroflexi_1_20
ATCATCTCGGCCTTCACGTTCGACT
alpha_12_20
ACTCCCCATGTCAAGGACTGGTAAG





margrpA_21
GGCACGAAGTTAGCCGGTGCTTTCT
chloroflexi_1_21
TGCGACATGAGCGTCAGGTTCAATG
alpha_12_21
GCCTCCTGCAAGCAGGTTAGCTCAC





margrpA_22
TGGCACGAAGTTAGCCGGTGCTTTC
chloroflexi_1_22
ATGAGCGTCAGGTTCAATGCCAGGG
alpha_12_22
CAGAAAAAGGCAGGTTCCCACGCGT





margrpA_23
ACTGACITGACATCATCCCCACCTT
chloroflexi_1_23
CACGCTTTGCGACATGAGCGTCAGG
alpha_12_23
TCCGGCGGACCTTTCCCCCGTAGGG





margrpA_24
CTGGCACGAAGTTAGCCGGTGCTTT
chloroflexi_1_24
CATGAGCGTCAGGTTCAATGCCAGG
alpha_12_24
CCCCTCTTTCTCCGGCGGACCTTTC





margrpA_25
ACGATTACTAGCGATTCCTGCTTCA
chloroflexi_1_25
GTAATCATCTCGGCCTTCACGTTCG
alpha_12_25
CCCCTCTTTCTCCGGCGGACCTTTC





vibrionaceae_1
TATCCCCCACATCAGGGCAATTTCC
chloroflexi_2_1
GGTGACTCCCCTTTCAGGTTGCTAC
alpha_13_1
TCTAACTGTTCAAGCAGCCTGCGAG





vibrionaceae_2
CGACATTACTCGCTGGCAAACAAGG
chloroflexi_2_2
AGGTGACTCCCCTTTCAGGTTGCTA
alpha_13_2
CTAACTGTTCAAGCAGCCTGCGAGC





vibrionaceae_3
CCGACATTACTCGCTGGCAAACAAG
chloroflexi_2_3
CCCTCCCCATTAAGCGGGGAGATTT
alpha_13_3
TAACTGTTCAAGCAGCCTGCGAGCC





vibrionaceae_4
CCCCACATCAGGGCAATTTCCTAGG
chloroflexi_2_4
GCAAGCTTGGCTCATCGGTACCGTT
alpha_13_4
GTCTAACTGTTCAAGCAGCCTGCGA





vibrionaceae_5
CCCCTACATCAGGGCAATTTCCTAG
chloroflexi_2_5
CTCTCCCGATGTTCCAAGCAAGCTT
alpha_13_5
CGCTCCTCAGCGTCAGAAAATAGCC





vibrionaceae_6
CCCACATCAGGGCAATTTCCTAGGC
chloroflexi_2_6
CCCCTCCCCATTAAGCGGGGAGATT
alpha_13_6
GCTCCTCAGCGTCAGAAAATAGCCA





vibrionaceae_7
CCACATCAGGGCAATTTCCTAGGCA
chloroflexi_2_7
TTCCAAGCAAGCTTGGCTCATCGGT
alpha_13_7
TCGCTCCTCAGCGTCAGAAAATAGC





vibrionaceae_8
TCCCCCACATCAGGGCAATTTCCTA
chloroflexi_2_8
AGCAAGCTTGGCTCATCGGTACCGT
alpha_13_8
CGTCTAACTGTTCAAGCAGCCTGCG





vibrionaceae_9
CCCGACATTACTCGCTGGCAAACAA
chloroflexi_2_9
ACTCTCCCGATGTTCCAAGCAAGCT
alpha_13_9
AACTGTTCAAGCAGCCTGCGAGCCC





vibrionaceae_10
ATCCCCCACATCAGGGCAATTTCCT
chloroflexi_2_10
ACCCCTCCCCATTAAGCGGGGAGAT
alpha_13_10
CACGTCGAACTGTTCAAGCAGCCTG





vibrionaceae_11
TGGTTATCCCCCACATCAGGGCAAT
chloroflexi_2_11
TCTCCCGATGTTCCAAGCAAGCTTG
alpha_13_11
ACGTCTAACTGTTCAAGCAGCCTGC





vibrionaceae_12
CCCCCACATCAGGGCAATTTCCCAG
chloroflexi_2_12
CTCCCGATGTTCCAAGCAAGCTTGG
alpha_13_12
ACTGTTCAAGCAGCCTGCGAGCCCT





vibrionaceae_13
TCCCCCACATCAGGGCAATTTCCCA
chloroflexi_2_13
AATGACCCCTCCCCATTAAGCGGGG
alpha_13_13
CCGGGGATTTCACGTCTAAGTCTTC





vibrionaceae_14
CCCCACATCAGGGCAATTTCCCAGG
chloroflexi_2_14
GAATGACCCCTCCCCATTAAGCGGG
alpha_13_14
CTCCTCAGCGTCAGAAAATAGCCAG





vibrionaceae_15
CCCACATCAGGGCAATTTCCCAGGC
chloroflexi_2_15
GTTCCAAGCAAGCTTGGCTCATCGG
alpha_13_15
TTCAAGCAGCCTGCGAGCCCTTTAC





vibrionaceae_16
CACATCAGGGCAATTTCCCAGGCAT
chloroflexi_2_16
CGAATGACCCCTCCCCATTAAGCGG
alpha_13_16
TGTTCAAGCAGCCTGCGAGCCCTTT





vibrionaceae_17
CCACATCAGGGCAATTTCCCAGGCA
chloroflexi_2_17
TGTTCCAAGCAAGCTTGGCTCATCG
alpha_13_17
CTGTTCAAGCAGCCTGCGAGCCCTT





vibrionaceae_18
ATCCCCCACATCAGGGCAATTTCCC
chloroflexi_2_18
TCGAATGACCCCTCCCCATTAAGCG
alpha_13_18
GTTCAAGCAGCCTGCGAGCCCTTTA





vibrionaceae_19
TCCCGACATTACTCGCTGGCAAACA
chloroflexi_2_19
AAGCAAGCTTGGCTCATCGGTACCG
alpha_13_19
CGGCATTGCTGGATCAGAGTTGCCT





vibrionaceae_20
GGTTATCCCCCACATCAGGGCAATT
chloroflexi_2_20
TGACCCCTCCCCATTAAGCGGGGAG
alpha_13_20
GGCATTGCTGGATCAGAGTTGCCTC





vibrionaceae_21
CGCAAGTTGGCCGCCCTCTGTATGC
chloroflexi_2_21
CCACTCTCCCGATGTTCCAAGCAAG
alpha_13_21
CGCGGCATTGCTGGATCAGAGTTGC





vibrionaceae_22
GCAAGTTGGCCGCCCTCTGTATGCG
chloroflexi_2_22
CCTCCCCATTAAGCGGGGAGATTTC
alpha_13_22
GCATTGCTGGATCAGAGTTGCCTCC





vibrionaceae_23
ATGGTTATCCCCCACATCAGGGCAA
chloroflexi_2_23
CAAGCTTGGCTCATCGGTACCGTTC
alpha_13_23
GCGGCATTGCTGGATCAGAGTTGCC





vibrionaceae_24
ACTCGCTGGCAAACAAGGATAAGGG
chloroflexi_2_24
CCGATGTTCCAAGCAAGCTTGGCTC
alpha_13_24
CCCGGGGATTTCACGTCTAACTGTT





vibrionaceae_25
CGCATCTGAGTGTCAGTATCTGTCC
chloroflexi_2_25
CACTCTCCCGATGTTCCAAGCAAGC
alpha_13_25
ACGCGGCATTGCTGGATCAGAGTTG





alteromonadales_1
CCCACTTGGGCCAATCTAAAGGCGA
chlorella_p1_1
CGCCACTCATCGCAATCTGGCAAGC
delta_1_1
CCGAACTACGAACTGCTTTCTGGGA





alteromonadales_2
ATCCCACTTGGGCCAATCTAAAGGC
chlorella_p1_2
GCCACTCATCGCAATGTGGCAAGCC
delta_1_2
TCCGAACTACGAACTGCTTTCTGGG





altermaonadales_3
TCCCACTTGGGCCAATCTAAAGGCG
chlorella_p1_3
CCACTCATCGCAATCTGGCAAGCCA
delta_1_3
TTGCTGCGGCACAGCAGGGGTCAAT





altermaonadales_4
CCACTTGGGCCAATCTAAAGGCGAG
chlorella_p1_4
CACTCATCGCAATCTGGCAAGCCAA
delta_1_4
GTTTGCTGCGGCACAGCAGGGGTCA





altermaonadales_5
CACTTGGGCCAATCTAAAGGCGAGA
chlorella_p1_5
GCAAGCCAAATTGCATGAGTACGAC
delta_1_5
TTTGCTGCGGCACAGCAGGGGTCAA





altermaonadales_6
ACTTGGGCCAATCTAAAGGCGAGAG
chlorella_p1_6
GCCAAATTGCATGCGTACGACTTGC
delta_1_6
TTGCCCAACGACTTCTGGTACAACC





alteromonadales_7
CTTGGGCCAATCTAAAGGCGAGAGC
chlorella_p1_7
TGGCAAGCCAAATTGCATGCGTACG
delta_1_7
GGTTTGCCCAACGACTTCTGGTACA





alteromonadales_8
CACCTCAAGGCATGTTCCCAAGCAT
chlorella_p1_8
CTGTGTCCACTCTGGAACTTCCCCT
delta_1_8
TCCCCGAAGGGTTTGCCCAACGACT





alteromonadales_9
TGAGCGTCAGTGTTGACCCAGGTGG
chlorella_p1_9
CCGTCCGCCACTCATCGCAATCTGG
delta_1_9
CCCCGAAGGGTTTGCCCAACGACTT





alteromonadales_10
CGAAGCCCCCTTTGGTCCGTAGACA
chlorella_p1_10
CCGCCACTCATCGCAATCTGGCAAG
delta_1_10
CCGAAGGGTTTGCCCAACGACTTCT





alteromonadales_11
ACAGAACCGAGGTTCCGAGCTTCTA
chlorella_p1_11
CGTCCGCCACTCATCGCAATCTGGC
delta_1_11
CCCGAAGGGTTTGCCCAACGACTTC





alteromonadales_12
CAGAACCGAGGTTCCGAGCTTCTAG
chlorella_p1_12
CCTGTGTCCACTCTGGAACTTCCCC
delta_1_12
CCCGGGCTTTCACACCTGACTTAAA





alteromonadales_13
AGAACCGAGGTTCCGAGCTTCTAGT
chlorella_p1_13
GTCCGCCACTCATCGCAATCTGGCA
delta_1_13
GCTTCCTTCAGTGGTACCGTCAACA





alteromonadales_14
GAAAAACAGAACCGAGGTTCCGAGC
chlorella_p1_14
TCCGCCACTCATCGCAATCTGGCAA
delta_1_14
AGGCGCCTGCATCCCCGAAGGGTTT





alteromonadales_15
GAACCGAGGTTCCGAGCTTCTAGTA
chlorella_p1_15
ACCTGTGTCCACTCTGGAACTTCCC
delta_1_15
GGCGCCTGCATCCCCGAAGGGTTTG





alteromonadales_16
CCGAGGTTCCGAGCTTCTAGTAGAC
chlorella_p1_16
GGCAAGCCAAATTGCATGCGTACGA
delta_1_16
GCGCCTGCATCCCCGAAGGGTTTGC





alteromonadales_17
CGAGGTTCCGAGCTTCTAGTAGACA
chlorella_p1_17
CTGGCAAGCCAAATTGCATGCGTAC
delta_1_17
GCATCCCCGAAGGGTTTGCCCAACG





alteromonadales_18
AACCGAGGTTCCGAGCTTCTAGTAG
chlorella_p1_18
CCCGTCCGCCACTCATCGCAATCTG
delta_1_18
ATCCCCGAAGGGTTTGCCCAACGAC





alteromonadales_19
ACCGAGGTTCCGAGCTTCTAGTAGA
chlorella_p1_19
CACCTGTGCCACTCTGGAACTTTCC
delta_1_19
CATCCCCGAAGGGTTTGCCCAACGA





alteromonadales_20
AACAGAACCGAGGTTCCGAGCTTCT
chlorella_p1_20
ACCCGTCCGCCACTCATCGCAATCT
delta_1_20
ACCTTAGGCGCCTGCATCCCCGAAG





alteromonadales_21
AAACAGAACCGAGGTTCCGAGCTTC
chlorella_p1_21
CCACCTGTGTCCACTCTGGAACTTC
delta_1_21
CCTTAGGCGCCTGCATCCCCGAAGG





alteromonadales_22
CCGAAGCCCCCTTTGGTCCGTAGAC
chlorella_p1_22
CACCCGTCCGCCACTCATCGCAATC
delta_1_22
TACCTTAGGCGCCTGCATCCCCGAA





alteromonadales_23
GAAGCCCCCTTTGGTCCGTAGACAT
chlorella_p1_23
TCACCCGTCCGCCACTCATCGCAAT
delta_1_23
ATACCTTAGGCGCCTGCATCCCCGA





alteromonadales_24
AAGCCCCCTTTGGTCCGTAGACATT
chlorella_p1_24
ACCACCTGTGTCCACTCTGGAACTT
delta_1_24
CTTAGGCGCCTGCATCCCCGAAGGG





alteromonadales_25
CCACCTCAAGGCATGTTCCCAAGCA
chlorella_p1_25
CACCACCTGTGTCCACTCTGGAACT
delta_1_25
CATACCTTAGGCGCCTGCATCCCCG





polaribacters_1
GCCAGATGGCTGCTCATTGTCCATA
plastid_1_1
GGTCTCACGACTTGGCATCTCATTG
delta_2_1
CTCCAGTCTTTCGATAGGATTCCCG





polaribacters_2
TGCCAGATGGCTGCTCATTGTCCAT
plastid_1_2
TCTCCCTAGGCAGGTTTTTGACCTG
delta_2_2
GGCCACCCTTGATCCAAAAACCCGA





polaribaclers_3
TTGCCAGATGGCTGCTCATTGTCCA
plastid_1_3
CCACGTGGATTCGATACACGCAATG
delta_2_3
AGGCCACCCTTGATCCAAAAACCCG





polaribacters_4
CCAGATGGCTGCTCATTGTCCATAC
plastid_1_4
ATGCACCACCTGTATGTGTCTGCCG
delta_2_4
AAGGGCACTCCAGTCTTTCGATAGG





polaribacters_5
GTTGCCAGATGGCTGCTCATTGTCC
plastid_1_5
CACCACCTGTATGTGTCTGCCGAAG
delta_2_5
GAGGCCACCCTTGATCCAAAAACCC





polaribacters_6
TCCCTCAGCGTCAGTACATACGTAG
plastid_1_6
AACACCACGTGGATTCGATACACGC
delta_2_6
GAAGGGCACTCCAGTCTTTCGATAG





polaribacters_7
CCCTCAGCGTCAGTACATACGTAGT
plastid_1_7
ACCACCTGTATGTGTCTGCCGAAGC
delta_2_7
ACCCTAGCAAGCTAGAGTGTTCTCG





polaribacters_8
GTCCCTCAGCGTCAGTACATACGTA
plastid_1_8
CTTCTCCCTAGGCAGGTTTTTGACC
delta_2_8
AGAGGCCACCCTTGATCCAAAAACC





polaribacters_9
CAGATGGCTGCTCATTGTCCATACC
plastid_1_9
TGCACCACCTGTATGTGTCTGCCGA
delta_2_9
AGAGGCCACCCTTGATCCAAAAACC





polaribacters_10
TTCGCATAGTGGCTGCTCATTGTCC
plastid_1_10
ACACCACGTGGATTCGATACACGCA
delta_2_10
ACATGTAGAGGCCACCCTTGATCCA





polaribacters_11
CGTCCCTCAGCGTCAGTACATACGT
plastid_1_11
CCACCTGTATGTGTCTGCCGAAGCA
delta_2_11
TACATGTAGAGGCCACCCTTGATCC





polaribacters_12
AGACCCCCTACCTATCGTTGCCATG
plastid_1_12
GCACCACCTGTATGTGTCTGCCGAA
delta_2_12
CCCCGAAGGGCACTCCAGTCTTTCG





polaribacters_13
CGCTTAGTCACTGAGCTAATGCCCA
plastid_1_13
CACCACGTGGATTCGATACACGCAA
delta_2_13
CCCTAGCAAGCTAGAGTGTTCTCGT





polaribacters_14
TGTTGCCAGATGGCTGCTCATTGTC
plastid_1_14
CTCACGACTTGGCATCTCATTGTCC
delta_2_14
GCTTACATGTAGAGGCCACCCTTGA





polaribacters_15
GATTCGCTCCTATTCGCATAGTGGC
plastid_1_15
CAGGTACACGTCAGAAACTTCCTTC
delta_2_15
GGGCACTCCAGTCTTTCGATAGGAT





polaribacters_16
TCGTCCCTCAGCGTCAGTACATACG
plastid_1_16
CTCCCTAGGCAGGTTTTTGACCTGT
delta_2_16
CCGAAGGGCACTCCAGTCTTTCGAT





polaribacters_17
TCGCTTAGTCACTGAGCTAATGCCC
plastid_1_17
CGGTCTCACGACTTGGCATCTCATT
delta_2_17
CGAAGGGCACTCCAGTCTTTCGATA





polaribacters_18
TCGCATAGTGGCTGCTCATTGTCCA
plastid_1_18
GACCAACTACTGATCGTCACCTTGG
delta_2_18
AGGGCACTCCAGTCTTTCGATAGGA





polaribacters_19
CAGACCCCCTACCTATCGTTGCCAT
plastid_1_19
GCTTCTCCCTAGGCAGGTTTTTGAC
delta_2_19
CCCGAAGGGCACTCCAGTCTTTCGA





polaribacters_20
TTCGTCCCTCAGCGTCAGTACATAC
plastid_1_20
CACCTGTATGTGTCTGCCGAAGCAC
delta_2_20
CCAGTCTTTCGATAGGATTCCCGGG





polaribacters_21
CTCTCTGTTGCCAGATGGCTGCTCA
plastid_1_21
CTGTATGTGTCTGCCGAAGCACTTC
delta_2_21
TCCAGTCTTTCGATAGGATTCCCGG





polaribacters_22
GCAGATTCTATACGCGTTACGCACC
plastid_1_22
CATGCACCACCTGTATGTGTCTGCC
delta_2_22
GTCTTTCGATAGGATTCCCGGGATG





polaribacters_23
GGCAGATTCTATACGCGTTACGCAC
plastid_1_23
AGGTACACGTCAGAACTTCCTCCC
delta_2_23
CTTTCGATAGGATTCCCGGGATGTC





polaribacters_24
CACCTCTGACTTAATTGACCGCCTG
plastid_1_24
TCGGTCTCACGACTTGGCATCTCAT
delta_2_24
CAGTCTTTCGATAGGATTCCCGGGA





polaribacters_25
CCTCTGACTTAATTGACCGCCTGCG
plastid_1_25
CCTTCTACTTCGACTCTACTCGAGC
delta_2_25
GGGCTCCCCGAAGGGCACTCCAGTC





desulfovibrionales_1
CCCGAGCATGCTGATCTCGAATTAC
plastid_2_1
CAGGTAACGTCAGAACTTCCTCCCT
delta_31
GGCACAGAAAGGGTCAACACTTCCT





desulfovibrionales_2
CACCCGAGCATGCTGATCTCGAATT
plastid_2_2
AGGTAACGTCAGAACTTCCTCCCTG
delta_3_2
TCGGCACAGAAAGGGTCAACACTTC





desulfovibrionales_3
TCACCCGAGCATGCTGATCTCGAAT
plastid_2_3
GGTAACGTCAGAACTTCCTCCCTGA
delta_3_3
CGGCACAGAAAGGGTCAACACTTCC





desuIfovibrionales_4
TTCACCCGAGCATGCTGATCTCGAA
plastid_2_4
TCAGGTAACGTCAGAACTTCCTCCC
delta_3_4
CTTCGGCACAGAAAGGGTCAACACT





desulfovibrionales_5
GCACCCTCTAATTTCCTAGAGGTCC
plastid_2_5
CGCGTTAGCTATAATACCGCATGGG
delta_3_5
CACTTTACTCTCCCGACGAATCGGA





desulfovibrionales_6
AGGGCACCCTCTAATTTCCTAGAGG
plastid_2_6
AATACCGCATGGGTCGATACATGCG
delta_3_6
CCACTTTACTCTCCCGACGAATCGG





desulfovibrionales_7
GGGCACCCTCTAATTTCCTAGAGGT
plastid_2_7
CTGTATGTACGTTCCCGAAGGTGGT
delta_3_7
GCTTCGGCACAGAAAGGGTCAACAC





desulfovibrionales_8
CCCTCTAATTTCCTAGAGGTCCCCT
plastid_2_8
CCTGTATGTACGTTCCCGAAGGTGG
delta_3_8
CTCTCCCGACGAATCGGAATTTCTC





desulfovibrionales_9
ACCCTCTAATTTCCTAGAGGTCCCC
plastid_2_9
TCAGCCGCGAGCTCCTCTCTAGGCA
delta_3_9
CCGACGAATCGGAATTTCTCGTTCG





desulfovibrionales_10
ATTTCCTAGAGGTCCCCTGGATGTC
plastid_2_10
ATACCGCATGGGTCGATACATGCGA
delta_3_10
GCCACTTTACTCTCCCGACGAATCG





desulfovibrionales_11
AGGGTACCGTCAAATGCCTACCCTA
plastid_2_11
ACCTGTATGTACGTTCCCGAAGGTG
delta_3_11
AGCTTCGGCACAGAAAGGGTCAACA





desulfovibrionales_12
GAGGGTACCGTCAAATGCCTACCCT
plastid_2_12
GCCGCGAGCTCCTCTCTAGGCAGAA
delta_3_12
ACTCTCACGAGTTCGCTACCCTTTG





desulfovibrionales_13
GGGTACCGTCAAATGCCTACCCTAT
plastid_2_13
GCGCCTTCCTCCAAACGGTTAGAAT
delta_3_13
TCTCCCGACGAATCGGAATTTCTCG





desulfovibrionales_14
TTTCCTAGAGGTCCCCTGGATGTCA
plastid_2_14
AGCCGCGAGCTCCTCTCTAGGCAGA
delta_3_14
TAGCTTCGGCACAGAAAGGGTCAAC





desulfovibrionales_15
TTCCTAGAGGTCCCCTGGATGTCAA
plastid_2_15
CAGCCGCGAGCTCCTCTCTAGGCAG
delta_3_15
CTCTCACGAGTTCGCTACCCTTTGT





desulfovibrionales_16
TGAGGGTACCGTCAAATGCCTACCC
plastid_2_16
CACCTGTATGTACGTTCCCGAAGGT
delta_3_16
GTGCTGGTTACACCCGAAGGCAATC





desulfovibrionales_17
CTCTAATTTCCTAGAGGTCCCCTGG
plastid_2_17
AATCAGCCGCGAGCTCCTCTCTAGG
delta_3_17
CGCCACTTTACTCTCCCGACGAATC





desulfovibrionales_18
CACCCTCTAATTTCCTAGAGGTCCC
plastid_2_18
TAATCAGCCGCGAGCTCCTCTCTAG
delta_3_18
CTCCCGACGAATCGGAATTTCTCGT





desulfovibrionales_19
GGCACCCTCTAATTTCCTAGAGGTC
plastid_2_19
ATCAGCCGCGAGCTCCTCTCTAGGC
delta_3_19
CTTACTCTCACGAGTTCGCTACCCT





desulfovibrionales_20
CCTCTAATTTCCTAGAGGTCCCCTG
plastid_2_20
GGCGCCTTCCTCCAAACGGTTAGAA
delta_3_20
TGTGCTGGTTACACCCGAAGGCAAT





desulfovibrionales_21
CAACCGTTATCCCCGTCTTGAAGGT
plastid_2_21
CCGCGAGCTCCTCTCTAGGCAGAAA
delta_3_21
CTCACGAGTTCGCTACCCTTTGTAC





desulfovibrionales_22
ATCAAAGGCTGTTCCACCGTTGAGC
plastid_2_22
GCATGGGTCGATACATGCGACATCT
delta_3_22
CTGTGCTGGTTACACCCGAAGGCAA





desulfovibrionales_23
TTGCTCGTTAGCTCGCCGGCTTCGG
plastid_2_23
CCGCATGGGTCGATACATGCGACAT
delta_3_23
TCGCCACTTTACTCTCCCGACGAAT





desulfovibrionales_24
ATTGCTCGTTAGCTCGCCGGCTTCG
plastid_2_24
TACCGCATGGGTCGATACATGCGAC
delta_3_24
CCTGTGCTGGTTACACCCGAAGGCA





desulfovibrionales_25
CCTAGAGGTCCCCTGGATGTCAAGC
plastid_2_25
ACCGCATGGGTCGATACATGCGACA
delta_3_25
GCTTACTCTCACGAGTTCGCTACCC





aquaficae_1
AACCAGACGCTCCACCGGTTGTGCG
plastid_3_1
CACCGTCGTATATCTGACCGACGAT
altero_1_1
CCCACTTGGGCCAATCTAAAGGCGA





aquaficae_2
ACCAGACGCTCCACCGGTTGTGCGG
plastid_3_2
TTCACCGTCGTATATCTGACCGACG
altero_1_2
ATCCCACTTGGGCCAATCTAAAGGC





aquaficae_3
AAACCAGACGCTCCACCGGTTGTGC
plastid_3_3
TCACCGTCGTATATCTGACCGACGA
altero_1_3
TCCCACTTGGGCCAATCTAAAGGCG





aquaficae_4
TGCCACTGTAGCGCCTGTGTAGCCC
plastid_3_4
GTAGCCGAGTTTCAGGCTACAATCC
altero_1_4
CCACTTGGGCCAATCTAAAGGCGAG





aquaficae_5
TAAACCAGACGCTCCACCGGTTGTG
plastid_3_5
TAGCCGAGTTTCAGGCTACAATCCG
altero_1_5
CACTTGGGCCAATCTAAAGGCGAGA





aquaficae_6
GCCACTGTAGCGCCTGTGTAGCCCA
plastid_3_6
GACCTCATCCTCACCTTCCTCCAAT
altero_1_6
ACTTGGGCCAATCTAAAGGCGAGAG





aquaficae_7
CCAGACGCTCCACCGGTTGTGCGGG
plastid_3_7
AGCCGAGTTTCAGGCTACAATCCGA
altero_1_7
CTTGGGCCAATCTAAAGGCGAGAGC





aquaficae_8
CCACTGTAGCGCCTGTGTAGCCCAG
plastid_3_8
GCCGAGTTTCAGGCTACAATCCGAA
altero_1_8
CTGTCAGTAACGTCACAGCTAGCAG





aquaficae_9
GCATAAAGGGCATACTGACCTGACG
plastid_3_9
CCGAGTTTCAGGCTACAATCCGAAC
altero_1_9
ACAGAACCGAGGTTCCGAGCTTCTA





aquaficae_10
TTAAACCAGACGCTCCACCGGTTGT
plastid_3_10
CTCCCGTAGGAGTCTGTTCCGTTCT
altero_1_10
CAGAACCGAGGTTCCGAGCTTCTAG





aquaficae_11
CATTGCCCACGATTCCCCACTGCTG
plastid_3_11
CCTCCCGTAGGAGTCTGTTCCGTTC
altero_1_11
AGAACCGAGGTTCCGAGCTTCTAGT





aquaficae_12
ATTGCCCACGATTCCCCACTGCTGC
plastid_3_12
TCCCGTAGGAGTCTGTTCCGTTCTA
altero_1_12
GAAAAACAGAACCGAGGTTCCGAGC





aquaticae_13
CCATTGCCCACGATTCCCCACTGCT
plastid_3_13
CCCGTAGGAGTCTGTTCCGTTCTAA
altero_1_13
GAACCGAGGTTCCGAGCTTCTAGTA





aquaficae_14
GCCCATTGCCCACGATTCCCCACTG
plastid_3_14
TGACCTCATCCTCACCTTCCTCCAA
altero_1_14
CCGAGGTTCCGAGCTTCTAGTAGAC





aquaficae_15
CCCATTGCCCACGATTCCCCACTGC
plastid_3_15
CTAAAGCATTCATCCTCCACGCGGT
altero_1_15
CGAGGTTCCGAGCTTCTAGTAGACA





aquaficae_16
CGCCCATTGCCCACGATTCCCCACT
plastid_3_16
CCTAAAGCATTCATCCTCCACGCGG
altero_1_16
AACCGAGGTTCCGAGCTTCTAGTAG





aquaficae_17
TGCCCACGATTCCCCACTGCTGCCC
plaslid_3_17
CCCTAAAGCATTCATCCTCCACGCG
altero_1_17
ACCGAGGTTCCGAGCTTCTAGTAGA





aquaficae_18
ATTAAACCAGACGCTCCACCGGTTG
plastid_3_18
ACCCTAAAGCATTCATCCTCCACGC
altero_1_18
AACAGAACCGAGGTTCCGAGCTTCT





aquaficae_19
TTGCCCACGATTCCCCACTGCTGCC
plastid_3_19
ACATAAGGGGCATGCTGACTTGACC
altero_1_19
AAACAGAACCGAGGTTCCGAGCTTC





aquaficae_20
GCCCACGATTCCCCACTGCTGCCCC
plastid_3_20
GTTCCGTTCTAAATCCCAGTGTGGC
altero_1_20
CCAACTGTTGTCCCCCACCTCAAGG





aquaficae_21
CAGACGCTCCACCGGTTGTGCGGGC
plastid_3_21
CATAAGGGGCATGCTGACTTGACCT
altero_1_21
CCGGACTACGACGCACTTTAAGTGA





aquaficae_22
GGCATAAAGGGCATACTGACCTGAC
plastid_3_22
GCGGTATTGCTTGGTCAAGCTTTCG
altero_1_22
TGGGCCAATCTAAAGGCGAGAGCCG





aquaficae_23
GCAGTTCGGAATGCCTTGCCGAAGT
plastid_3_23
CGGTATTGCTTGGTCAAGCTTTCGC
altero_1_23
GGGCCAATCTAAAGGCGAGAGCCGA





aquaficae_24
CAGTTCGGAATGCCTTGCCGAAGTT
plastid_3_24
CACGCGGTATTGCTTGGTCAAGCTT
altero_1_24
TTGGGCCAATCTAAAGGCGAGAGCC





aquaficae_25
CGCAGTTCGGAATGCCTTGCCGAAG
plastid_3_25
CATCCTCCACGCGGTATTGCTTGGT
altero_1_25
GGTTCCGAGCTTCTAGTAGACATCG





bacilli_1
CACTCTGCTCCCGAAGGAGAAGCCC
plastid_4_1
CTTAAGCGCCGCCCTCCGAATGGTT
altero_2_1
TCTCACTTGGGCCTCTCTTTGCGCC





bacilli_2
GTCACTCTGCTCCCGAAGGAGAAGC
plastid_4_2
CCTTAAGCGCCGCCCTCCGAATGGT
altero_2_2
CCCCTCGCAAAGGCAAGTTCCCAAG





bacilli_3
CTGCTCCCGAAGGAGAAGCCCTATC
plastid_4_3
TACCTTAAGCGCCGCCCTCCGAATG
altero_2_3
CCCTCGCAAAGGCAAGTTCCCAAGC





bacilli_4
TCACTCTGCTCCCGAAGGAGAAGCC
plastid_4_4
ACCTTAAGCGCCGCCCTCCGAATGG
altero_2_4
TCACTTGGGCCTCTCTTTGCGCCGG





bacilli_5
TCTGCTCCCGAAGGAGAAGCCCTAT
plastid_4_5
AGCCCTACCTTAAGCGCCGCCCTCC
altero_2_5
CTTGGGCCTCTCTTTGCGCCGGAGC





bacilli_6
TGCTCCCGAAGGAGAAGCCCTATCT
plastid_4_6
TTAAGCGCCGCCCTCCGAATGGTTA
altero_2_6
CGACATTCTTTAAGGGGTCCGCTCC





bacilli_7
CTCTGCTCCCGAAGGAGAAGCCCTA
plastid_4_7
TAAGCGCCGCCCTCCGAATGGTTAG
altero_2_7
CACTTGGGCCTCTCTTTGCGCCGGA





bacilli_8
GCTCCCGAAGGAGAAGCCCTATCTC
plastid_4_8
TAGCCCTACCTTAAGCGCCGCCCTC
altero_2_8
CTCACTTGGGCCTCTCTTTGCGCCG





bacilli_9
ACTCTGCTCCCGAAGGAGAAGCCCT
plaslid_4_9
CTACCTTAAGCGCCGCCCTCCGAAT
altero_2_9
ACTTGGGCCTCTCTTTGCGCCGGAG





bacilli_10
CCGAAGCCGCCTTTCAATTTCGAAC
plastid_4_10
GCCCTACCTTAAGCGCCGCCCTCCG
altero_2_10
CTACGACATTCTTTAAGGGGTCCGC





bacilli_11
CGTCCGCCGCTAACTTCATAAGAGC
plastid_4_11
CCCTACCTTAAGCGCCGCCCTCCGA
altero_2_11
CCGGACTACGACATTCTTTAAGGGG





bacilli_12
GTCCGCCGCTAACTTCATAAGAGCA
plastid_4_12
CCTACCTTAAGCGCCGCCCTCCGAA
altero_2_12
ATCTCACTTGGGCCTCTCTTTGCGC





bacilli_13
CCGCCGCTAACTTCATAAGAGCAAG
plastid_4_13
CTAGCCCTACCTTAAGCGCCGCCCT
altero_2_13
CCCCCTCGCAAAGGCAAGTTCCCAA





bacilli_14
AGCCGAAGCCGCCTTTCAATTTCGA
plastid_4_14
ACTAGCCCTACCTTAAGCGCCGCCC
altero_2_14
ACATTCTTTAAGGGGTCCGCTCCAC





bacilli_15
CTCCCGAAGGAGAAGCCCTATCTCT
plastid_4_15
AAGCGCCGCCCTCCGAATGGTTAGG
altero_2_15
TTGGGCCTCTCTTTGCGCCGGAGCC





bacilli_16
CAGCCGAAGCCGCCTTTCAATTTCG
plastid_4_16
CACTAGCCCTACCTTAAGCGCCGCC
altero_2_16
TCCCCCTCGCAAAGGCAAGTTCCCA





bacilli_17
CTGTCACTCTGCTCCCGAAGGAGAA
plastid_4_17
CGCCGCCCTCCGAATGGTTAGGCTA
altero_2_17
CCTCGCAAAGGCAAGTTCCCAAGCA





bacilli_18
GCCGAAGCCGCCTTTCAATTTCGAA
plastid_4_18
GCGCCGCCCTCCGAATGGTTAGGCT
altero_2_18
GGGTCCGCTCCACATCACTGTCTCG





bacilli_19
CCCGTCCGCCGCTAACTTCATAAGA
plastid_4_19
GCCGCCCTCCGAATGGTTAGGCTAA
altero_2_19
ACGACATTCTTTAAGGGGTCCGCTC





bacilli_20
CCGTCCGCCGCTAACTTCATAAGAG
plastid_4_20
AGCGCCGCCCTCCGAATGGTTAGGC
altero_2_20
CATTCTTTAAGGGGTCCGCTCCACA





bacilli_21
CGCCGCTAACTTCATAAGAGCAAGC
plastid_4_21
ACGAGATTAGCTAGCCTTCGCAGGT
altero_2_21
GACATTCTTTAAGGGGTCCGCTCCA





bacilli_22
CCCGAAGGAGAAGCCCTATCTCTAG
plastid_4_22
CCGCCCTCCGAATGGTTAGGCTAAC
altero_2_22
AATCTCACTTGGGCCTCTCTTTGCG





bacilli_23
CGAAGGAGAAGCCCTATCTCTAGGG
plastid_4_23
CGCCCTCCGAATGGTTAGGCTAACG
altero_2_23
TAAGGGGTCCGCTCCACATCACTGT





bacilli_24
CCGAAGGAGAAGCCCTATCTCTAGG
plastid_4_24
GCCCTCCGAATGGTTAGGCTAACGA
altero_2_24
ATCCCCCTCGCAAAGGCAAGTTCCC





bacilli_25
TGTCACTCTGCTCCCGAAGGAGAAG
plastid_4_25
TCACTAGCCCTACCTTAAGCGCCGC
altero_2_25
GGTCCGCTCCACATCACTGTCTCGC





crenarch_1_1
AGCCTGTACGTTGAGCGTACAGATT
plastid_5_1
CTCTACCCCTACCATACTCAAGCCT
colwel_1_1
TGCGCCACTCACGGATCAAGTCCAC





crenarch_1_2
CCTGTACGTTGAGCGTACAGATTTA
plastid_5_2
GACGTCGTCCTCCAAATGGTTAGAC
colwel_1_2
CTGCGCCACTCACGGATCAAGTCCA





crenarch_1_3
GCCTGTACGTTGAGCGTACAGATTT
plastid_5_3
CCTTAGCGTCGTCCTCCAAATGGT
colwel_1_3
GCTGCGCCACTCACGGATCAAGTCC





crenarch_1_4
GAGCGTACAGATTTAACCGAAAACT
plastid_5_4
ACCTTAGACGTCGTCCTCCAAATGG
colwel_1_4
TAGCTGCGCCACTCACGGATCAAGT





crenarch_1_5
TGAGCGTACAGATTTAACCGAAAAC
plastid_5_5
CCTCTACCCCTACCATACTCAAGCC
colwel_1_5
GTTAGCTGCGCCACTCACGGATCAA





crenarch_1_6
CAGCCTGTACGTTGAGCGTACAGAT
plastid_5_6
GCTAGTTCTCGCGAATTTGCGACTC
colwel_1_6
CGTTAGCTGCGCCACTCACGGATCA





crenarch_1_7
CCTTGTCACGAACCTCAAGTTCGAT
plastid_5_7
CCTCTCGGCATATGGGGATTTAGCT
colwel_1_7
GTGCGTTAGCTGCGCCACTCACGGA





crenarch_1_8
CTTGTCACGAACCTCAAGTTCGATA
plastid_5_8
GACTAACGGTGTTGGGTATGACCAG
colwel_1_8
TGCGTTAGCTGCGCCACTCACGGAT





crenarch_1_9
TTGTCACGAACCTCAAGTTCGATAA
plastid_5_9
ACTAACGGTGTTGGGTATGACCAGC
colwel_1_9
TTAGCTGCGCCACTCACGGATCAAG





crenarch_1_10
CTGTACGTTGAGCGTACAGATTTAA
plastid_5_10
CCAACAGTTATTCCCCTCCTAAGGG
colwel_1_10
GCGTTAGCTGCGCCACTCACGGATC





crenarch_1_11
GTCACGAACCTCAAGTTCGATAACG
plastid_5_11
CTCTCGGCATATGGGGATTTAGCTG
colwel_1_11
AGCTGCGCCACTCACGGATCAAGTC





crenarch_1_12
TTCCCTTGTCACGAACCTCAAGTTC
plastid_5_12
GCGCGAGCTCATCCTTAGGCAGTGT
colwel_1_12
GCGGTATTGCTGCCCTCTGTACCTG





crenarch_1_13
TCACGAACCTCAAGTTCGATAACGC
plastid_5_13
CGCGAGCTCATCCTTAGGCAGTGTA
colwel_1_13
CGCGGTATTGCTGCCCTCTGTACCT





crenarch_1_14
TGTCACGAACCTCAAGTTCGATAAC
plasiid_5_14
GCGAGCTCATCCTTAGGCAGTGTAA
colwel_1_14
GGATCAAGTCCACGAACGGCTAGTT





crenarch_1_15
CTGCAGCACTGCATTGGCCACAAGC
plastid_5_15
CACCTCTCGGCATATGGGGATTTAG
colwel_1_15
CGGATCAAGTCCACGAACGGCTAGT





crenarch_1_16
GCAGCCTGTACGTTGAGCGTACAGA
plastid_5_16
ACCTCTCGGCATATGGGGATTTAGC
colwel_1_16
GCGCCACTCACGGATCAAGTCCACG





crenarch_1_17
CACGAACCTCAAGTTCGATAACGCC
plastid_5_17
GCAGCCTACAATCCGAACTTGGACA
colwel_1_17
ACGGATCAAGTCCACGAACGGCTAG





crenarch_1_18
TGTACGTTGAGCGTACAGATTTAAC
plasiid_5_18
GGCGCGAGCTCATCCTTAGGCAGTG
colwel_1_18
CACGGATCAAGTCCACGAACGGCTA





crenarch_1_19
CGTTGAGCGTACAGATTTAACCGAA
plastid_5_19
CGGCAGTCTCTCTAGAGATCCCAAT
colwel_1_19
CGCCACTCACGGATCAAGTCCACGA





crenarch_1_20
GTACGTTGAGCGTACAGATTTAACC
plastid_5_20
ATCACCGGCAGTCTCTCTAGAGATC
colwel_1_20
GCCACTCACGGATCAAGTCCACGAA





crenarch_1_21
CCTGCAGCACTGCATTGGCCACAAG
plastid_5_21
CACCGGCAGTCTCTCTAGAGATCCC
colwel_1_21
TCACGGATCAAGTCCACGAACGGCT





crenarch_1_22
GGCAGCCTGTACGTTGAGCGTACAG
plastid_5_22
ACCGGCAGTCTCTCTAGAGATCCCA
colwel_1_22
GATCAAGTCCACGAACGGCTAGTTG





crenarch_1_23
TACGTTGAGCGTACAGATTTAACCG
plastid_5_23
CCGGCAGTCTCTCTAGAGATCCCAA
colwel_1_23
ACTCACGGATCAAGTCCACGAACGG





crenarch_1_24
ACGTTGAGCGTACAGATTTAACCGA
plastid_5_24
TTCGCCTCTCAGTGTCAGTAATGGC
colwel_1_24
CACTCACGGATCAAGTCCACGAACG





crenarch_1_25
CCACTCCCTAGCTCTGCAGTATTCC
plastid_5_25
TCGCCTCTCAGTGTCAGTAATGGCC
colwel_1_25
CTCACGGATCAAGTCCACGAACGGC





acido_1_1
TGCAGCACCTCTTCTGGAGTCCCCG
margrpA_1_1
GCTCCGGTACCGAAGGGGTCGAATC
altero_3_1
CAACTGTTGTCCCCCACGTTTTGGC





acido_1_2
GCCGGCAGTCCCCCCAAAGTCCCCG
margrpA_1_2
AGCTCCGGTACCGAAGGGGTCGAAT
altero_3_2
AACTGTTGTCCCCCACGTTTTGGCA





acido_1_3
CCATGCAGCACCTCTTCTGGAGTCC
margrpA_1_3
CACCCGATTCGGGTACTACTGACTT
altero_3_3
CCCCACGTTTTGGCATATTCCCAAG





acido_1_4
CATGCAGCACCTCTTCTGGAGTCCC
margrpA_1_4
ACCCGATTCGGGTACTACTGACTTC
altero_3_4
CCCACGTTTTGGCATATTCCCAAGC





acido_1_5
GCGCCGGCAGTCCCCCCAAAGTCCC
margrpA_1_5
CTCCGGTACCGAAGGGGTCGAATCC
altero_3_5
TCCCCCACGTTTTGGCATATTCCCA





acido_1_6
ATGCAGCACCTCTTCTGGAGTCCCC
margrpA_1_6
CCACCCGATTCGGGTACTACTGACT
altero_3_6
CCCCCACGTTTTGGCATATTCCCAA





acido_1_7
CGCCGGCAGTCCCCCCAAAGTCCCC
margrpA_1_7
GCCACCCGATTCGGGTACTACTGAC
altero_3_7
CCAACTGTTGTCCCCCACGTTTTGG





acido_1_8
GCAGCACCTCTTCTGGAGTCCCCGA
margrpA_1_8
GGCCACCCGATTCGGGTACTACTGA
altero_3_8
GTCCCCCACGTTTTGGCATATTCCC





acido_1_9
CAGCACCTCITCrGGAGTCCCCGAA
margrpA_1_9
TAGCTCCGGTACCGAAGGGGTCGAA
altero_3_9
ACTGTTGTCCCCCACGTTTTGGCAT





acido_1_10
AGCACCTCTTCTGGAGTCCCCGAAG
margrpA_1_10
TCCGGTACCGAAGGGGTCGAATCCC
altero_3_10
TCCAACTGTTGTCCCCCACGTTTTG





acido_1_11
CCGGCAGTCCCCCCAAAGTCCCCGG
margrpA_1_11
GAAGGGGTCGAATCCCCCGACACCA
altero_3_11
TGTCCCCCACGTTTTGGCATATTC





acido_1_12
GCAGTCCCCCCAAAGTCCCCGGCAT
margrpA_1_12
AAGGGGTCGAATCCCCCGACACCAA
altero_312
GCATACCATCGCTGGTTAGCAACCC





acido_1_13
GCACCTCTTCTGGAGTCCCCGAAGG
margrpA_1_13
CTTCCCTTACGACAGACCTTTACGC
altero_313
CGCATACCATCGCTGGTTAGCAACC





acido_1_14
GCCATGCAGCACCTCTTCTGGAGTC
margrpA_1_14
CCCGATTCGGGTACTACTGACTTCC
altero_314
TCGCATACCATCGCTGGTTAGCAAC





acido_1_15
ACCTCTTCTGGAGTCCCCGAAGGGA
margrpA_1_15
ACAACTGTATCCCGAAGGATCCGCT
altero_315
CTGTTGTCCCCCACGTTTTGGCATA





acido_1_16
CACCTCTTCTGGAGTCCCCGAAGGG
margrpA_1_16
CAACTGTATCCCGAAGGATCCGCTG
altero_316
CTTGGGCTAATCAAAACGCGCAAGG





acido_1_17
CGGCAGTCCCCCCAAAGTCCCCGGC
margrpA_1_17
AACTGTATCCCGAAGGATCCGCTGC
altero_317
TCCCACTTGGGCTAATCAAAACGCG





acido_1_18
CCCCGAAGGGGCCTTACCGCTCAAC
margrpA_1_18
AACAACTGTATCCCGAAGGATCCGC
altero_3_18
TTGGGCTAATCAAAACGCGCAAGGC





acido_1_19
CCTCTTCTGGAGTCCCCGAAGGGAA
margrpA_1_19
GTTAGCTCCGGTACCGAAGGGGTCG
altero_3_19
CCCACTTGGGCTAATCAAAACGCGC





acido_1_20
GGCAGTCCCCCCAAAGTCCCCGGCA
margrpA_1_20
TTAGCTCCGGTACCGAAGGGGTCGA
altero_3_20
TCACCGGCAGTCTCCCTATAGTTCC





acido_1_21
AGCCATGCAGCACCTCTTCTGGAGT
margrpA_1_21
GCGTTAGCTCCGGTACCGAAGGGGT
altero_3_21
TGGGCTAATCAAAACGCGCAAGGCC





acido_1_22
CAGCCATGCAGCACCTCTTCTGGAG
margrpA_1_22
CGTTAGCTCCGGTACCGAAGGGGTC
altero_3_22
CCACTTGGGCTAATCAAAACGCGCA





acido_1_23
CCCCCGAAGGGGCCTCACCGCTCAA
margrpA_1_23
TGCGTTAGCTCCGGTACCGAAGGGG
altero_3_23
ATAGTTCCCGACATAACTCGCTGGC





acido_1_24
ACAGCCATGCAGCACCTCTTCTGGA
margrpA_1_24
TCCCTTACGACAGACCTTTACGCTC
altero_3_24
CCATCGCTGGTTAGCAACCCTTTGT





acido_1_25
CCGAAGGGGCCTTACCGCTCAACTT
margrpA_1_25
ACTGTATCCCGAAGGATCCGCTGCA
altero_3_25
GGGCTAATCAAAACGCGCAAGGCCC





acido_2_1
GTCAACTCCCTCCACACCAAGTGTT
margrpA_2_1
GCTGCCTTCGCATTTGACTTTCCTC
gamma_1_1
CTAAAAGGTCAAGCCTCCCAACGGC





acido_2_2
GGTCAACTCCCTCCACACCAAGTGT
margrpA_2_2
GGCTGCCTTCGCATTTGACTTTCCT
gamma_1_2
ACTAAAAGGTCAAGCCTCCCAACGG





acido_2_3
GGGTCAACTCCCTCCACACCAAGTG
margrpA_2_3
AGGCTGCCTTCGCATTTGACTTTCC
gamma_1_3
GAAGAGGCCCTCTTTCCCTCTTAAG





acido_2_4
TCAACTCCCTCCACACCAAGTGTTC
margrpA_2_4
ACAACTGTGCTCCGAAGAGCCCGCT
gamma_1_4
CACTAAAAGGTCAAGCCTCCCAACG





acido_2_5
GGGGTCACCTCCCTCCACACCAAGT
margrpA_2_5
TAACAACTGTGCTCCGAAGAGCCCG
gamma_1_5
GCATGTATTAGGCCTGCCGCCAACG





acido_2_6
AGGGGTCAACTCCCTCCACACCAAG
margrpA_2_6
AACAACTGTGCTCCGAAGAGCCCGC
gamma_1_6
GGCTCCTCCAATAGTGAGAGCTTTC





acido_2_7
CAACTCCCTCCACACCAAGTGTTCA
margrpA_2_7
GATACCATCTTCGGGTACTGCAGAC
gamma_1_7
AAGAGGCCCTCTTTCCCTCTTAAGG





acido_2_8
AAGGGGTCAACTCCCTCCACACCAA
margrpA_2_8
TTAACAACTGTGCTCCGAAGAGCCC
gamma_1_8
CAAGAAGAGGCCCTCTTTCCCTCTT





acido_2_9
GAAGGGGTCAACTCCCTCCACACCA
margrpA_2_9
CAACTGTGCTCCGAAGAGCCCGCTG
gamma_1_9
TCAAGAAGAGGCCCTCTTTCCCTCT





acido_2_10
AACTCCCTCCACACCAAGTGTTCAT
margrpA_2_10
CAGAAGGCTGCCTTCGCATTTGACT
gamma_1_10
TAGCTGCGCCACTAAAAGGTCAAGC





acido_2_11
ACTCCCTCCACACCAAGTGTTCATC
margrpA_2_11
ACCATCTTCGGGTACTGCAGACTTC
gamma_1_11
CAGGCTCCTCCAATAGTGAGAGCTT





acido_2_12
CTCCCTCCACACCAAGTGTTCATCG
margrpA_2_12
TTGCGGTTAGGATACCATCTTCGGG
gamma_1_12
CTCAGCGTCAGTATCAATCCAGGGG





acido_2_13
CAGTCCCCGTAGAGTTCCCGCCATG
margrpA_2_13
CTTGCGGTTAGGATACCATCTTCGG
gamma_1_13
AAAGGTCAAGCCTCCCAACGGCTAG





acido_2_14
TCCCCGTAGAGTTCCCGCCATGACG
margrpA_2_14
CCTTGCGGTTAGGATACCATCTTCG
gamma_1_14
AGAGGCCCTCTTTCCCTCTTAAGGC





acido_2_15
GTCCCCGTAGAGTTCCCGCCATGAC
margrpA_2_15
CCATCTTCGGGTACTGCAGACTTCC
gamma_1_15
GAGGCCCTCTTTCCCTCTTAAGGCG





acido_2_16
AGTCCCCGTAGAGTTCCCGCCATGA
margrpA_2_16
GGATACCATCTTCGGGTACTGCAGA
gamma_1_16
AGAGGCCCTCTTTCCCTCTTAAGGC





acido_2_17
GCAGTCCCCGTAGAGTTCCCGCCAT
margrpA_2_17
ACCTGCCTTACCTTAAACAGCTCCC
gamma_1_17
CCCCCTCTATCGTACTCTAGCCTAT





acido_2_18
GGCAGTCCCCGTAGAGTTCCCGCCA
margrpA_2_18
CCTGCCTTACCTTAAACAGCTCCCT
gamma_1_18
CCCCTCTATCGTACTCTAGCCTATC





acido_2_19
CCGGCACGGAAGGGGTCAACTCCCT
margrpA_2_19
CCAGAAGGCTGCCTTCGCATTTGAC
gamma_1_19
TTCAAGAAGAGGCCCTCTTTCCCTC





acido_2_20
ACGCGCTGGCAACTACGGGTAAGGG
margrpA_2_20
TGCGGTTAGGATACCATCTTCGGGT
gamma_1_20
AGGCCCTCTTTCCCTCTTAAGGCGT





acido_2_21
GACGCGCTGGCAACTACGGGTAAGG
margrpA_2_21
CGAAGAGCCCGCTGCATTATTTGGT
gamma_1_21
GCCCTCTTTCCCTCTTAAGGCGTAT





acido_2_22
TGACGCGCTGGCAACTACGGGTAAG
margrpA_2_22
CCACCATGAATTCTGCGTTCCTCTC
gamma_1_22
CCCTCTTTCCCTCTTAAGGCGTATG





acido_2_23
AGCTCCGGCACGGAAGGGGTCAACT
margrpA_2_23
CCTCCTTGCGGTTAGGATACCATCT
gamma_1_23
CTCTTTCCCTCTTAAGGCGTATGCG





acido_2_24
GCTCCGGCACGGAAGGGGTCAACTC
margrpA_2_24
CATCTTCGGGTACTGCAGACTTCCA
gamma_1_24
CCTCTTTCCCTCTTAAGGCGTATGC





acido_2_25
CTCCGGCACGGAAGGGGTCAACTCC
margrpA_2_25
CGGTTAGGATACCATCTTCGGGTAC
gamma_1_25
GGCCCTCTTTCCCTCTTAAGGCGTA





acido_3_1
CTCACGGCATTCGTCCCACTCGACA
OP10_1_1
CCGCTTGCACGGGCAGTTCCGTAAG
gamma_2_1
TACCTGCTAGCAACCAGGGATAGGG





acido_3_2
CGAGGTCCCCACGGTGTCATGCGGT
OP10_1_2
CCCGCTTGCACGGGCAGTTCCGTAA
gamma_2_2
CAGCATTACCTGCTAGCAACCAGGG





acido_3_3
TCACCCTCACGGCATTCGTCCCACT
OP10_1_3
CGCTTGCACGGGCAGTTCCGTAAGA
gamma_2_3
TTACCTGCTAGCAACCAGGGATAGG





acido_3_4
AGGTCCCCACGGTGTCATGCGGTAT
OP10_1_4
TCCCGCTTGCACGGGCAGTTCCGTA
gamma_2_4
ACCTGCTAGCAACCAGGGATAGGGG





acido_3_5
GGACCGAGGTCCCCACGGTGTCATG
OP10_1_5
GGGTGCAGACAATTCAGGTGACTTG
gamma_2_5
TCAGCATTACCTGCTAGCAACCAGG





acido_3_6
CCGAGGTCCCCACGGTGTCATGCGG
OP10_1_6
CTCCCGCTTGCACGGGCAGTTCCGT
gamma_2_6
TCTCCCTGGAGTTCTCAGCATTACC





acido_3_7
ACCCTCACGGCATTCGTCCCACTCG
OP10_1_7
CCTCCCGCTTGCACGGGCAGTTCCG
gamma_2_7
GTCTCCCTGGAGTTCTCAGCATTAC





acido_3_8
ACCGAGGTCCCCACGGTGTCATGCG
OP10_1_8
GCTTGCACGGGCAGTTCCGTAAGAG
gamma_2_8
CAGTCTCCCTGGAGTTCTCAGCATT





acido_3_9
CACCCTCACGGCATTCGTCCCACTC
OP10_1_9
CGGGTGCAGACAATTCAGGTGACTT
gamma_2_9
TCCCTGGAGTTCTCAGCATTACCTG





acido_3_10
GACCGAGGTCCCCACGGTGTCATGC
OP10_1_10
CCGTAAGAGTTCCCGACTTTACGCT
gamma_2_10
CTCCCTGGAGTTCTCAGCATTACCT





acido_3_11
CCTCACGGCATTCGTCCCACTCGAC
OP10_1_11
GCAGACAATTCAGGTGACTTGACGG
gamma_2_11
GCAGTCTCCCTGGAGTTCTCAGCAT





acido_3_12
TTCACCCTCACGGCATTCGTCCCAC
OP10_1_12
TCGGGTGCAGACAATTCAGGTGACT
gamma_2_12
GGCAGTCTCCCTGGAGTTCTCAGCA





acido_3_13
GAGGTCCCCACGGTGTCATGCGGTA
OP10_1_13
CGTAAGAGTTCCCGACTTTACGCTG
gamma_2_13
CCTGCTAGCAACCAGGGATAGGGGT





acido_3_14
CCCTCACGGCATTCGTCCCACTCGA
OP10_1_14
TTGCACGGGCAGTTCCGTAAGAGTT
gamma_2_14
TGCTAGCAACCAGGGATAGGGGTTG





acido_3_15
GGTCCCCACGGTGTCATGCGGTATT
OP10_1_15
TCCGTAAGAGTTCCCGACTTTACGC
gamma_2_15
CTGCTAGCAACCAGGGATAGGGGTT





acido_3_16
GTCCCCACGGTGTCATGCGGTATTA
OP10_1_16
GGCAGTTCCGTAAGAGTTCCCGACT
gamma_2_16
TAGCAACCAGGGATAGGGGTTGCGC





acido_3_17
GATTGTTCACCCTCACGGCATTCGT
OP10_1_17
CTTGCACGGGCAGTTCCGTAAGACT
gamma_2_17
AGCAACCAGGGATAGGGGTTGCGCT





acido_3_18
AGGACCGAGGTCCCCACGGTGTCAT
OP10_1_18
CGGGCAGTTCCGTAAGAGTTCCCGA
gamma_2_18
CTCAGCATTACCTGCTAGCAACCAG





acido_3_19
ATTGTTCACCTTCACGGCATTCGTC
OP10_1_19
TGCACGGGCAGTTCCGTAAGAGTTC
gamma_2_19
CTAGCAACCAGGGATAGGGGTTGCG





acido_3_20
TTGTTCACCCTCACGGCATTCGTCC
OP10_1_20
ACGGGCAGTTCCGTAAGAGTTCCCG
gamma_2_20
GCTAGCAACCAGGGATAGGGGTTGC





acido_3_21
TGTTCACCCTCACGGCATTCGTCCC
OP10_1_21
GCACGGGCAGTTCCGTAAGAGTTCC
gamma_2_21
GCATTACCTGCTAGCAACCAGGGAT





acido_3_22
GGATTGTTCACCCTCACGGCATTCG
OP10_1_22
CACGGGCAGTTCCGTAAGAGTTCCC
gamma_2_22
AGCATTACCTGCTAGCAACCAGGGA





acido_3_23
CACGGCATTCGTCCCACTCGACAGG
OP10_1_23
GCAGTTCCGTAAGAGTTCCCGACTT
gamma_2_23
TCGCGAGTTGGCAGCCCTCTGTACG





acido_3_24
TCACGGCATTCGTCCCACTCGACAG
OP10_1_24
GGGCAGTTCCGTAAGAGTTCCCGAC
gamma_2_24
CTCGCGAGTTGGCAGCCCTCTGTAC





acido_3_25
GCTTTGATCGCAAGGACCGAGGTCC
OP10_1_25
CCCCCTTACTCCCCACACCTTAGAC
gamma_2_25
CGCGAGTTGGCAGCCCTCTGTACGC





actino_1_1
AAACCTAGATCCGTCATCCCACACG
OP3_1_1
ATCCAAGGGTGATAGGTCCTTACGG
gamma_3_1
TGCGACACCGAAGGGCAACCCCCCC





actino_1_2
CAAACCTAGATCCGTCATCCCACAC
OP3_1_2
TCCAAGGGTGATAGGTCCTTACGGA
gamma_3_2
CTGCGACACCGAAGGGCAACCCCCC





actino_1_3
CACCACCTGTATAGGGCGCTAATGC
OP3_1_3
CCAAGGGTGATAGGTCCTTACGGAT
gamma_3_3
GACTAGTTCCGAGTATGTCAAGGGC





actino_1_4
ACCACCTGTATAGGGCGCTAATGCA
OP3_1_4
TGTTCTCCCCTGCTGACAGGAGTTT
gamma_3_4
GCTGCGACACCGAAGGGCAACCCCC





actino_1_5
CCACCTGTATAGGGCGCTAATGCAC
OP3_1_5
TTGTTCTCCCCTGCTGACAGGAGTT
gamma_3_5
AACGCGCTAGCTGCGACACCGAAGG





actino_1_6
CACCTGTATAGGGCGCTAATGCACA
OP3_1_6
CTTGTTCTCCCCTGCTGACAGGAGT
gamma_3_6
TAACGCGCTAGCTGCGACACCGAAG





actino_1_7
GCACCACCTGTATAGGGCGCTAATG
OP3_1_7
GTTCTCCCCTGCTGACAGGAGTTTA
gamma_3_7
TTACTTAACCGCCAACGCGCGCTTT





actino_1_8
AACCTAGATCCGTCATCCCACACGC
OP3_1_8
CATCCAAGGGTGATAGGTCCTTACG
gamma_3_8
ACGCGCTAGCTGCGACACCGAAGGG





actino_1_9
TGCACCACCTGTATAGGGCGCTAAT
OP3_1_9
TCGACAGGTTATCCCGAACCCTAGG
gamma_3_9
TTAACGCGCTAGCTGCGACACCGAA





actino_1_10
AGCCCTGAACTTTCACGACCGACTT
OP3_1_10
TTCGACAGGTTATCCCGAACCCTAG
gamma_3_10
CGCGCTAGCTGCGACACCGAAGGGC





actino_1_11
GCCCTGAACTTTCACGACCGACTTG
OP3_1_11
TTCTCCCCTGCTGACAGGAGTTTAC
gamma_3_11
TACTTAACCGCCAACGCGCGCTTTA





actino_1_12
GAGCCCTGAACTTTCACGACCGACT
OP3_1_12
CCATCCAAGGGTGATAGGTCCTTAC
gamma_3_12
AGCTGCGACACCGAAGGGCAACCCC





actino_1_13
AGCGTCGATAGCGGCCCAGTGAGCT
OP3_1_13
TGATAGGTCCTTACGGATCCCCATC
gamma_3_13
CTTACTTAACCGCCAACGCGCGCTT





actino_1_14
GCGTCGATAGCGGCCCAGTGAGCTG
OP3_1_14
TCTCCCCTGCTGACAGGAGTTTACA
gamma_3_14
ATCCGACTTACTTAACCGCCAACGC





actino_1_15
CGTCGATAGCGGCCCAGTGAGCTGC
OP3_1_15
CGGATCCCCATCTTTCCCTCATGTT
gamma_3_15
CGACTTACTTAACCGCCAACGCGCG





actino_1_16
CAGCGTCGATAGCGGCCCAGTGAGC
OP3_1_16
TCCTTGCCGGTTAGGCAACCTACTT
gamma_3_16
TCCGACTTACTTAACCGCCAACGCG





actino_1_17
CCCTGAACTTTCACGACCGACTTGT
OP3_1_17
AGTGCGCACCGACCGAAGTCGGTGT
gamma_3_17
CTTAACGCGCTAGCTGCGACACCGA





actino_1_18
TGAGCCCTGAACTTTCACGACCGAC
OP3_1_18
CCAGTAATGCGCCTTCGCGACTGGT
gamma_3_18
ACTTACTTAACCGCCAACGCGCGCT





actino_1_19
ACCTAGATCCGTCATCCCACACGCG
OP3_1_19
AGAGTGCGCACCGACCGAAGTCGGT
gamma_3_19
GCGCTAGCTGCGACACCGAAGGGCA





actino_1_20
CTCGGGCTATCCCAGTAACTAAGGT
OP3_1_20
TCGAAAAGCACAGGACGTATCCGGT
gamma_3_20
CCGACTTACTTAACCGCCAACGCGC





actino_1_21
CCTCGGGCTATCCCAGTAACTAAGG
OP3_1_21
CTGTGCTTCGAAAAGCACAGGACGT
gamma_3_21
ACTTAACCGCCAACGCGCGCTTTAC





actino_1_22
TCGATAGCGGCCCAGTGAGCTGCCT
OP3_1_22
CCTTAGAGTGCGCACCGACCGAAGT
gamma_3_22
CATCCGACTTACTTAACCGCCAACG





actino_1_23
GTCGATAGCGGCCCAGTGAGCTGCC
OP3_1_23
GCCCTCCTTGCCGGTTAGGCAACCT
gamma_3_23
TCTTCACACACGCGGCATTGCTAGA





actino_1_24
CGATAGCGGCCCAGTGAGCTGCCTT
OP3_1_24
CTCCTTGCCGGTTAGGCAACCTACT
gamma_3_24
AGAACTTAACGCGCTAGCTGCGACA





actino_1_25
TCCTCGGGCTATCCCAGTAACTAAG
OP3_1_25
CAGTAATGCGCCTTCGCGACTGGTG
gamma_3_25
ACTTAACGCGCTAGCTGCGACACCG





actino_2_1
CCGGTTTCCCCAAGTGCAAGCACTT
OP9_1_1
GGGCAAGATAATGTCAAGTCCCGGT
gamma_4_1
ACACCGAAAGGCAAACCCTCCCGAC





actino_2_2
CAAGCACTTGGTTCGTCCCTCGACT
OP9_1_2
GCTGGCACATAATTAGCCGGAGCTT
gamma_4_2
GACACCGAAAGGCAAACCCTCCCGA





actino_2_3
GCCGGTTTCCCCAAGTGCAAGCACT
OP9_1_3
TGCTGGCACATAATTAGCCGGAGCT
gamma_4_3
CACCGAAAGGCAAACCCTCCCGACA





actino_2_4
GCTTCGACACGGAAATCGTGAACTG
OP9_1_4
CCACTTACCAGGGTAGATTACCCAC
gamma_4_4
ACCGAAAGGCAAACCCTCCCGACAT





actino_2_5
TTCGCCGGTTTCCCCAAGTGCAAGC
OP9_1_5
CCCCACTTACAGGGTAGATTACCCA
gamma_4_5
CGACACCGAAAGGCAAACCCTCCCG





actino_2_6
CGACACGGAAATCGTGAACTGATCC
OP9_1_6
CCCCCACTTACAGGGTAGATTACCC
gamma_4_6
CCGAAAGGCAAACCCTCCCGACATC





actino_2_7
GACACGGAAATCGTGAACTGATCCC
OP9_1_7
CTGCTAACCTCATCATCCCGAAGGA
gamma_4_7
GCGACACCGAAAGGCAAACCCTCCC





actino_2_8
ACACGGAAATCGTGAACTGATCCCC
OP9_1_8
TCTGCTAACCTCATCATCCCGAAGG
gamma_4_8
CGAAAGGCAAACCCTCCCGACATCT





actino_2_9
CGCCGGTTTCCCCAAGTGCAAGCAC
OP9_1_9
CTGCTGGCACATAATTAGCCGGAGC
gamma_4_9
GCTGCGACACCGAAAGGCAAACCCT





actino_2_10
ACGGAAATCGTGAACTGATCCCCAC
OP9_1_10
CCACTTACAGGGTAGATTACCCACG
gamma_4_10
AGCTGCGACACCGAAAGGCAAACCC





actino_2_11
TCGCCGGTTTCCCCAAGTGCAAGCA
OP9_1_11
GACGGGCAAGATAATGTCAAGTCCC
gamma_4_11
TTGGCTAGCCATTGCTGGTTTGCAG





actino_2_12
CACGGAAATCGTGAACTGATCCCCA
OP9_1_12
TCCCCCACTTACAGGGTAGATTACC
gamma_4_12
TGGCTAGCCATTGCTGGTTTGCAGC





actino_2_13
CGGTTTCCCCAAGTGCAAGCACTTG
OP9_1_13
GCAGTCTGCCTAGAGTGCACTTGTA
gamma_4_13
GGATTGGCTAGCCATTGCTGGTTTG





actino_2_14
AAGTGCAAGCACTTGGTTCGTCCCT
OP9_1_14
GCTGCTGGCACATAATTAGCCGGAG
gamma_4_14
GATTGGCTAGCCATTGCTGGTTTGC





actino_2_15
GTTCGCCGGTTTCCCCAAGTGCAAG
OP9_1_15
GGGTACCGTCAGGCTTAAGGGTTTA
gamma_4_15
GGGATTGGCTAGCCATTGCTGGTTT





actino_2_16
CGGAAATCGTGAACTGATCCCCACA
OP9_1_16
CACTTACAGGGTAGATTACCCACGC
gamma_4_16
GGCTAGCCATTGCTGGTTTGCAGCC





actino_2_17
GCAAGCACTTGGTTCGTCCCTCGAC
OP9_1_17
GGCAGTCTGCCTAGAGTGCACTTGT
gamma_4_17
GAAAGGCAAACCCTCCCGACATCTA





actino_2_18
CGTTCGCCGGTTTCCCCAAGTGCAA
OP9_1_18
GGTTATCCCCCACTTACAGGGTAGA
gamma_4_18
CTGCGACACCGAAAGGCAAACCCTC





actino_2_19
AAGCACTTGGTTCGTCCCTCGACTT
OP9_1_19
GAGGGTTATCCCCCACTTACAGGGT
gamma_4_19
TGCGACACCGAAAGGCAAACCCTCC





actino_2_20
GGTTTCCCCAAGTGCAAGCACTTGG
OP9_1_20
GGGTTATCCCCCACTTACAGGGTAG
gamma_4_20
AGGGATTGGCTAGCCATTGCTGGTT





actino_2_21
AGTGCAAGCACTTGGTTCGTCCCTC
OP9_1_21
GTCAGAGATAGACCAGAAAGCCGCC
gamma_4_21
AAGGGATTGGCTAGCCATTGCTGGT





actino_2_22
CAAGTGCAAGCACTTGGTTCGTCCC
OP9_1_22
GGGGTACCGTCAGGCTTAAGGGTTT
gamma_4_22
TAAGGGATTGGCTAGCCATTGCTGG





actino_2_23
CCGTTCGCCGGTTTCCCCAAGTGCA
OP9_1_23
AGGGTTATCCCCCACTTACAGGGTA
gamma_4_23
TAGCTGCGACACCGAAAGGCAAACC





actino_2_24
CCGTAGTTATCCCGGTGTACAGGGC
OP9_1_24
CGGCAGTCTGCCTAGAGTGCACTTG
gamma_4_24
TTAGCTGCGACACCGAAAGGCAAAC





actino_2_25
CCTCAAGCCTTGCAGTATCGACTGC
OP9_1_25
CTCCGCATTATCTGCGGCAGTCTGC
gamma_4_25
GTTAGCTGCGACACCGAAAGGCAAA





bacter_1_1
GTTTCCGCGACTGTCATTCCACGTT
plancto_1_1
TGCAACACCTGTGCAGGTCACACCC
gamma_5_1
CCACTAAGGGACAAATTCCCCCAAC





bacter_1_2
TTCCGCGACTGTCATTCCACGTTCG
plancto_1_2
GCAACACCTGTGCAGGTCACACCCG
gamma_5_2
CGCCACTAAGGGACAAATTCCCCCA





bacter_1_3
ACGTTTCCGCGACTGTCATTCCACG
plancto_1_3
ATGCAACACCTGTGCAGGTCACACC
gamma_5_3
GCCACTAAGGGACAAATTCCCCCAA





bacter_1_4
TTTCCGCGACTGTCATTCCACGTTC
plancto_1_4
AACACCTGTGCAGGTCACACCCGAA
gamma_5_4
CACTAAGGGACAAATTCCCCCAACG





bacter_1_5
CACGTTTCCGCGACTGTCATTCCAC
plancto_1_5
CAACACCTGTGCAGGTCACACCCGA
gamma_5_5
ACTAAGGGACAAATTCCCCCAACGG





bacter_1_6
TCACGTTTCCGCGACTGTCATTCCA
plancto_1_6
TGTGCAGGTCACACCCGAAGGTAAT
gamma_5_6
CTAAGGGACAAATTCCCCCAACGGC





bacter_1_7
CGTTTCCGCGACTGTCATTCCACGT
plancto_1_7
GTGCAGGTCACACCCGAAGGTAATC
gamma_5_7
GCGCCACTAAGGGACAAATTCCCCC





bacter_1_8
TGTCATTCCACGTTCGAGCCCAGGT
plancto_1_8
TGCAGGTCACACCCGAAGGTAATCA
gamma_5_8
GGTACCGTCAAGACGCGCATGGATT





bacter_1_9
CTGTCATTCCACGTTCGAGCCCAGG
plancto_1_9
CTGTGCAGGTCACACCCGAAGGTAA
gamma_5_9
AGGTACCGTCAAGACGCGCAGTTAT





bacter_1_10
CCGCGACTGTCATTCCACGTTCGAG
plancto_1_10
CCTGTGCAGGTCACACCCGAAGGTA
gamma_5_10
TAGGTACCGTCAAGACGCGCAGTTA





bacter_1_11
ACTGTCATTCCACGTTCGAGCCCAG
plancto_1_11
ACACCTGTGCAGGTCACACCCGAAG
gamma_5_11
TGCGCCACTAAGGGACAAATTCCCC





bacter_1_12
CGCGACTGTCATTCCACGTTCGAGC
plancto_1_12
ACAGAGTTAGCCAGTGCTTCCTCTC
gamma_5_12
TAAGGGACAAATTCCCCCAACGGCT





bacter_1_13
GCGACTGTCATTCCACGTTCGAGCC
plancto_1_13
ACCTGTGCAGGTCACACCCGAAGGT
gamma_5_13
CTGTAGGTACCGTCAAGACGCGCAG





bacter_1_14
CGACTGTCATTCCACGTTCGAGCCC
plancto_1_14
CATGCAACACCTGTGCAGGTCACAC
gamma_5_14
GTAGGTACCGTCAAGACGCGCAGTT





bacter_1_15
TCCGCGACTGTCATTCCACGTTCGA
plancto_1_15
CACCTGTGCAGGTCACACCCGAAGG
gamma_5_15
CTGCGCCACTAAGGGACAAATTCCC





bacter_1_16
GACTGTCATTCCACGTTCGAGCCCA
plancto_1_16
CACAGAGTTAGCCAGTGCTTCCTCT
gamma_5_16
TGTAGGTACCGTCAAGACGCGCAGT





bacter_1_17
ATCACGTTTCCGCGACTGTCATTCC
plancto_1_17
CAGAGTTAGCCAGTGCTTCCTCTCG
gamma_5_17
TCTGTAGGTACCGTCAAGACGCGCA





bacter_1_18
GTCATTCCACGTTCGAGCCCAGGTA
plancto_1_18
AGCCAGTGCTTCCTCTCGAGCTTAC
gamma_5_18
GTCCGCCACTCGACGCCTGAAGAGC





bacter_1_19
ACGGTACCATCAGCACCGATACACG
plancto_1_19
GCACAGAGTTAGCCAGTGCTTCCTC
gamma_5_19
GCCACTCGACGCCTGAAGAGCAAGC





bacter_1_20
GTACCATCAGCACCGATACACGACC
plancto_1_20
GGCCTAGCCCCTGCATGTCAAGCCT
gamma_5_20
GCTGCGCCACTAAGGGACAAATTCC





bacter_1_21
GGTACCATCAGCACCGATACACGAC
plancto_1_21
GCAGGTCACACCCGAAGGTAATCAG
gamma_5_21
CACTCGGTTCCCGAAGGCACCAAAC





bacter_1_22
CGGTACCATCAGCACCGATACACGA
plancto_1_22
ACCGGCCTAGCCCCTGCATGTCAAG
gamma_5_22
CTTCTGTAGGTACCGTCAAGACGCG





bacter_1_23
GATCACGTTTCCGCGACTGTCATTC
plancto_1_23
CAGGTCACACCCGAAGGTAATCAGC
gamma_5_23
CACTCGACGCCTGAAGAGCAAGCTC





bacter_1_24
TACGGTACCATCAGCACCGATACAC
plancto_1_24
CCGGCCTAGCCCCTGCATGTCAAGC
gamma_5_24
CGCCACTCGACGCCTGAAGAGCAAG





bacter_1_25
CACCGATACACGACCGGTGGTTTTT
plancto_1_25
CGGCCTAGCCCCTGCATGTCAAGCC
gamma_5_25
GGACAAATTCCCCCAACGGCTAGTT





bacter_2_1
GGATTTCTCCGGGCTACCTTCCGGT
plancto_2_1
TCTCCGAAGAGCACTCTCCCCTTTC
gamma_6_1
AGCTGCGCCACCAACCTCTTGAATG





bacter_2_2
CTCCGGGCTACCTTCCGGTAAAGGG
plancto_2_2
TACGACCGAGAAACTGTGGGAGGTC
gamma_6_2
CCAACCTCTTGAATGAGGCCGACGG





bacter_2_3
CGGATTTCTCCGGGCTACCTTCCGG
plancto_2_3
ACCGAGAAACTGTGGGAGGTCCCTC
gamma_6_3
TGCGCCACCAACCTCTTGAATGAGG





bacter_2_4
TCTCCGGGCTACCTTCCGGTAAAGG
plancto_2_4
CGACCGAGAAACTGTGGGAGGTCCC
gamma_6_4
GCCACCAACCTCTTGAATGAGGCCG





bacter_2_5
TTCTCCGGGCTACCTTCCGGTAAAG
plancto_2_5
CTCCGAAGAGCACTCTCCCCTTTCA
gamma_6_5
ACCAACCTCTTGAATGAGGCCGACG





bacter_2_6
TTTCTCCGGGCTACCTTCCGGTAAA
plancto_2_6
GCCCGACCTTCCTCTGAGGTTTGGT
gamma_6_6
CTGCGCCACCAACCTCTTGAATGAG





bacter_2_7
GATTTCTCCGGGCTACCTTCCGGTA
plancto_2_7
AAACTGTGGGAGGTCCCTCGATCCA
gamma_6_7
CAACCTCTTGAATGAGGCCGACGGC





bacter_2_8
ATTTCTCCGGGCTACCTTCCGGTAA
plancto_2_8
TCCGAAGAGCACTCTCCCCTTTCAG
gamma_6_8
GCGCCACCAACCTCTTGAATGAGGC





bacter_2_9
CCGGATTTCTCCGGGCTACCTTCCG
plancto_2_9
GACCGAGAAACTGTGGGAGGTCCCT
gamma_6_9
CGCCACCAACCTCTTGAATGAGGCC





bacter_2_10
TCCGGATTTCTCCGGGCTACCTTCC
plancto_2_10
ACGACCGAGAAACTGTGGGAGGTCC
gamma_6_10
CACCAACCTCTTGAATGAGGCCGAC





bacter_2_11
TCCGGGCTACCTTCCGGTAAAGGGT
plancto_2_11
GAAACTGTGGGAGGTCCCTCGATCC
gamma_6_11
GCTGCGCCACCAACCTCTTGAATGA





bacter_2_12
ATCCGGATTTCTCCGGGCTACCTTC
plancto_2_12
CTCTCCGAAGAGCACTCTCCCCTTT
gamma_6_12
CCACCAACCTCTTGAATGAGGCCGA





bacter_2_13
CTTTATGGATTAGCTCCCCGTCGCT
plancto_2_13
GCCTGGAGGTAGGTATCTACCTGTT
gamma_6_13
TAGCTGCGCCACCAACCTCTTGAAT





bacter_2_14
ACTTTATGGATTAGCTCCCCGTCGC
plancto_2_14
TCCCGACGCTATTCCCAGCCTGGAG
gamma_6_14
AACCTCTTGAATGAGGCCGACGGCT





bacter_2_15
CCGGGCTACCTTCCGGTAAAGGGTA
plancto_2_15
TTGGGCATTACCGCCAGTTTCCCGA
gamma_6_15
AGAGGTCCACTTTGCCCCGAAGGGC





bacter_2_16
AATCCGGATTTCTCCGGGCTACCTT
plancto_2_16
CCGAGAAACTGTGGGAGGTCCCTCG
gamma_6_16
GAGGTCCACTTTGCCCCGAAGGGCG





bacter_2_17
GCTACCTTCCGGTAAAGGGTAGGTT
plancto_2_17
TGAGCAGACCCATCTCCAGGCGCCG
gamma_6_17
TCTTCAGGTAACGTCAATACGCGCG





bacter_2_18
GGCTACCTTCCGGTAAAGGGTAGGT
plancto_2_18
AACTGTGGGAGGTCCCTCGATCCAG
gamma_6_18
TTAGCTGCGCCACCAACCTCTTGAA





bacter_2_19
GGGCTACCTTCCGGTAAAGGGTAGG
plancto_2_19
CCCGACCTTCCTCTGAGGTTTGGTC
gamma_6_19
CAGAGGTCCACTTTGCCCCGAAGGG





bacter_2_20
TAATCCGGATTTCTCCGGGCTACCT
plancto_2_20
TGGGCATTACCGCCAGTTTCCCGAC
gamma_6_20
AGGTCCACTTTGCCCCGAAGGGCGT





bacter_2_21
CTACCTTCCGGTAAAGGGTAGGTTG
plancto_2_21
CGAGAAACTGTGGGAGGTCCCTCGA
gamma_6_21
ACCTCTTGAATGAGGCCGACGGCTA





bacter_2_22
CGGGCTACCTTCCGGTAAAGGGTAG
plancto_2_22
GAGAAACTGTGGGAGGTCCCTCGAT
gamma_6_22
CGCGCGGGTATTAACCGCACGCTTT





bacter_2_23
TTAATCCGGATTTCTCCGGGCTACC
plancto_2_23
CAGCCTGGAGGTAGGTATCTACCTG
gamma_6_23
CTTCAGGTAACGTCAATACGCGCGG





bacter_2_24
TTTATGGATTAGCTCCCCGTCGCTG
plancto_2_24
AGCCCGACCTTCCTCTGAGGTTTGG
gamma_6_24
TCAGAGGTCCACTTTGCCCCGAAGG





bacter_2_25
TACCTTCCGGTAAAGGGTAGGTTGC
plancto_2_25
AATAGTGAGCAGACCCATCTCCAGG
gamma_6_25
ACGCGCGGGTATTAACCGCACGCTT





bacter_3_1
GGCTCCTCGCCGTATCATCGAAATT
plancto_3_1
CGCAGTGCCTCAGTTAAGCTCAGGC
gamma_7_1
GTCCTCCGTAGTTAGACTAGCCACT





bacter_3_2
CAACCTTGCCAATCACTCCCCAGGT
plancto_3_2
GCAGTGCCTCAGTTAAGCTCAGGCA
gamma_7_2
CGTCCTCCGTAGTTAGACTAGCCAC





bacter_3_3
CTTGCCAATCACTCCCCAGGTGGAT
plancto_3_3
CAACTCTGAGGGAGTACCCTCAGAG
gamma_7_3
ACCGTCCTCCGTAGTTAGACTAGCC





bacter_3_4
CAGGTAAGGCTCCTCGCCGTATCAT
plancto_3_4
GTCAACTCTGAGGGAGTACCCTCAG
gamma_7_4
CCGTCCTCCGTAGTTAGACTAGCCA





bacter_3_5
AGGCTCCTCGCCGTATCATCGAAAT
plancto_3_5
TATGTTTTCCTACGCCGTTCGCCGC
gamma_7_5
GACCGTCCTCCGTAGTTAGACTAGC





bacter_3_6
AACCTTGCCAATCACTCCCCAGGTG
plancto_3_6
GCAGAAAGAGGAAACCTCCTCCCGC
gamma_7_6
TGACCGTCCTCCGTAGTTAGACTAG





bacter_3_7
ACCTTGCCAATCACTCCCCAGGTGG
plancto_3_7
AACTCTGAGGGAGTACCCTCAGAGA
gamma_7_7
CTGCAGGTAACGTCAAGTACTCACC





bacter_3_8
TCAACCTTGCCAATCACTCCCCAGG
plancto_3_8
TCAACTCTGAGGGAGTACCCTCAGA
gamma_7_8
TATTAGGGGTAAGCCTTCCTCCCTG





bacter_3_9
GGTAAGGCTCCTCGCCGTATCATCG
plancto_3_9
CTATGTTTTCCTACGCCGTTGGCCG
gamma_7_9
TGCAGGTAACGTCAAGTACTCACCC





bacter_3_10
TCCGCCTACCCCAACTATACTCTAG
plancto_3_10
TCCTATGTTTTCCTACGCCGTTCGC
gamma_7_10
GCAGGTAACGTCAAGTACTCACCCG





bacter_3_11
TTCAACCTTGCCAATCACTCCCCAG
plancto_3_11
CCTATGTTTTCCTACGCCGTTCGCC
gamma_7_11
TTCCCCGGGTTGTCCCCCACTCATG





bacter_3_12
CCCAGGTAAGGCTCCTCGCCGTATC
plancto_3_12
ACTCTGAGGGAGTACCCTCAGAGAT
gamma_7_12
TCCCCGGGTTGTCCCCCACTCATGG





bacter_3_13
AGGTAAGGCTCCTCGCCGTATCATC
plancto_3_13
ACGCAGTGCCTCAGTTAAGCTCAGG
gamma_7_13
CCCCGGGTTGTCCCCCACTCATGGG





bacter_3_14
CCAATCACTCCCCAGGTGGATTACC
plancto_3_14
TGTCAACTCTGAGGGAGTACCCTCA
gamma_7_14
TTTCCCCGGGTTGTCCCCCACTCAT





bacter_3_15
CCTTGCCAATCACTCCCCAGGTGGA
plancto_3_15
ATGTTTTCCTACGCCGTTCGCCGCT
gamma_7_15
CCCGGGTTGTCCCCCACTCATGGGT





bacter_3_16
GTAAGGCTCCTCGCCGTATCATCGA
plancto_3_16
AACGCAGTGCCTCAGTTAAGCTCAG
gamma_7_16
CCGGGTTGTCCCCCACTCATGGGTA





bacter_3_17
CCGCCTACCCCAACTATACTCTAGA
plancto_3_17
CAGTGCCTCAGTTAAGCTCAGGCAT
gamma_7_17
CTCACCCGTATTAGGGGTAAGCCTT





bacter_3_18
CCAGGTAAGGCTCCTCGCCGTATCA
plancto_3_18
CTGTCAACTCTGAGGGAGTACCCTC
gamma_7_18
ACCCGTATTAGGGGTAAGCCTTCCT





bacter_3_19
AAGGCTCCTCGCCGTATCATCGAAA
plancto_3_19
CTCTGAGGGAGTACCCTCAGAGATT
gamma_7_19
ACTCACCCGTATTAGGGGTAAGCCT





bacter_3_20
GCCAATCACTCCCCAGGTGGATTAC
plancto_3_20
TCTGTCAACTCTGAGGGAGTACCCT
gamma_7_20
GTCAAGTACTCACCCGTATTAGGGG





bacter_3_21
TAAGGCTCCTCGCCGTATCATCGAA
plancto_3_21
GGAGTACCCTCAGAGATTTCATCCC
gamma_7_21
TCACCCGTATTAGGGGTAAGCCTTC





bacter_3_22
GCCCAGGTAAGGCTCCTCGCCGTAT
plancto_3_22
CAAACGCAGTGCCTCAGTTAAGCTC
gamma_7_22
CCCGTATTAGGGGTAAGCCTTCCTC





bacter_3_23
CATTCCGCCTACCCCAACTATACTC
plancto_3_23
CTCTGTCAACTCTGAGGGAGTACCC
gamma_7_23
GTACTCACCCGTATTAGGGGTAAGC





bacter_3_24
CAATCACTCCCCAGGTGGATTACCT
plancto_3_24
ACAGCAGAAAGAGGAAACCTCCTCC
gamma_7_24
CACCCGTATTAGGGGTAAGCCTTCC





bacter_3_25
CCGCCGGAACTTTGATCATCAAGAG
plancto_3_25
CTGAGGGAGTACCCTCAGAGATTTC
gamma_7_25
TACTCACCCGTATTAGGGGTAAGCC





flavo_1_1
CTCAGACACCAAGGTCCAAACAGCT
plancto_4_1
ACTACCTAATATCGCATCGGCCGCT
gamma_8_1
CGCGAGCTCATCCATCAGCACAAGG





flavo_1_2
CAGACACCAAGGTCCAAACAGCTAG
plancto_4_2
CAACTACCTAATATCGCATCGGCCG
gamma_8_2
TCATCCATCAGCACAAGGTCCGAAG





flavo_1_3
CACTCAGACACCAAGGTCCAAACAG
plancto_4_3
AACTACCTAATATCGCATCGGCCGC
gamma_8_3
CTCATCCATCAGCACAAGGTCCGAA





flavo_1_4
GCTTAGCCACTCAGACACCAAGGTC
plancto_4_4
CCAACTACCTAATATCGCATCGGCC
gamma_8_4
GCTCATCCATCAGCACAAGGTCCGA





flavo_1_5
ACTCAGACACCAAGGTCCAAACAGC
plancto_4_5
ACGTTCCGATGTATTCCTACCCCGT
gamma_8_5
ACGCGAGCTCATCCATCAGCACAAG





flavo_1_6
CTTAGCCACTCAGACACCAAGGTCC
plancto_4_6
TACGTTCCGATGTATTCCTACCCCG
gamma_8_6
CATCCATCAGCACAAGGTCCGAAGA





flavo_1_7
TACCGTCAAGCTTGGTACACGTACC
plancto_4_7
GTACGTTCCGATGTATTCCTACCCC
gamma_8_7
GACGCGAGCTCATCCATCAGCACAA





flavo_1_8
GTACCGTCAAGCTTGGTACACGTAC
plancto_4_8
CTACCTAATATCGCATCGGCCGCTC
gamma_8_8
GCGAGCTCATCCATCAGCACAAGGT





flavo_1_9
GCCACTCAGACACCAAGGTCCAAAC
plancto_4_9
CGTTCCGATGTATTCCTACCCCGTT
gamma_8_9
TCCATCAGCACAAGGTCCGAAGATC





flavo_1_10
TTAGCCACTCAGACACCAAGGTCCA
plancto_4_10
GTTTCCACCCACTAATCCGTGCATG
gamma_8_10
CGACGCGAGCTCATCCATCAGCACA





flavo_1_11
ACCGTCAAGCTTGGTACACGTACCA
plancto_4_11
TTCCACCCACTAATCCGTGCATGTC
gamma_8_11
CATCAGCACAAGGTCCGAAGATCCC





flavo_1_12
CCACTCAGACACCAAGGTCCAAACA
plancto_4_12
TCCACCCACTAATCCGTGCATGTCA
gamma_8_12
CCCTCTAATGGGCAGATTCTCACGT





flavo_1_13
AGCCACTCAGACACCAAGGTCCAAA
plancto_4_13
CCACCCACTAATCCGTGCATGTCAA
gamma_8_13
CCGACGCGAGCTCATCCATCAGCAC





flavo_1_14
TAGCCACTCAGACACCAAGGTCCAA
plancto_4_14
GGCAGTAAACCTTTGGTCTCTCGAC
gamma_8_14
CCCCTCTAATGGGCAGATTCTCACG





flavo_1_15
CCGTCAAGCTTGGTACACGTACCAA
plancto_4_15
GGTACGTTCCGATGTATTCCTACCC
gamma_8_15
CCCCCTCTAATGGGCAGATTCTCAC





flavo_1_16
CGCTTAGCCACTCAGACACCAAGGT
plancto_4_16
TGCGAGCGTCATGAATGTTTCCACC
gamma_8_16
CGAGCTCATCCATCAGCACAAGGTC





flavo_1_17
TCGCTTAGCCACTCAGACACCAAGG
plancto_4_17
GCGAGCGTCATGAATGTTTCCACCC
gamma_8_17
CCATCAGCACAAGGTCCGAAGATCC





flavo_1—18
CGTCAAGCTTGGTACACGTACCAAG
plancto_4_18
GAGCGTCATGAATGTTTCCACCCAC
gamma_8_18
CCTCTAATGGGCAGATTCTCACGTG





flavo_1_19
CAGCTAGTAACCATCGTTTACCGGC
plancto_4_19
CGAGCGTCATGAATGTTTCCACCCA
gamma_8_19
CCCAGGTTATCCCCCTCTAATGGGC





flavo_1_20
GCCATAGCTAGAGACTATGGGGGAT
plancto_4_20
CAGTTATGCCCCAGTGAATCGCCTT
gamma_8_20
TCCGACGCGAGCTCATCCATCAGCA





flavo_1_21
TGCCATAGCTAGAGACTATGGGGGA
plancto_4_21
TCAGTTATGCCCCAGTGAATCGCCT
gamma_8_21
GAGCTCATCCATCAGCACAAGGTCC





flavo_1_22
ATGCCATAGCTAGAGACTATGGGGG
plancto_4_22
AGTTATGCCCCAGTGAATCGCCTTC
gamma_8_22
TTCCCCAGGTTATCCCCCTCTAATG





flavo_1_23
TTCGCTTAGCCACTCAGACACCAAG
plancto_4_23
GTCAGTTATGCCCCAGTGAATCGCC
gamma_8_23
TCCCCAGGTTATCCCCCTCTAATGG





flavo_1_24
AGCTAGTAACCATCGTTTACCGGCG
plancto_4_24
GTTATGCCCCAGTGAATCGCCTTCG
gamma_8_24
CCCCAGGTTATCCCCCTCTAATGGG





flavo_1_25
GTCAAGCTTGGTACACGTACCAAGG
plancto_4_25
CTCCACTGGATGTTCCATTCACCTC
gamma_8_25
ATCCCCCTCTAATGGGCAGATTCTC





flavo_2_1
TACAGTACCGTCAGAGCTCTACACG
alpha_1_1
CCGGCCCCTTGCGGGAAGAAAGCCA
gamma_9_1
CCTGTCCATCGGTTCCCGAAGGCAC





flavo_2_2
TCTTACAGTACCGTCAGAGCTCTAC
alpha_1_2
CACCTGTGCACCGGCCCCTTGCGGG
gamma_9_2
CTGTCCATCGGTTCCCGAAGGCACC





flavo_2_3
TTACAGTACCGTCAGAGCTCTACAC
alpha_1_3
GCACCTGTGCACCGGCCCCTTGCGG
gamma_9_3
TGTCCATCGGTTCCCGAAGGCACCA





flavo_2_4
GCATACTCATCTCTTACCGCCGAAG
alpha_1_4
CTGTGCACCGGCCCCTTGCGGGAAG
gamma_9_4
CAGCACCTGTCCATCGGTTCCCGAA





flavo_2_5
CATACTCATCTCTTACCGCCGAAGC
alpha_1_5
ACCTGTGCACCGGCCCCTTGCGGGA
gamma_9_5
AGCACCTGTCCATCGGTTCCCGAAG





flavo_2_6
ACAGTACCGTCAGAGCTCTACACGT
alpha_1_6
CCTGTGCACCGGCCCCTTGCGGGAA
gamma_9_6
ACCTGTCCATCGGTTCCCGAAGGCA





flavo_2_7
CAGTACCGTCAGAGCTCTACACGTA
alpha_1_7
AGCACCTGTGCACCGGCCCCTTGCG
gamma_9_7
GTCCATCGGTTCCCGAAGGCACCAA





flavo_2_8
CTTACAGTACCGTCAGAGCTCTACA
alpha_1_8
CGGCCCCTTGCGGGAAGAAAGCCAT
gamma_9_8
CACCTGTCCATCGGTTCCCGAAGGC





flavo_2_9
TACTCATCTCTTACCGCCGAAGCTT
alpha_1_9
GCACCGGCCCCTTGCGGGAAGAAAG
gamma_9_9
CCTCCCTCTCTCGCACTCTAGCCTT





flavo_2_10
ATACTCATCTCTTACCGCCGAAGCT
alpha_1_10
CACCGGCCCCTTGCGGGAAGAAAGC
gamma_9_10
GCACCTGTCCATCGGTTCCCGAAGG





flavo_2_11
CTCATCTCTTACCGCCGAAGCTTTA
alpha_1_11
ACCGGCCCCTTGCGGGAAGAAAGCC
gamma_9_11
GCAGCACCTGTCCATCGGTTCCCGA





flavo_2_12
CGCCCAGTGGCTGCTCTCTGTCTAT
alpha_1_12
TGTGCACCGGCCCCTTGCGGGAAGA
gamma_9_12
ACCTCCCTCTCTCGCACTCTAGCCT





flavo_2_13
CCAGTGGCTGCTCTCTGTCTATACC
alpha_1_13
GTGCACCGGCCCCTTGCGGGAAGAA
gamma_9_13
CTCCCTCTCTCGCACTCTAGCCTTC





flavo_2_14
CCCAGTGGCTGCTCTCTGTCTATAC
alpha_1_14
TGCACCGGCCCCTTGCGGGAAGAAA
gamma_9_14
TCTCTCGCACTCTAGCCTTCCAGTA





flavo_2_15
TCGCCCAGTGGCTGCTCTCTGTCTA
alpha_1_15
CAGCACCTGTGCACCGGCCCCTTGC
gamma_9_15
TCGCACTCTAGCCTTCCAGTATCGG





flavo_2_16
GCCCAGTGGCTGCTCTCTGTCTATA
alpha_1_16
TTGCGGGAAGAAAGCCATCTCTGGC
gamma_9_16
CTCGCACTCTAGCCTTCCAGTATCG





flavo_2_17
GACTCCGATCCGAACTGTGATATAG
alpha_1_17
GGCCCCTTGCGGGAAGAAAGCCATC
gamma_9_17
TACCTCCCTCTCTCGCACTCTAGCC





flavo_2_18
AGAACGCATACTCATCTCTTACCGC
alpha_1_18
CCTTGCGGGAAGAAAGCCATCTCTG
gamma_9_18
CTCTCGCACTCTAGCCTTCCAGTAT





flavo_2_19
GAACGCATACTCATCTCTTACCGCC
alpha_1_19
GCAGCACCTGTGCACCGGCCCCTTG
gamma_9_19
CCCTCTCTCGCACTCTAGCCTTCCA





flavo_2_20
CACGTAGAGCGGTTTCTTCCTGTAT
alpha_1_20
TGCGGGAAGAAAGCCATCTCTGGCG
gamma_9_20
TGCAGCACCTGTCCATCGGTTCCCG





flavo_2_21
GTCCTGTCACACTACATTTAAGCCC
alpha_1_21
AAAGCCATCTCTGGCGATCATACCG
gamma_9_21
ACTCCGTGGTAATCGCCCTCCCGAA





flavo_2_22
ACTCATCTCTTACCGCCGAAGCTTT
alpha_1_22
GCCCCTTGCGGGAAGAAAGCCATCT
gamma_9_22
TCCATCGGTTCCCGAAGGCACCAAT





flavo_2_23
CCCCTATCTATCGTAGCCATGGTGT
alpha_1_23
AACAGCAAGCTGCCCAACGGCTAGC
gamma_9_23
TCACTCCGTGGTAATCGCCCTCCCG





flavo_2_24
CCCTATCTATCGTAGCCATGGTGTG
alpha_1_24
CATGCAGCACCTGTGCACCGGCCCC
gamma_9_24
TCCCTCTCTCGCACTCTAGCCTTCC





flavo_2_25
CCTATCTATCGTAGCCATGGTGTGC
alpha_1_25
GCAAGCTGCCCAACGGCTAGCATCC
gamma_9_25
CCTCTCTCGCACTCTAGCCTTCCAG





flavo_3_1
CTGTCACCTAACATTTAAGCCCTGG
alpha_2_1
GTGACCCAGAAAGTTGCCTTCGCAT
gamma_10_1
CGCAGGCACATCCGATAGCGAGAGC





flavo_3_2
CCGTCAAGCTTTCTCACGAGAAAGT
alpha_2_2
GTATTCACCGCGACGCGCTGATTCG
gamma_10_2
ACGCAGGCACATCCGATAGCGAGAG





flavo_3_3
ACCGTCAAGCTTTCTCACGAGAAAG
alpha_2_3
CGTATTCACCGCGACGCGCTGATTC
gamma_10_3
GCGGCTTCGCGGCCCTCTGTACTTG





flavo_3_4
CTCTGACTTATTTGTCCACCTACGG
alpha_2_4
TATTCACCGCGACGCGCTGATTCGC
gamma_10_4
CGGCTTCGCGGCCCTCTGTACTTGC





flavo_3_5
CCTCTGACTTATTTGTCCACCTACG
alpha_2_5
ACGTATTCACCGCGACGCGCTGATT
gamma_10_5
GGCTTCGCGGCCCTCTGTACTTGCC





flavo_3_6
GTACCGTCAAGCTTTCTCACGAGAA
alpha_2_6
GGAACGTATTCACCGCGACGCGCTG
gamma_10_6
CGCGGCTTCGCGGCCCTCTGTACTT





flavo_3_7
GAGGCAGATTGTATACGCGATACTC
alpha_2_7
CCGGGAACGTATTCACCGCGACGCG
gamma_10_7
GCTTCGCGGCCCTCTGTACTTGCCA





flavo_3_8
TCTATCGTAGCCTAGGTGTGCCGTT
alpha_2_8
CGGGAACGTATTCACCGCGACGCGC
gamma_10_8
CACTACTGGGTAGTTTCCTACGCGT





flavo_3_9
CCCCTATCTATCGTAGCCTAGGTGT
alpha_2_9
GGGAACGTATTCACCGCGACGCGCT
gamma_10_9
CCACTACTGGGTAGTTTCCTACGCG





flavo_3_10
ATCTATCGTAGCCTAGGTGTGCCGT
alpha_2_10
AACGTATTCACCGCGACGCGCTGAT
gamma_10_10
CCCCACTACTGGGTAGTTTCCTACG





flavo_3_11
CCCTATCTATCGTAGCCTAGGTGTG
alpha_2_11
GAACGTATTCACCGCGACGCGCTGA
gamma_10_11
CCCACTACTGGGTAGTTTCCTACGC





flavo_3_12
TATCTATCGTAGCCTAGGTGTGCCG
alpha_2_12
CCCGGGAACGTATTCACCGCGACGC
gamma_10_12
CCCCCACTACTGGGTAGTTTCCTAC





flavo_3_13
CCTATCTATCGTAGCCTAGGTGTGC
alpha_2_13
ATTCACCGCGACGCGCTGATTCGCG
gamma_10_13
ACTACCGGGTAGTTTCCTACGCGTT





flavo_3_14
CTATCTATCGTAGCCTAGGTGTGCC
alpha_2_14
CCGCGACGCGCTGATTCGCGATTAC
gamma_10_14
CACTACCGGGTAGTTTCCTACGCGT





flavo_3_15
CTATCGTAGCCTAGGTGTGCCGTTA
alpha_2_15
CACCGCGACGCGCTGATTCGCGATT
gamma_10_15
ACCGGGTAGTTTCCTACGCGTTACT





flavo_3_16
TATCGTAGCCTAGGTGTGCCGTTAC
alpha_2_16
CGCGACGCGCTGATTCGCGATTACT
gamma_10_16
CCACTACCGGGTAGTTTCCTACGCG





flavo_3_47
CTTATTTGTCCACCTACGGACCCTT
alpha_2_17
TCACCGCGACGCGCTGATTCGCGAT
gamma_10_17
CCCCACTACCGGGTAGTTTCCTACG





flavo_3_18
ACTTATTTGTCCACCTACGGACCCT
alpha_2_18
ACCGCGACGCGCTGATTCGCGATTA
gamma_10_18
CCGGGTAGTTTCCTACGCGTTACTC





flavo_3_19
GACTTATTTGTCCACCTACGGACCC
alpha_2_19
GCGACGCGCTGATTCGCGATTACTA
gamma_10_19
CCCACTACCGGGTAGTTTCCTACGC





flavo_3_20
TGACTTATTTGTCCACCTACGGACC
alpha_2_20
TTCACCGCGACGCGCTGATTCGCGA
gamma_10_20
TACCGGGTAGTTTCCTACGCGTTAC





flavo_3_21
CTGACTTATTTGTCCACCTACGGAC
alpha_2_21
TCCTCAGTGTCAGTAGTGACCCAGA
gamma_10_21
CCCCCACTACCGGGTAGTTTCCTAC





flavo_3_22
AGATTGTATACGCGATACTCACCCG
alpha_2_22
CCCAGAAAGTTGCCTTCGCATTTGG
gamma_10_22
CTACCGGGTAGTTTCCTACGCGTTA





flavo_3_23
GATTGTATACGCGATACTCACCCGT
alpha_2_23
AGTGCGGGCTCATCTTTCGGCGTAT
gamma_10_23
CTGTTGTCCCCCACTACTGGGTAGT





flavo_3_24
TCTTCGGGCTATTCCCTAGTATGAG
alpha_2_24
AAGTGCGGGCTCATCTTTCGGCGTA
gamma_10_24
CTAGCTAATCTCACGCAGGCACATC





flavo_3_25
CTTCGGGCTATTCCCTAGTATGAGG
alpha_2_25
GTGCGGGCTCATCTTTCGGCGTATA
gamma_10_25
CAACTAGCTAATCTCACGCAGGCAC





flavo_4_1
CAGGAGATATTCCCATACTATGGGG
alpha_3_1
CACCTGTATCCAATCCACCCGAAGT
gamma_11_1
GCTTTCCCCCGTAGGATATATGCGG





flavo_4_2
TCAAACTCCCACACGTGGGAGTGGT
alpha_3_2
ACCTGTATCCAATCCACCCGAAGTG
gamma_11_2
CTTTCCCCCGTAGGATATATGCGGT





flavo_4_3
CAAACTCCCACACGTGGGAGTGGTT
alpha_3_3
CCTGTATCCAATCCACCCGAAGTGA
gamma_11_3
TGCTTTCCCCCGTAGGATATATGCG





flavo_4_4
GTCAAACTCCCACACGTGGGAGTGG
alpha_3_4
GCACCTGTATCCAATCCACCCGAAG
gamma_11_4
CTGCTTTCCCCCGTAGGATATATGC





flavo_4_5
GGAGATATTCCCATACTATGGGGCA
alpha_3_5
GGCAGTTCCTTCAAAGTTCCCACCA
gamma_11_5
CCTGCTTTCCCCCGTAGGATATATG





flavo_4_6
AGGAGATATTCCCATACTATGGGGC
alpha_3_6
AGCACCTGTATCCAATCCACCCGAA
gamma_11_6
CCCTGCTTTCCCCCGTAGGATATAT





flavo_4_7
CGTCAAACTCCCACACGTGGGAGTG
alpha_3_7
CGGCAGTTCCTTCAAAGTTCCCACC
gamma_11_7
CTCACTCAGGCTCATCAAATAGCGC





flavo_4_8
AAACTCCCACACGTGGGAGTGGTTC
alpha_3_2
CAGCACCTGTATCCAATCCACCCGA
gamma_11_8
CCCCTGCTTTCCCCCGTAGGATATA





flavo_4_9
CTGGGCTATTCCCCTCCAAAAGGTA
alpha_3_9
CCGGCAGTTCCTTCAAAGTTCCCAC
gamma_11_9
GTGTCAGTATCGAGCCAGTCAGTCG





flavo_4_10
CCGTCAAACTCCCACACGTGGGAGT
alpha_3_10
GCAGCACCTGTATCCAATCCACCCG
gamma_11_10
TCAGTGTCAGTATCGAGCCAGTCAG





flavo_4_11
CTTAACCACTCAGCCCTTAATCGGG
alpha_3_11
TGCAGCACCTGTATCCAATCCACCC
gamma_11_11
AGTGTCAGTATCGAGCCAGTCAGTC





flavo_4_12
GTTTCCCTGGGCTATTCCCCTCCAA
alpha_3_12
TCACCGGCAGTTCCTTCAAAGTTCC
gamma_11_12
TGTCAGTATCGAGCCAGTCAGTCGC





flavo_4_13
GCTTAACCACTCAGCCCTTAATCGG
alpha_3_13
CTTACAAATCCGCCTACGCTCGCTT
gamma_11_13
CAGTGTCAGTATCGAGCCAGTCAGT





flavo_4_14
AACTCCCACACGTGGGAGTGGTTCT
alpha_3_14
ATGCAGCACCTGTATCCAATCCACC
gamma_11_14
CTCAGTGTCAGTATCGAGCCAGTCA





flavo_4_15
ACCGTCAAACTCCCACACGTGGGAG
alpha_3_15
CGGGCCCATCCAATAGCGCATAAAG
gamma_11_15
TCCCCTGCTTTCCCCCGTAGGATAT





flavo_4_16
CCACACGTGGGAGTGGTTCTTCCTC
alpha_3_16
GGGCCCATCCAATAGCGCATAAAGC
gamma_11_16
CCCCACCAACTAGCTAATCTCACTC





flavo_4_17
AGTTTCCCTGGGCTATTCCCCTCCA
alpha_3_17
GCGGGCCCATCCAATAGCGCATAAA
gamma_11_17
CCTCAGTGTCAGTATCGAGCCAGTC





flavo_4_18
TTAACCACTCAGCCCTTAATCGGGC
alpha_3_18
ACTTACAAATCCGCCTACGCTCGCT
gamma_11_18
GTCCCCTGCTTTCCCCCGTAGGATA





flavo_4_19
CACGTGGGAGTGGTTCTTCCTCTGT
alpha_3_19
CGCGGGCCCATCCAATAGCGCATAA
gamma_11_19
TCAGTATCGAGCCAGTCAGTCGCCT





flavo_4_20
CACACGTGGGAGTGGTTCTTCCTCT
alpha_3_20
GGCCCATCCAATAGCGCATAAAGCT
gamma_11_20
GTATCGAGCCAGTCAGTCGCCTTCG





flavo_4_21
ACACGTGGGAGTGGTTCTTCCTCTG
alpha_3_21
CACCGGCAGTTCCTTCAAAGTTCCC
gamma_11_21
AGTATCGAGCCAGTCAGTCGCCTTC





flavo_4_22
CGCTTAACCACTCAGCCCTTAATCG
alpha_3_22
ACCGGCAGTTCCTTCAAAGTTCCCA
gamma_11_22
TATCGAGCCAGTCAGTCGCCTTCGC





flavo_4_23
ACGTGGGAGTGGTTCTTCCTCTGTA
alpha_3_23
AACTTACAAATCCGCCTACGCTCGC
gamma_11_23
ATCGAGCCAGTCAGTCGCCTTCGCC





flavo_4_24
TTTCCCTGGGCTATTCCCCTCCAAA
alpha_3_24
CGCATAAAGCTTTCTCCCGAAGGAC
gamma_11_24
GTCAGTATCGAGCCAGTCAGTCGCC





flavo_4_25
TTCCCTGGGCTATTCCCCTCCAAAA
alpha_3_25
CATGCAGCACCTGTATCCAATCCAC
gamma_11_25
CAGTATCGAGCCAGTCAGTCGCCTT





flavo_5_1
CGTCAACAGTTCACACGTGAACCTT
roseo_1_1
CTCTGGAATCCGCGACAAGTATGTC
gamma_12_1
CACTACCTGGTAGATTCCTACGCGT





flavo_5_2
ACAGTACCGTCAACAGTTCACACGT
roseo_1_2
TGCCCCTATAAATAGTTGGCGCACC
gamma_12_2
CCACTACCTGGTAGATTCCTACGCG





flavo_5_3
CCGTCAACAGTTCACACGTGAACCT
roseo_1_3
CCCTATAAATAGTTGGCGCACCACC
gamma_12_3
CCCACTACCTGGTAGATTCCTACGC





flavo_5_4
CAGTACCGTCAACAGTTCACACGTG
roseo_1_4
CCCCTATAAATAGTTGGCGCACCAC
gamma_12_4
AACTGTTGTCCCCCACTACCTGGTA





flavo_5_5
TACAGTACCGTCAACAGTTCACACG
roseo_1_5
GCCCCTATAAATAGTTGGCGCACCA
gamma_12_5
CAACTGTTGTCCCCCACTACCTGGT





flavo_5_6
ACCGTCAACAGTTCACACGTGAACC
roseo_1_6
CGTGGTTGGCTGCCCCTATAAATAG
gamma_12_6
CCAACTGTTGTCCCCCACTACCTGG





flavo_5_2
CTACAGTACCGTCAACAGTTCACAC
roseo_1_7
CTGCCCCTATAAATAGTTGGCGCAC
gamma_12_7
CCCCACTACCTGGTAGATTCCTACG





flavo_5_2
TACCGTCAACAGTTCACACGTGAAC
roseo_1_8
CCGTGGTTGGCTGCCCCTATAAATA
gamma_12_8
CGGTATTGCAACCCTCTGTACGCCC





flavo_5_9
AGTACCGTCAACAGTTCACACGTGA
roseo_1_9
TGGCTGCCCCTATAAATAGTTGGCG
gamma_12_9
ACTGTTGTCCCCCACTACCTGGTAG





flavo_5_10
GTACCGTCAACAGTTCACACGTGAA
roseo_1_10
GGCTGCCCCTATAAATAGTTGGCGC
gamma_12_10
TCCAACTGTTGTCCCCCACTACCTG





flavo_5_11
CCTACAGTACCGTCAACAGTTCACA
roseo_1_11
GGAATCCGCGACAAGTATGTCAAGG
gamma_12_11
CCCCCACTACCTGGTAGATTCCTAC





flavo_5_12
TCCTACAGTACCGTCAACAGTTCAC
roseo_1_12
GCTGCCCCTATAAATAGTTGGCGCA
gamma_12_12
GCGGTATTGCAACCCTCTGTACGCC





flavo_5_13
CCGAAGAAAAAGATGTTTCCACCCC
roseo_1_13
ACCGTGGTTGGCTGCCCCTATAAAT
gamma_12_13
GCGGTATCGCAACCCTCTGTACGTT





flavo_5_14
CTCAGACCGCAATTAGTCCGAACAG
roseo_1_14
CCATCTCTGGAATCCGCGACAAGTA
gamma_12_14
TCTATCAGTTTGGGGTGCAGTTCCC





flavo_5_15
TAGCCACTCAGACCGCAATTAGTCC
roseo_1_15
ATAGTTGGCGCACCACCTTCGGGTA
gamma_12_15
GTCTATCAGTTTGGGGTGCAGTTCC





flavo_5_16
TTAGCCACTCAGACCGCAATTAGTC
roseo_1_16
GGAATCCATCTCTGGAATCCGCGAC
gamma_12_16
CTGTTGTCCCCCACTACCTGGTAGA





flavo_5_17
ACTCAGACCGCAATTAGTCCGAACA
roseo_1_17
TACCGTGGTTGGCTGCCCCTATAAA
gamma_12_17
CTATCAGTTTGGGGTGCAGTTCCCA





flavo_5_18
AGATGTTTCCACCCCTGTCAAACTG
roseo_1_18
GAATCCGCGACAAGTATGTCAAGGG
gamma_12_18
CTGTTGCTAACGTCACAGCTAAGGG





flavo_5_19
CAGACCGCAATTAGTCCGAACAGCT
roseo_1_19
TCCATCTCTGGAATCCGCGACAAGT
gamma_12_19
CAGTTTGGGGTGCAGTTCCCAGGTT





flavo_5_20
GCCACTCAGACCGCAATTAGTCCGA
roseo_1_20
ATCCATCTCTGGAATCCGCGACAAG
gamma_12_20
AGTTTGGGGTGCAGTTCCCAGGTTG





flavo_5_21
CACTCAGACCGCAATTAGTCCGAAC
roseo_1_21
TAGTTGGCGCACCACCTTCGGGTAG
gamma_12_24
TTCCAACTGTTGTCCCCCACTACCT





flavo_5_22
CTTAGCCACTCAGACCGCAATTAGT
roseo_1_22
CCTACCGTGGTTGGCTGCCCCTATA
gamma_12_22
TATCAGTTTGGGGTGCAGTTCCCAG





flavo_5_23
AGCCACTCAGACCGCAATTAGTCCG
roseo_1_23
CTACCGTGGTTGGCTGCCCCTATAA
gamma_12_23
CGGTATCGCAACCCTCTGTACGTTC





flavo_5_24
TCAGACCGCAATTAGTCCGAACAGC
roseo_1_24
ACGTCGTCCACACCTTCCTCCGGCT
gamma_12_24
CCCCACCAACTAACTAATCTCACGC





flavo_5_25
ACTTTCGCTTAGCCACTCAGACCGC
roseo_1_25
GACGTCGTCCACACCTTCCTCCGGC
gamma_12_25
GTCAGCGACTAGCAAGCTAGTCCTG





flavo_6_1
AGTGCCGGAGTTAAGCCCCTGCATT
roseo_2_1
GTCACCGGGTCACCGAAGTGAAAAC
gamma_13_1
CGCCACTGAAAGACATTGTCTCCCA





flavo_6_2
GTGCCGGAGTTAAGCCCCTGCATTT
roseo_2_2
ACCGGGTCACCGAAGTGAAAACCAG
gamma_13_2
GCGCCACTGAAAGACATTGTCTCCC





flavo_6_3
CAGTGCCGGAGTTAAGCCCCTGCAT
roseo_2_3
CACCGGGTCACCGAAGTGAAAACCA
gamma_13_3
TGCGCCACTGAAAGACATTGTCTCC





flavo_6_4
TGCCGGAGTTAAGCCCCTGCATTTC
roseo_2_4
TCACCGGGTCACCGAAGTGAAAACC
gamma_13_4
TGTCAGTACAGATCCAGGAGGCCGC





flavo_6_5
AGTTAAGCCCCTGCATTTCACCACT
roseo_2_5
TGTCACCGGGTCACCGAAGTGAAAA
gamma_13_5
GTGTCAGTACAGATCCAGGAGGCCG





flavo_6_6
GCAGTGCCGGAGTTAAGCCCCTGCA
roseo_2_6
CCGGGTCACCGAAGTGAAAACCAGA
gamma_13_6
CTGCGCCACTGAAAGACATTGTCTC





flavo_6_7
GTTAAGCCCCTGCATTTCACCACTG
roseo_2_7
AGATCTCTCTGGCGGTCCCGGGATG
gamma_13_7
CTTGGCTCCAAAAGGCACACTCTCA





flavo_6_2
GGCAGTGCCGGAGTTAAGCCCCTGC
roseo_2_8
ACCAGATCTCTCTGGCGGTCCCGGG
gamma_13_8
GAGAGCTTCAAGAGAGGCCCTCTTT





flavo_6_9
TGGCAGTGCCGGAGTTAAGCCCCTG
roseo_2_9
AACCAGATCTCTCTGGCGGTCCCGG
gamma_13_9
CGAGAGCTTCAAGAGAGGCCCTCTT





flavo_6_10
GAGTTAAGCCCCTGCATTTCACCAC
roseo_2_10
AAACCAGATCTCTCTGGCGGTCCCG
gamma_13_10
GCGAGAGCTTCAAGAGAGGCCCTCT





flavo_6_11
GCCGGAGTTAAGCCCCTGCATTTCA
roseo_2_11
TCTCTGGCGGTCCCGGGATGTCAAG
gamma_13_11
TAGCGAGAGCTTCAAGAGAGGCCCT





flavo_6_12
ATGGCAGTGCCGGAGTTAAGCCCCT
roseo_2_12
ATCTCTCTGGCGGTCCCGGGATGTC
gamma_13_12
AGAGCTTCAAGAGAGGCCCTCTTTC





flavo_6_13
TTAAGCCCCTGCATTTCACCACTGA
roseo_2_13
GATCTCTCTGGCGGTCCCGGGATGT
gamma_13_13
AGCGAGAGCTTCAAGAGAGGCCCTC





flavo_6_14
GGAGTTAAGCCCCTGCATTTCACCA
roseo_2_14
CAGATCTCTCTGGCGGTCCCGGGAT
gamma_13_14
GTCAGTACAGATCCAGGAGGCCGCC





flavo_6_15
CGGAGTTAAGCCCCTGCATTTCACC
roseo_2_15
TCTGGCGGTCCCGGGATGTCAAGGG
gamma_13_15
TCAGTACAGATCCAGGAGGCCGCCT





flavo_6_16
CCCTGCATTTCACCACTGACTTATC
roseo_2_16
CTCTGGCGGTCCCGGGATGTCAAGG
gamma_13_16
CAGTACAGATCCAGGAGGCCGCCTT





flavo_6_17
CAATGGCAGTGCCGGAGTTAAGCCC
roseo_2_17
CCAGATCTCTCTGGCGGTCCCGGGA
gamma_13_17
AGTACAGATCCAGGAGGCCGCCTTC





flavo_6_18
TCAATGGCAGTGCCGGAGTTAAGCC
roseo_2_18
TCTCTCTGGCGGTCCCGGGATGTCA
gamma_13_18
GCTGCGCCACTGAAAGACATTGTCT





flavo_6_19
CCTTACGGTCACCGACTTCAGGCAC
roseo_2_19
CTCTCTGGCGGTCCCGGGATGTCAA
gamma_13_19
GAGCTTCAAGAGAGGCCCTCTTTCT





flavo_6_20
CCGGAGTTAAGCCCCTGCATTTCAC
roseo_2_20
CTGGCGGTCCCGGGATGTCAAGGGT
gamma_13_20
TCTTGGCTCCAAAAGGCACACTCTC





flavo_6_21
AATGGCAGTGCCGGAGTTAAGCCCC
roseo_2_21
ACCTGTCACCGGGTCACCGAAGTGA
gamma_13_21
AGTGTCAGTACAGATCCAGGAGGCC





flavo_6_22
TATCAATGGCAGTGCCGGAGTTAAG
roseo_2_22
CCTGTCACCGGGTCACCGAAGTGAA
gamma_13_22
GGCCCTCTTTCTCCCTTAGGAGGTA





flavo_6_23
GTATCAATGGCAGTGCCGGAGTTAA
roseo_2_23
CTGTCACCGGGTCACCGAAGTGAAA
gamma_13_23
AGCTTCAAGAGAGGCCCTCTTTCTC





flavo_6_24
CCCCTGCATTTCACCACTGACTTAT
roseo_2_24
CGGGTCACCGAAGTGAAAACCAGAT
gamma_13_24
AGCTGCGCCACTGAAAGACATTGTC





flavo_6_25
TAAGCCCCTGCATTTCACCACTGAC
roseo_2_25
AAAACCAGATCTCTCTGGCGGTCCC
gamma_13_25
CGAGAGCATCAAGAGAGGCCCTCTT





flavo_7_1
TCTTACAGTACCGTCACCAGACTAC
roseo_3_1
GCCGCTACACCCGAAGGTGCCGCTC
gamma_14_1
GGCGGTCAACTTACTACGTTAGCTG





flavo_7_2
CTTACAGTACCGTCACCAGACTACA
roseo_3_2
CTACACCCGAAGGTGCCGCTCGACT
gamma_14_2
CCAGGCGGTCAACTTACTACGTTAG





flavo_7_3
CGTCACCAGACTACACGTAGTCCTT
roseo_3_3
GCTACACCCGAAGGTGCCGCTCGAC
gamma_14_3
GCGGTCAACTTACTACGTTAGCTGC





flavo_7_4
GTACCGTCACCAGACTACACGTAGT
roseo_3_4
CCGCTACACCCGAAGGTGCCGCTCG
gamma_14_4
CAGGCGGTCAACTTACTACGTTAGC





flavo_7_5
CCGTCACCAGACTACACGTAGTCCT
roseo_3_5
CGCTACACCCGAAGGTGCCGCTCGA
gamma_14_5
CCCAGGCGGTCAACTTACTACGTTA





flavo_7_6
TACCGTCACCAGACTACACGTAGTC
roseo_3_6
CGCCGCTACACCCGAAGGTGCCGCT
gamma_14_6
CCGAGGGCACTGCTTCATTACAAAG





flavo_7_7
ACCGTCACCAGACTACACGTAGTCC
roseo_3_7
CCGCCGCTACACCCGAAGGTGCCGC
gamma_14_7
CGAGGGCACTGCTTCATTACAAAGC





flavo_7_8
TTACAGTACCGTCACCAGACTACAC
roseo_3_8
TACACCCGAAGGTGCCGCTCGACTT
gamma_14_8
TCCCGAGGGCACTGCTTCATTACAA





flavo_7_9
GTCACCAGACTACACGTAGTCCTTA
roseo_3_9
TCCGCCGCTACACCCGAAGGTGCCG
gamma_14_9
CCCGAGGGCACTGCTTCATTACAAA





flavo_7_10
TACAGTACCGTCACCAGACTACACG
roseo_3_10
ACACCCGAAGGTGCCGCTCGACTTG
gamma_14_10
CCCCAGGCGGTCAACTTACTACGTT





flavo_7_11
ACAGTACCGTCACCAGACTACACGT
roseo_3_11
GTCCGCCGCTACACCCGAAGGTGCC
gamma_14_11
TCCCCAGGCGGTCAACTTACTACGT





flavo_7_12
AACTTTCACCCCTGACTTAACAGCC
roseo_3_12
ACCCGAAGGTGCCGCTCGACTTGCA
gamma_14_12
CTCCCGAGGGCACTGCTTCATTACA





flavo_7_13
CAGTACCGTCACCAGACTACACGTA
roseo_3_13
CACCCGAAGGTGCCGCTCGACTTGC
gamma_14_13
CTCCCCAGGCGGTCAACTTACTACG





flavo_7_14
CCGGTCGTCAGCAAGAGCAAGCTCC
roseo_3_14
CGTCCGCCGCTACACCCGAAGGTGC
gamma_14_14
GCTCCCGAGGGCACTGCTTCATTAC





flavo_7_15
ACTTTCACCCCTGACTTAACAGCCC
roseo_3_15
CACCTGGTCTCTTACGAGAAAACCG
gamma_14_15
TCTTGGCTCCCGAGGGCACTGCTTC





flavo_7_16
CCCTGACTTAACAGCCCGCCTACGG
roseo_3_16
CCAGGAGTTTTGGAGGCCGTTCCAG
gamma_14_16
GGCTCCCGAGGGCACTGCTTCATTA





flavo_7_17
TCGCTTGGCCGCTCAGATCGAAATC
roseo_3_47
ACCTGGTCTCTTACGAGAAAACCGG
gamma_14_47
TATCTTGGCTCCCGAGGGCACTGCT





flavo_7_18
CGCTTGGCCGCTCAGATCGAAATCC
roseo_3_18
CCGGATCTCTCCGGCGGTCCAGGGA
gamma_14_18
ACTCCCCAGGCGGTCAACTTACTAC





flavo_7_19
TTCGCTTGGCCGCTCAGATCGAAAT
roseo_3_19
CCCGAAGGTGCCGCTCGACTTGCAT
gamma_14_19
ATCTTGGCTCCCGAGGGCACTGCTT





flavo_7_20
TTTCGCTTGGCCGCTCAGATCGAAA
roseo_3_20
ACCAGGAGTTTTGGAGGCCGTTCCA
gamma_14_20
TACTACGTTAGCTGCGCCACTGAGA





flavo_7_21
GCTTGGCCGCTCAGATCGAAATCCA
roseo_3_21
CAGGAGTTTTGGAGGCCGTTCCAGG
gamma_14_21
GTATCTTGGCTCCCGAGGGCACTGC





flavo_7_22
CTTGGCCGCTCAGATCGAAATCCAA
roseo_3_22
CCGAAGGTGCCGCTCGACTTGCATG
gamma_14_22
CTTGGCTCCCGAGGGCACTGCTTCA





flavo_7_23
TTGGCCGCTCAGATCGAAATCCAAA
roseo_3_23
CCGTCCGCCGCTACACCCGAAGGTG
gamma_14_23
TGGCTCCCGAGGGCACTGCTTCATT





flavo_7_24
GGCTATCCCTTAGTGTAAGGCAGAT
roseo_3_24
AAACCGGATCTCTCCGGCGGTCCAG
gamma_14_24
ACTACGTTAGCTGCGCCACTGAGAA





flavo_7_25
GGGCTATCCCTTAGTGTAAGGCAGA
roseo_3_25
CCTGGTCTCTTACGAGAAAACCGGA
gamma_14_25
TTGGCTCCCGAGGGCACTGCTTCAT





flavo_8_1
GCCGAAATACGGTACTACGGGGCAT
roseo_4_1
CGTACCATCTCTGGTAGTAGCACAG
gamma_15_1
TCCGTAGAAGTCCGGGCCGTGTCTC





flavo_8_2
GATGCCGAAATACGGTACTACGGGG
roseo_4_2
CCATCTCTGGTAGTAGCACAGGATG
gamma_15_2
CCGTAGAAGTCCGGGCCGTGTCTCA





flavo_8_3
ATGCCGAAATACGGTACTACGGGGC
roseo_4_3
GTACCATCTCTGGTAGTAGCACAGG
gamma_15_3
CGTAGAAGTCCGGGCCGTGTCTCAG





flavo_8_4
TGCCGAAATACGGTACTACGGGGCA
roseo_4_4
CTGGTAGTAGCACAGGATGTCAAGG
gamma_15_4
GTAGAAGTCCGGGCCGTGTCTCAGT





flavo_8_5
ACCGTATAACGATGCCGAAATACGG
roseo_4_5
TGGTAGTAGCACAGGATGTCAAGGG
gamma_15_5
TTCCGTAGAAGTCCGGGCCGTGTCT





flavo_8_6
CCGTATAACGATGCCGAAATACGGT
roseo_4_6
GAAGGGAACGTACCATCTCTGGTAG
gamma_15_6
CTTCCGTAGAAGTCCGGGCCGTGTC





flavo_8_7
CGATGCCGAAATACGGTACTACGGG
roseo_4_7
CCTTAGAGAAGGGCATATTCCCACG
gamma_15_7
TAGAAGTCCGGGCCGTGTCTCAGTC





flavo_8_8
CCGAAATACGGTACTACGGGGCATT
roseo_4_8
GGTAGTAGCACAGGATGTCAAGGGT
gamma_15_8
ACTGCTGCCTTCCGTAGAAGTCCGG





flavo_8_9
ACGATGCCGAAATACGGTACTACGG
roseo_4_9
GGGAACGTACCATCTCTGGTAGTAG
gamma_15_9
CATGCAGTCGAGTTCCAGACTGCAA





flavo_8_10
AACGATGCCGAAATACGGTACTACG
roseo_4_10
GGAACGTACCATCTCTGGTAGTAGC
gamma_15_10
CCTCGAGCTATCCCCCTCCATTGGG





flavo_8_11
CGAAGGAAAAGTCATCTCTGACCCT
roseo_4_11
CGAAGGGAACGTACCATCTCTGGTA
gamma_15_11
AGAAGTCCGGGCCGTGTCTCAGTCC





flavo_8_12
CGAAATACGGTACTACGGGGCATTA
roseo_4_12
CCGAAGGGAACGTACCATCTCTGGT
gamma_15_12
TCCTCGAGCTATCCCCCTCCATTGG





flavo_8_13
CCGAAGGAAAAGTCATCTCTGACCC
roseo_4_13
CGTCCCCGAAGGGAACGTACCATCT
gamma_15_13
CTCGAGCTATCCCCCTCCATTGGGT





flavo_8_14
GTCATCTCTGACCCTGTCAATATGC
roseo_4_14
CCCCGAAGGGAACGTACCATCTCTG
gamma_15_14
TCATGCAGTCGAGTTCCAGACTGCA





flavo_8_15
CCCGAAGGAAAAGTCATCTCTGACC
roseo_4_15
GTCCCCGAAGGGAACGTACCATCTC
gamma_15_15
CCTTCCGTAGAAGTCCGGGCCGTGT





flavo_8_16
TACAAGGCAGGTTCCATACGCGGTG
roseo_4_16
GCGTCCCCGAAGGGAACGTACCATC
gamma_15_16
GCGCCACTGGATAAATCCAACGGCT





flavo_8_17
GGCTTTAACCGTATAACGATGCCGA
roseo_4_17
ACTGCGTCCCCGAAGGGAACGTACC
gamma_15_17
TGCGCCACTGGATAAATCCAACGGC





flavo_8_18
CTGGGCTATTCCCCTGTACAAGGCA
roseo_4_18
CTGCGTCCCCGAAGGGAACGTACCA
gamma_15_18
TTCCTCGAGCTATCCCCCTCCATTG





flavo_8_19
GAAGGAAAAGTCATCTCTGACCCTG
roseo_4_19
CCCGAAGGGAACGTACCATCTCTGG
gamma_15_19
GTTCCAGACTGCAATTCGGACTACG





flavo_8_20
GCCCGAAGGAAAAGTCATCTCTGAC
roseo_4_20
TGCGTCCCCGAAGGGAACGTACCAT
gamma_15_20
CCAGCTCGCGCTTTGGCAACCGTTT





flavo_8_21
GTACAAGGCAGGTTCCATACGCGGT
roseo_4_21
CTTAGAGAAGGGCATATTCCCACGC
gamma_15_21
TCGAGCTATCCCCCTCCATTGGGTA





flavo_8_22
TGTACAAGGCAGGTTCCATACGCGG
roseo_4_22
GAAGGGCGCGCTCGACTTGCATGTA
gamma_15_22
GCTGCGCCACTGGATAAATCCAACG





flavo_8_23
CCTGGGCTATTCCCCTGTACAAGGC
roseo_4_23
CACTGCGTCCCCGAAGGGAACGTAC
gamma_15_23
CGCCACTGGATAAATCCAACGGCTA





flavo_8_24
ACAAGGCAGGTTCCATACGCGGTGC
roseo_4_24
TCACTGCGTCCCCGAAGGGAACGTA
gamma_15_24
CTGCGCCACTGGATAAATCCAACGG





flavo_8_25
GGCAGGTTCCATACGCGGTGCGCAC
roseo_4_25
TCCCCGAAGGGAACGTACCATCTCT
gamma_15_25
TTTCCTCGAGCTATCCCCCTCCATT





flavo_9_1
ATTCCGCCTACTTCAATACAACTCA
roseo_5_1
GTCACTATGTCCCGAAGGAAAGCCT
gamma_16_1
TTTAAGGGTTTGGCTCCAGCTCGCG





flavo_9_2
TTCCGCCTACTTCAATACAACTCAA
roseo_5_2
CCGAAGGAAAGCCTGATCTCTCAGG
gamma_16_2
TTTTAAGGGTTTGGCTCCAGCTCGC





flavo_9_3
TATTCCGCCTACTTCAATACAACTC
roseo_5_3
TGTCACTATGTCCCGAAGGAAAGCC
gamma_16_3
TTAAGGGTTTGGCTCCAGCTCGCGC





flavo_9_4
TCCGCCTACTTCAATACAACTCAAG
roseo_5_4
TCCCGAAGGAAAGCCTGATCTCTCA
gamma_16_4
GTTTTAAGGGTTTGGCTCCAGCTCG





flavo_9_5
CATATTCCGCCTACTTCAATACAAC
roseo_5_5
TCACTATGTCCCGAAGGAAAGCCTG
gamma_16_5
CACGCGGTATACCTGGATCAGGGTT





flavo_9_6
CCGCCTACTTCAATACAACTCAAGA
roseo_5_6
CCCGAAGGAAAGCCTGATCTCTCAG
gamma_16_6
ACACGCGGTATACCTGGATCAGGGT





flavo_9_7
CGCCTACTTCAATACAACTCAAGAT
roseo_5_7
CTGTCACTATGTCCCGAAGGAAAGC
gamma_16_7
CTTCCTCCGGGTTTCACCCGGCAGT





flavo_9_8
GAACTCAAGGTCCCGAACAGCTAGT
roseo_5_8
GTCCCGAAGGAAAGCCTGATCTCTC
gamma_16_8
TCCTCCGGGTTTCACCCGGCAGTCT





flavo_9_9
TCAGAACTCAAGGTCCCGAACAGCT
roseo_5_9
GCCTGATCTCTCAGGTTGTCATAGG
gamma_16_9
CTTCACACACGCGGTATACCTGGAT





flavo_9_10
ACTCAAGGTCCCGAACAGCTAGTAT
roseo_5_10
TGACTGACTAATCCGCCTACGTACG
gamma_16_10
CACACGCGGTATACCTGGATCAGGG





flavo_9_11
GATGCCTATCAATAATACCATGAGG
roseo_5_11
CTGACTGACTAATCCGCCTACGTAC
gamma_16_11
ACACACGCGGTATACCTGGATCAGG





flavo_9_12
AGAACTCAAGGTCCCGAACAGCTAG
roseo_5_12
CGAAGGAAAGCCTGATCTCTCAGGT
gamma_16_12
CACACACGCGGTATACCTGGATCAG





flavo_9_13
CTCAAGGTCCCGAACAGCTAGTATC
roseo_5_13
CACTATGTCCCGAAGGAAAGCCTGA
gamma_16_13
CCTTCCTCCGGGTTTCACCCGGCAG





flavo_9_14
AACTCAAGGTCCCGAACAGCTAGTA
roseo_5_14
GCACCTGTCACTATGTCCCGAAGGA
gamma_16_14
TTCCTCCGGGTTTCACCCGGCAGTC





flavo_9_15
CAGAACTCAAGGTCCCGAACAGCTA
roseo_5_15
CCTGTCACTATGTCCCGAAGGAAAG
gamma_16_15
CCTCCGGGTTTCACCCGGCAGTCTC





flavo_9_16
CTCAGAACTCAAGGTCCCGAACAGC
roseo_5_16
CTATGTCCCGAAGGAAAGCCTGATC
gamma_16_16
TTCACACACGCGGTATACCTGGATC





flavo_9_17
TCAAGGTCCCGAACAGCTAGTATCC
roseo_5_17
ATGTCCCGAAGGAAAGCCTGATCTC
gamma_16_17
CGCCTTCCTCCGGGTTTCACCCGGC





flavo_9_18
GCTCAGAACTCAAGGTCCCGAACAG
roseo_5_18
AGCACCTGTCACTATGTCCCGAAGG
gamma_16_18
CTCCGGGTTTCACCCGGCAGTCTCC





flavo_9_19
CTACATATTCCGCCTACTTCAATAC
roseo_5_19
CAGCACCTGTCACTATGTCCCGAAG
gamma_16_19
GCGGTATACCTGGATCAGGGTTGCC





flavo_9_20
GCCTACTTCAATACAACTCAAGATG
roseo_5_20
CCTCCGAAGAGGTTAGCGCACGGCC
gamma_16_20
CGGTATACCTGGATCAGGGTTGCCC





flavo_9_21
TACACGTAAGGCTTATTCTTCCTGT
roseo_5_21
TCCGCTGCCTCCTCCGAAGAGGTTA
gamma_16_21
GGTATACCTGGATCAGGGTTGCCCC





flavo_9_22
CACGTAAGGCTTATTCTTCCTGTAT
roseo_5_22
CCGCTGCCTCCTCCGAAGAGGTTAG
gamma_16_22
TCTTCACACACGCGGTATACCTGGA





flavo_9_23
ACACGTAAGGCTTATTCTTCCTGTA
roseo_5_23
TGTCCCGAAGGAAAGCCTGATCTCT
gamma_16_23
TCACACACGCGGTATACCTGGATCA





flavo_9_24
CTTAGCCGCTCAGAACTCAaGGTCC
roseo_5_24
CACCTGTCACTATGTCCCGAAGGAA
gamma_16_24
GCCTTCCTCCGGGTTTCACCCGGCA





flavo_9_25
CGCTCAGAACTCAAGGTCCCGAACA
roseo_5_25
GCAGCACCTGTCACTATGTCCCGAA
gamma_16_25
CGCGGTATACCTGGATCAGGGTTGC





flavo_10_1
CGCTTAGCCACTCATCTAACCAATG
roseo_6_1
CGATAAAACCTAGTCTCCTAGGCGG
gamma_17_1
GGCTCCTCCAATAGTGACCGGTCCG





flavo_10_2
CTTTCGCTTAGCCACTCATCTAACC
roseo_6_2
CCGAGGCTATTCCGAAGCAAAAGGT
gamma_17_2
AGGCTCCTCCAATAGTGACCGGTCC





flavo_10_3
ACACGTCGGAGTGTTTCTTCCTGTA
roseo_6_3
CCCGAGGCTATTCCGAAGCAAAAGG
gamma_17_3
CAGGCTCCTCCAATAGTGACCGGTC





flavo_10_4
CCCGTGCGCCACTCGTCATCTGGTG
roseo_6_4
AAAACCTAGTCTCCTAGGCGGTCAG
gamma_17_4
CATGTATTAGGCCTGCCGCCAACGT





flavo_10_5
ACCCGTGCGCCACTCGTCATCTGGT
roseo_6_5
AAACCTAGTCTCCTAGGCGGTCAGA
gamma_17_5
GCTCCTCCAATAGTGACCGGTCCGA





flavo_10_6
CACCCGTGCGCCACTCGTCATCTGG
roseo_6_6
TCCCGAGGCTATTCCGAAGCAAAAG
gamma_17_6
GCAGGCTCCTCCAATAGTGACCGGT





flavo_10_7
TACAACCCGTAGGGCTTTCATCCTG
roseo_6_7
CTAGTCTCCTAGGCGGTCAGAGGAT
gamma_17_7
CGCCTGAGAGCAAGCTCCCATCGTT





flavo_10_8
ACAACCCGTAGGGCTTTCATCCTGC
roseo_6_8
AACCTAGTCTCCTAGGCGGTCAGAG
gamma_17_8
ACGCCTGAGAGCAAGCTCCCATCGT





flavo_10_9
AACCCGTAGGGCTTTCATCCTGCAC
roseo_6_9
CCTAGTCTCCTAGGCGGTCAGAGGA
gamma_17_9
GCCTGAGAGCAAGCTCCCATCGTTT





flavo_10_10
CAGTTTACAACCCGTAGGGCTTTCA
roseo_6_10
TAGTCTCCTAGGCGGTCAGAGGATG
gamma_17_10
GACGCCTGAGAGCAAGCTCCCATCG





flavo_10_11
CAACCCGTAGGGCTTTCATCCTGCA
roseo_6_11
CCTCTCAAACCAGCTACTGATCGCA
gamma_17_11
AATCCTACGCAGGCTCCTCCAATAG





flavo_10_12
TTACAACCCGTAGGGCTTTCATCCT
roseo_6_12
TCCTCTCAAACCAGCTACTGATCGC
gamma_17_12
GCATGTATTAGGCCTGCCGCCAACG





flavo_10_13
AGCAGTTTACAACCCGTAGGGCTTT
roseo_6_13
CTCTCAAACCAGCTACTGATCGCAG
gamma_17_13
CTAATCCTACGCAGGCTCCTCCAAT





flavo_10_14
GCAGTTTACAACCCGTAGGGCTTTC
roseo_6_14
CTCAAACCAGCTACTGATCGCAGAC
gamma_17_14
GCTAATCCTACGCAGGCTCCTCCAA





flavo_10_15
AAGCAGTTTACAACCCGTAGGGCTT
roseo_6_15
CAGCTACTGATCGCAGACTTGGTAG
gamma_17_15
CGACGCCTGAGAGCAAGCTCCCATC





flavo_10_16
CACGTCGGAGTGTTTCTTCCTGTAT
roseo_6_16
CCAGCTACTGATCGCAGACTTGGTA
gamma_17_16
CCTGAGAGCAAGCTCCCATCGTTTC





flavo_10_17
TGCGCCACTCGTCATCTGGTGCAAG
roseo_6_17
CCATGCAGCACCTGTCACTCTGTAT
gamma_17_17
CTCCTCCAATAGTGACCGGTCCGAA





flavo_10_18
CCGTGCGCCACTCGTCATCTGGTGC
roseo_6_18
CATGCAGCACCTGTCACTCTGTATC
gamma_17_18
ATCCTACGCAGGCTCCTCCAATAGT





flavo_10_19
GCGCCACTCGTCATCTGGTGCAAGC
roseo_6_19
AACCAGCTACTGATCGCAGACTTGG
gamma_17_19
CGCAGGCTCCTCCAATAGTGACCGG





flavo_10_20
CGTGCGCCACTCGTCATCTGGTGCA
roseo_6_20
ACCAGCTACTGATCGCAGACTTGGT
gamma_17_20
AGCTAATCCTACGCAGGCTCCTCCA





flavo_10_21
GTGCGCCACTCGTCATCTGGTGCAA
roseo_6_21
GCCATGCAGCACCTGTCACTCTGTA
gamma_17_21
TCGACGCCTGAGAGCAAGCTCCCAT





flavo_10_22
GTTTACAACCCGTAGGGCTTTCATC
roseo_6_22
AGTTTCCCGAGGCTATTCCGAAGCA
gamma_17_22
CTGAGAGCAAGCTCCCATCGTTTCC





flavo_10_23
TTTACAACCCGTAGGGCTTTCATCC
roseo_6_23
GTTTCCCGAGGCTATTCCGAAGCAA
gamma_17_23
TGTATTAGGCCTGCCGCCAACGTTC





flavo_10_24
GCACCCGTGCGCCACTCGTCATCTG
roseo_6_24
GGCGGTCAGAGGATGTCAAGGGTTG
gamma_17_24
TGCATGTATTAGGCCTGCCGCCAAC





flavo_10_25
GCGAAGTGGCTGCTCTCTGTACCGG
roseo_6_25
AGGCGGTCAGAGGATGTCAAGGGTT
gamma_17_25
CGCCACCGGTATTCCTCAGAATATC





flavo_11_1
GTACAAGTACTTTATGCTGCCCCTC
alpha_4_1
CGACAGGCATGCCTGCCAACAACTA
gamma_19_1
GAGGTTGCGACCCTTTGTCCTTCCC





flavo_11_2
CCGCCGGAGCTTTTCTTAAAAACTC
alpha_4_2
CCGACAGGCATGCCTGCCAACAACT
gamma_19_2
GCGAGGTTGCGACCCTTTGTCCTTC





flavo_11_3
CGGTCGCCATCAAAGTACAAGTACT
alpha_4_3
ACCGACAGGCATGCCTGCCAACAAC
gamma_19_3
CGAAACCTTTCAAGAAGAGGGCTCC





flavo_11_4
CCGGTCGCCATCAAAGTACAAGTAC
alpha_4_4
GACAGGCATGCCTGCCAACAACTAG
gamma_19_4
AAAGTGGTGAGCGCCCAGATAAGCT





flavo_11_5
CGTCCCTCAGCGTCAGTTAATTGTT
alpha_4_5
CCGTCTGCCACTATATCGTTCGACT
gamma_19_5
TGAGCGCCCAGATAAGCTACCCACT





flavo_11_6
TACAAGTACTTTATGCTGCCCCTCG
alpha_4_6
CACCGACAGGCATGCCTGCCAACAA
gamma_19_6
CAAAGTGGTGAGCGCCCAGATAAGC





flavo_11_7
CACGCGGCATCGCTGGATCAGAGTT
alpha_4_7
CCCGTCTGCCACTATATCGTTCGAC
gamma_19_7
GTGGTGAGCGCCCAGATAAGCTACC





flavo_11_8
TCGTCCCTCAGCGTCAGTTAATTGT
alpha_4_8
CAGGCATGCCTGCCAACAACTAGCT
gamma_19_8
AGTGGTGAGCGCCCAGATAAGCTAC





flavo_11_9
TCACGCGGCATCGCTGGATCAGAGT
alpha_4_9
ACAGGCATGCCTGCCAACAACTAGC
gamma_19_9
GTGAGCGCCCAGATAAGCTACCCAC





flavo_11_10
TGCCAGTATCAAAGGCAGTTCTACC
alpha_4_10
TCACCGACAGGCATGCCTGCCAACA
gamma_19_10
GGTGAGCGCCCAGATAAGCTACCCA





flavo_11_11
ACAAGTACTTTATGCTGCCCCTCGA
alpha_4_11
GCATGCCTGCCAACAACTAGCTCTC
gamma_19_11
TGGTGAGCGCCCAGATAAGCTACCC





flavo_11_12
GTACATCGAACAGCTAGTGACCATC
alpha_4_12
GGCATGCCTGCCAACAACTAGCTCT
gamma_19_12
AAGTGGTGAGCGCCCAGATAAGCTA





flavo_11_13
GCCAGTATCAAAGGCAGTTCTACCG
alpha_4_13
CACCCGTCTGCCACTATATCGTTCG
gamma_19_13
CGCCCAGATAAGCTACCCACTTCTT





flavo_11_14
TTCGTCCCTCAGCGTCAGTTAATTG
alpha_4_14
ACCCGTCTGCCACTATATCGTTCGA
gamma_19_14
GCGCCCAGATAAGCTACCCACTTCT





flavo_11_15
CAAGTACTTTATGCTGCCCCTCGAC
alpha_4_15
GTCACCGACAGGCATGCCTGCCAAC
gamma_19_15
GCGAAACCTTTCAAGAAGAGGGCTC





flavo_11_16
CGCCGGTCGCCATCAAAGTACAAGT
alpha_4_16
AGGCATGCCTGCCAACAACTAGCTC
gamma_19_16
AGCGCCCAGATAAGCTACCCACTTC





flavo_11_17
TCGCCGGTCGCCATCAAAGTACAAG
alpha_4_17
CTCACCCGTCTGCCACTATATCGTT
gamma_19_17
ACAAAGTGGTGAGCGCCCAGATAAG





flavo_11_18
GCCGGTCGCCATCAAAGTACAAGTA
alpha_4_18
TCACCCGTCTGCCACTATATCGTTC
gamma_19_18
CACAAAGTGGTGAGCGCCCAGATAA





flavo_11_19
TTCGCCGGTCGCCATCAAAGTACAA
alpha_4_19
CATGCCTGCCAACAACTAGCTCTCA
gamma_19_19
CGAGGTTGCGACCTTTGTCCTTCC





flavo_11_20
CGTTCGCCGGTCGCCATCAAAGTAC
alpha_4_20
CCTGCCAACAACTAGCTCTCATCGT
gamma_19_20
GAGCGCCCAGATAAGCTACCCACTT





flavo_11_21
GTTCGCCGGTCGCCATCAAAGTACA
alpha_4_21
CGTCACCGACAGGCATGCCTGCCAA
gamma_19_21
CGCGAGGTTGCGACCCTTTGTCCTT





flavo_11_22
TACCTATCGGAGCTTAGGTGAGCCG
alpha_4_22
CTCGGTATTCCGCTAACCTCTCCTG
gamma_19_22
GACGCCTAAGAGCAAGCTCTTATCG





flavo_11_23
TATCGGAGCTTAGGTGAGCCGTTAC
alpha_4_23
ACTCACCCGTCTGCCACTATATCGT
gamma_19_23
TCACAAAGTGGTGAGCGCCCAGATA





flavo_11_24
CCCTGACTTAACAAACAGCCTGCGG
alpha_4_24
GCGTCACCGACAGGCATGCCTGCCA
gamma_19_24
GCAGGCTCATCTGATAGCGAAACCT





flavo_11_25
ACCGTTGAGCGGTAGGATTTCACCC
alpha_4_25
TACTCACCCGTCTGCCACTATATCG
gamma_19_25
CGACGCCTAAGAGCAAGCTCTTATC





flavo_12_1
CGTCTTCCTGCACGCTGCATGGCTG
wolbach_1_1
GCCAGGACTTCTTCTGTGAGTACCG
gamma_20_1
CCACTAAGGGACAAATTCCCCCAAC





flavo_12_2
CCGTCTTCCTGCACGCTGCATGGCT
wolbach_1_2
AGCCAGGACTTCTTCTGTGAGTACC
gamma_20_2
CGCCACTAAGGGACAAATTCCCCCA





flavo_12_3
GTCTTCCTGCACGCTGCATGGCTGG
wolbach_1_3
CCAGGACTTCTTCTGTGAGTACCGT
gamma_20_3
GCCACTAAGGGACAAATTCCCCCAA





flavo_12_4
CTTCCTGCACGCTGCATGGCTGGAT
wolbach_1_4
CGGAGTTAGCCAGGACTTCTTCTGT
gamma_20_4
CACTAAGGGACAAATTCCCCCAACG





flavo_12_5
TTCCTGCACGCTGCATGGCTGGATC
wolbach_1_5
CCGGCCGAACCGACCCTATCCCTTC
gamma_20_5
ACTAAGGGACAAATTCCCCCAACGG





flavo_12_6
GCCGTCTTCCTGCACGCTGCATGGC
wolbach_1_6
ACGGAGTTAGCCAGGACTTCTTCTG
gamma_20_6
CTAAGGGACAAATTCCCCCAACGGC





flavo_12_7
TCTTCCTGCACGCTGCATGGCrGGA
wolbach_1_7
GGAGTTAGCCAGGACTTCTTCTGTG
gamma_20_7
GCGCCACTAAGGGACAAATTCCCCC





flavo_12_8
CACGCTGCATGGCTGGATCAGAGTT
wolbach_1_8
CAGGACTTCTTCTGTGAGTACCGTC
gamma_20_8
GGTACCGTCAAGACGCGCAGTTATT





flavo_12_9
GGCCGTCTTCCTGCACGCTGCATGG
wolbach_1_9
GGCACGGAGTTAGCCAGGACTTCTT
gamma_20_9
AGGTACCGTCAAGACGCGCAGTTAT





flavo_12_10
TGCCCACCTTTTACCACCGGAGTTT
wolbach_1_10
CACGGAGTTAGCCAGGACTTCTTCT
gamma_20_10
TAGGTACCGTCAAGACGCGCAGTTA





flavo_12_11
ATGCCCACCTTTTACCACCGGAGTT
wolbach_1_11
TGGCACGGAGTTAGCCAGGACTTCT
gamma_20_11
TGCGCCACTAAGGGACAAATTCCCC





flavo_12_12
CACACGTGGACAGATTTCTTCCTGT
wolbach_1_12
GCACGGAGTTAGCCAGGACTTCTTC
gamma_20_12
TAAGGGACAAATTCCCCCAACGGCT





flavo_12_13
GAAGACTCGCTCTTCCTCGCGGAGT
wolbach_1_13
CGCCTCAGCGTCAGATTTGAACCAG
gamma_20_13
CTGTAGGTACCGTCAAGACGCGCAG





flavo_12_14
CATGCCCACCTTTTACCACCGGAGT
wolbach_1_14
GCGCCTCAGCGTCAGATTTGAACCA
gamma_20_14
GTAGGTACCGTCAAGACGCGCAGTT





flavo_12_15
CCGGCTTTGAAGACTCGCTCTTCCT
wolbach_1_15
CTGGCACGGAGTTAGCCAGGACTTC
gamma_20_15
CTGCGCCACTAAGGGACAAATTCCC





flavo_12_16
CCACACGTGGACAGATTTCTTCCTG
wolbach_1_16
CTGCTGGCACGGAGTTAGCCAGGAC
gamma_20_16
TGTAGGTACCGTCAAGACGCGCAGT





flavo_12_17
TTTGAAGACTCGCTCTTCCTCGCGG
wolbach_1_17
GCTGGCACGGAGTTAGCCAGGACTT
gamma_20_17
TCTGTAGGTACCGTCAAGACGCGCA





flavo_12_18
GGCTTTGAAGACTCGCTCTTCCTCG
wolbach_1_18
TGCTGGCACGGAGTTAGCCAGGACT
gamma_20_18
GCTGCGCCACTAAGGGACAAATTCC





flavo_12_19
CTTTGAAGACTCGCTCTTCCTCGCG
wolbach_1_19
CGCGCCTCAGCGTCAGATTTGAACC
gamma_20_19
CTTCTGTAGGTACCGTCAAGACGCG





flavo_12_20
TGAAGACTCGCTCTTCCTCGCGGAG
wolbach_1_20
GCCTTCGCGCCTCAGCGTCAGATTT
gamma_20_20
TCTTCTGTAGGTACCGTCAAGACGC





flavo_12_21
GACCGGCTTTGAAGACTCGCTCTTC
wolbach_1_21
GCCTCAGCGTCAGATTTGAACCAGA
gamma_20_21
GGACAAATTCCCCCAACGGCTAGTT





flavo_12_22
CGGCTTTGAAGACTCGCTCTTCCTC
wolbach_1_22
TCGCGCCTCAGCGTCAGATTTGAAC
gamma_20_22
GACAAATTCCCCCAACGGCTAGTTG





flavo_12_23
GCTTTGAAGACTCGCTCTTCCTCGC
wolbach_1_23
CATGCAACACCTGTGTGAAACCCGG
gamma_20_23
AGCTGCGCCACTAAGGGACAAATTC





flavo_12_24
ACCGGCTTTGAAGACTCGCTCTTCC
wolbach_1_24
GACTTTGCAGCCCATTGTAGCCACC
gamma_20_24
CGTTACGCACCCGTCCGCCACTCGA





flavo_12_25
TCGTACAGTACCGTCAACTACCCAC
wolbach_1_25
CGACTTTGCAGCCCATTGTAGCCAC
gamma_20_25
TCGCGTTAGCTGCGCCACTAAGGGA





flavo_13_1
CGCCGGTCGTCAGCATAGCAAGCTA
rickett_1_1
TCTCTGCGATCCGCGACCACCATGT
gamma_21_1
TCGTCAGCGCAGAGCAAGCTCCGCC





flavo_13_2
AGGTCGCTCCTCACGGTAACGAACT
rickett_1_2
ATCTCTGCGATCCGCGACCACCATG
gamma_21_2
CTCGTCAGCGCAGAGCAAGCTCCGC





flavo_13_3
GGTCGCTCCTCACGGTAACGAACTT
rickett_1_3
GTCAGTTGTAGCCCAGATGACCGCC
gamma_21_3
ACTCGTCAGCGCAGAGCAAGCTCCG





flavo_13_4
TAGGTCGCTCCTCACGGTAACGAAC
rickett_1_4
CAGTTGTAGCCCAGATGACCGCCTT
gamma_21_4
AGCAAGCTCCGCCTGTTACCGTTCG





flavo_13_5
AGGACGCATAGTCATCTTGTACCCA
rickett_1_5
TCAGTTGTAGCCCAGATGACCGCCT
gamma_21_5
GTCAGCGCAGAGCAAGCTCCGCCTG





flavo_13_6
CCTCACGGTAACGAACITCAGGCAC
rickett_1_6
CGTCAGTTGTAGCCCAGATGACCGC
gamma_21_6
GAGCAAGCTCCGCCTGTTACCGTTC





flavo_13_7
TCGCCCAGTGGCTGCTCATTGTCCA
rickett_1_7
GTTGTAGCCCAGATGACCGCCTTCG
gamma_21_7
CAAGCTCCGCCTGTTACCGTTCGAC





flavo_13_8
CGTTCGCCGGTCGTCAGCATAGCAA
rickett_1_8
AGTTGTAGCCCAGATGACCGCCTTC
gamma_21_8
GCTCCGCCTGTTACCGTTCGACTTG





flavo_13_9
GTCGCTCCTCACGGTAACGAACTTC
rickett_1_9
CATCTCTGCGATCCGCGACCACCAT
gamma_21_9
CTGGGCTTTCACATCCGACTGACCG





flavo_13_10
GTCGCCCAGTGGCTGCTCATTGTCC
rickett_1_10
GCGTCAGTTGTAGCCCAGATGACCG
gamma_21_10
CTTTTGCAAGCCACTCCCATGGTGT





flavo_13_11
TAGGACGCATAGTCATCTTGTACCC
rickett_1_11
AGCATCTCTGCGATCCGCGACCACC
gamma_21_11
TCTTTTGCAAGCCACTCCCATGGTG





flavo_13_12
ACCAGTATCAAAGGCAGTTCCATCG
rickett_1_12
GCATCTCTGCGATCCGCGACCACCA
gamma_21_12
CTTCTTTTGCAAGCCACTCCCATGG





flavo_13_13
TCCTCACGGTAACGAACTTCAGGCA
rickett_1_13
TTGTAGCCCAGATGACCGCCTTCGC
gamma_21_13
TTTTGCAAGCCACTCCCATGGTGTG





flavo_13_14
CTAGGTCGCTCCTCACGGTAACGAA
rickett_1_14
AGCGTCAGTTGTAGCCCAGATGACC
gamma_21_14
TTTGCAAGCCACTCCCATGGTGTGA





flavo_13_15
CTCCTCACGGTAACGAACTTCAGGC
rickett_1_15
CCACTAACTAATTGGAGCAAGCCCC
gamma_21_15
CCTCAGCGTCAGTATTGCTCCAGAA





flavo_13_16
CCGTTCGCCGGTCGTCAGCATAGCA
rickett_1_16
GCCACTAACTAATTGGAGCAAGCCC
gamma_21_16
GGGCTTTCACATCCGACTGACCGTG





flavo_13_17
GTTCGCCGGTCGTCAGCATAGCAAG
rickett_1_17
CAAGCCCCAATTAGTCCGTTCGACT
gamma_21_17
CTTTCACATCCGACTGACCGTGCCG





flavo_13_18
CTCACGGTAACGAACTTCAGGCACT
rickett_1_18
CCGTCTTGCTTCCCTCTGTAAACAC
gamma_21_18
GGCTTTCACATCCGACTGACCGTGC





flavo_13_19
TCGCrCCTCACGGTAACGAACTTCA
rickett_1_19
CCGTCTGCCACTAACTAATTGGAGC
gamma_21_19
CACTCGTCAGCGCAGAGCAAGCTCC





flavo_13_20
GGTCGCCCAGTGGCTGCTCATTGTC
rickett_1_20
CTCTGCGATCCGCGACCACCATGTC
gamma_21_20
GCTTTCACATCCGACTGACCGTGCC





flavo_13_21
CGGCATAGCTGGTTCAGAGTTGCCT
rickett_1_21
GCAAGCCCCAATTAGTCCGTTCGAC
gamma_21_21
TCAGCGCAGAGCAAGCTCCGCCTGT





flavo_13_22
GGCATAGCTGGTTCAGAGTTGCCTC
rickett_1_22
AGCAAGCCCCAATTAGTCCGTTCGA
gamma_21_22
CGTCAGCGCAGAGCAAGCTCCGCCT





flavo_13_23
CGCGGCATAGCTGGTTCAGAGTTGC
rickett_1_23
TGTAGCCCAGATGACCGCCTTCGCC
gamma_21_23
AGAGCAAGCTCCGCCTGTTACCGTT





flavo_13_24
GCGGCATAGCTGGTTCAGAGTTGCC
rickett_1_24
GAGCAAGCCCCAATTAGTCCGTTCG
gamma_21_24
AGCTCCGCCTGGTACCGTTCGACTT





flavo_13_25
GCATAGCTGGTTCAGAGTTGCCTCC
rickett_1_25
GAAGAAAAGCATCTCTGCGATCCGC
gamma_21_25
CAGAGCAAGCTCCGCCTGTTACCGT





flavo_14_1
GTGCAAGCACTCCTGTTACCCCTCG
alpha_5_1
ACCAAAGCCCTGTGGGCCCTAGCAG
verru_1_1
CCCCGAGATTTCACACCTCACACAT





flavo_14_2
AGTGCAAGCACTCCTGTTACCCCTC
alpha_5_2
CACCAAAGCCCTGTGGGCCCTAGCA
verru_1_2
CCCGAGATTTCACACCTCACACATC





flavo_14_3
GCAAGCACTCCTGTTACCCCTCGAC
alpha_5_3
CCAAAGCCCTGTGGGCCCTAGCAGC
verru_1_3
TCACACCTCACACATCTATCCGCCT





flavo_14_4
TGCAAGCACTCCTGTTACCCCTCGA
alpha_5_4
ACCCTATGGTAGATCCCCACGCGTT
verru_1_4
CACCTCACACATCTATCCGCCTACG





flavo_14_5
CAAGCACTCCTGTTACCCCTCGACT
alpha_5_5
CACCCTATGGTAGATCCCCACGCGT
verru_1_5
TTCACACCTCACACATCTATCCGCC





flavo_14_6
AAGCACTCCTGTTACCCCTCGACTT
alpha_5_6
GCACCCTATGGTAGATCCCCACGCG
verru_1_6
ACACCTCACACATCTATCCGCCTAC





flavo_14_7
AGCACTCCTGTTACCCCTCGACTTG
alpha_5_7
CCGCACCCTATGGTAGATCCCCACG
verru_1_7
CACACCTCACACATCTATCCGCCTA





flavo_14_8
GCACTCCTGTTACCCCTCGACTTGC
alpha_5_8
CGCACCCTATGGTAGATCCCCACGC
verru_1_8
GCCCCGAGATTTCACACCTCACACA





flavo_14_9
TGCTACACGTAGCAGTGTTTCTTCC
alpha_5_9
TATTCCGCACCCTATGGTAGATCCC
verru_1_9
ACCTCACACATCTATCCGCCTACGC





flavo_14_10
CCCGTGCGCCGGTCGTCAGCGAGTG
alpha_5_10
ATTCCGCACCCTATGGTAGATCCCC
verru_1_10
AGCCCCGAGATTTCACACCTCACAC





flavo_14_11
TCGTCAGCGAGTGCAAGCACTCCTG
alpha_5_11
TCCGCACCCTATGGTAGATCCCCAC
verru_1_11
CTCCCGAAGGATAGCTCACGTACTT





flavo_14_12
TGCGCCGGTCGTCAGCGAGTGCAAG
alpha_5_12
CGCACCAGCTTCGGGTTGATCCAAC
verru_1_12
CTGCCTCCCGAAGGATAGCTCACGT





flavo_14_13
CGGTCGTCAGCGAGTGCAAGCACTC
alpha_5_13
TTCCGCACCCTATGGTAGATCCCCA
verru_1_13
GGCTATGAACCTCCTTGTTGCTCCT





flavo_14_14
CCGTGCGCCGGTCGTCAGCGAGTGC
alpha_5_14
CCACCAAAGCCCTGTGGGCCCTAGC
verru_1_14
CCTCCCGAAGGATAGCTCACGTACT





flavo_14_15
GCGCCGGTCGTCAGCGAGTGCAAGC
alpha_5_15
CCCTATGGTAGATCCCCACGCGTTA
verru_1_15
CCCGAAGGATAGCTCACGTACTTCG





flavo_14_16
GGTCGTCAGCGAGTGCAAGCACTCC
alpha_5_16
CCTATGGTAGATCCCCACGCGTTAC
verru_1_16
TCCCGAAGGATAGCTCACGTACTTC





flavo_14_17
GCCGGTCGTCAGCGAGTGCAAGCAC
alpha_5_17
GCGCACCAGCTTCGGGTTGATCCAA
verru_1_17
GAGGCTATGAACCTCCTTGTTGCTC





flavo_14_18
GTCAGCGAGTGCAAGCACTCCTGTT
alpha_5_18
GCACCAGCTTCGGGTTGATCCAACT
verru_1_18
GACGCTGCCTCCCGAAGGATAGCTC





flavo_14_19
CCGGTCGTCAGCGAGTGCAAGCACT
alpha_5_19
AGCGCACCAGCTTCGGGTTGATCCA
verru_1_19
AGGCTATGAACCTCCTTGTTGCTCC





flavo_14_20
TCAGCGAGTGCAAGCACTCCTGTTA
alpha_5_20
CTATGGTAGATCCCCACGCGTTACG
verru_1_20
GCCTCCCGAAGGATAGCTCACGTAC





flavo_14_21
CGTGCGCCGGTCGTCAGCGAGTGCA
alpha_5_21
GCCACCAAAGCCCTGTGGGCCCTAG
verru_1_21
CGCTGCCTCCCGAAGGATAGCTCAC





flavo_14_22
CGCCGGTCGTCAGCGAGTGCAAGCA
alpha_5_22
CACCAGCTTCGGGTTGATCCAACTC
verru_1_22
TGCCTCCCGAAGGATAGCTCACGTA





flavo_14_23
GTGCGCCGGTCGTCAGCGAGTGCAA
alpha_5_23
TAGCGCACCAGCTTCGGGTTGATCC
verru_1_23
ACGCTGCCTCCCGAAGGATAGCTCA





flavo_14_24
CGTCAGCGAGTGCAAGCACTCCTGT
alpha_5_24
CAAAGCCCTGTGGGCCCTAGCAGCT
verru_1_24
GCTGCCTCCCGAAGGATAGCTCACG





flavo_14_25
GTCGTCAGCGAGTGCAAGCACTCCT
alpha_5_25
CGCCACCAAAGCCCTGTGGGCCCTA
verru_1_25
AGGACGCTGCCTCCCGAAGGATAGC





flavo_15_1
GGCGTACTCCCCAGGTGCATCACTT
alpha_6_1
GCGCCACTAACCCCGAAGCTTCGTT
verru_2_1
CGTCGCATGTTCACACTTTCGTGCA





flavo_15_2
CTCCCCAGGTGCATCACTTAATACT
alpha_6_2
CTTCTTGCGAGTAGCTGCCCACTGT
verru_2_2
CTACCCTAACTTTCGTCCATGAGCG





flavo_15_3
GCGTACTCCCCAGGTGCATCACTTA
alpha_6_3
CCCAGCTTGTTGGGCCATGAGGACT
verru_2_3
ACCCTAACTTTCGTCCATGAGCGTC





flavo_15_4
CGGCGTACTCCCCAGGTGCATCACT
alpha_6_4
ATCTTCTTGCGAGTAGCTGCCCACT
verru_2_4
GCGTCGCATGTTCACACTTTCGTGC





flavo_15_5
ACTCCCCAGGTGCATCACTTAATAC
alpha_6_5
TCTTCTTGCGAGTAGCTGCCCACTG
verru_2_5
CAAGTGTTCCCTTCTCCCCTCCAGT





flavo_15_6
CGTACTCCCCAGGTGCATCACTTAA
alpha_6_6
TAGCCCAGCTTGTTGGGCCATGAGG
verru_2_6
TACACCAAGTGTTCCCTTCTCCCCT





flavo_15_7
CCGGCGTACTCCCCAGGTGCATCAC
alpha_6_7
GCCACTAACCCCGAAGCTTCGTTCG
verru_2_7
CCAAGTGTTCCCTTCTCCCCTCCAG





flavo_15_8
GTACTCCCCAGGTGCATCACTTAAT
alpha_6_8
GTAGCCCAGCTTGTTGGGCCATGAG
verru_2_8
ACACCAAGTGTTCCCTTCTCCCCTC





flavo_15_9
GCCGGCGTACTCCCCAGGTGCATCA
alpha_6_9
CGCCACTAACCCCGAAGCTTCGTTC
verru_2_9
CGCTACACCAAGTGTTCCCTTCTCC





flavo_15_10
GAAGAGAAGGCCTGTTTCCAAGCCG
alpha_6_10
TTCTTGCGAGTAGCTGCCCACTGTC
verru_2_10
CACCAAGTGTTCCCTTCTCCCCTCC





flavo_15_11
CAACAGCGAGTGATGATCGTTTACG
alpha_6_11
TAGCATCTTCTTGCGAGTAGCTGCC
verru_2_11
GCTACACCAAGTGTTCCCTTCTCCC





flavo_15_12
GCATGCCCATCTCATACCGAAAAAC
alpha_6_12
AGCATCTTCTTGCGAGTAGCTGCCC
verru_2_12
CTACACCAAGTGTTCCCTTCTCCCC





flavo_15_13
TTGTAATCTGCTCCGAAGAGAAGGC
alpha_6_13
GCCCAGCTTGTTGGGCCATGAGGAC
verru_2_13
AGTGTTCCCTTCTCCCCTCCAGTAC





flavo_15_14
CGCCGGTCGTCAGCAAAAGCAAGCT
alpha_6_14
CACTAACCCCGAAGCTTCGTTCGAC
verru_2_14
AAGTGTTCCCTTCTCCCCTCCAGTA





flavo_15_15
AAGAGAAGGCCTGTTTCCAAGCCGG
alpha_6_15
CATCTTCTTGCGAGTAGCTGCCCAC
verru_2_15
ACCAAGTGTTCCCTTCTCCCCTCCA





flavo_15_16
GCCGGTCGTCAGCAAAAGCAAGCTT
alpha_6_16
TGTAGCCCAGCTTGTTGGGCCATGA
verru_2_16
GCTACCCTAACTTTCGTCCATGAGC





flavo_15_17
TGCCGGCGTACTCCCCAGGTGCATC
alpha_6_17
AGCCCAGCTTGTTGGGCCATGAGGA
verru_2_17
GTTCCCTTCTCCCCTCCAGTACTCT





flavo_15_18
GCGCCGGTCGTCAGCAAAAGCAAGC
alpha_6_18
CCACTAACCCCGAAGCTTCGTTCGA
verru_2_18
GTGTTCCCTTCTCCCCTCCAGTACT





flavo_15_19
CGAAGAGAAGGCCTGTTTCCAAGCC
alpha_6_19
GCATCTTCTTGCGAGTAGCTGCCCA
verru_2_19
TGTTCCCTTCTCCCCTCCAGTACTC





flavo_15_20
CCAACAGCGAGTGATGATCGTTTAC
alpha_6_20
GTGTAGCCCAGCTTGTTGGGCCATG
verru_2_20
CCGCTACACCAAGTGTTCCCTTCTC





flavo_15_21
GGAGTATTAATCCCCGTTTCCAGGG
alpha_6_21
TGCGCCACTAACCCCGAAGCTTCGT
verru_2_21
TTCCCTTCTCCCCTCCAGTACTCTA





flavo_15_22
TGGAGTATTAATCCCCGTTTCCAGG
alpha_6_22
CTCAAGCACCAAGTGCCCGAACAGC
verru_2_22
GGCGTCGCATGTTCACACTTTCGTG





flavo_15_23
TCCCCGTTTCCAGGGGCTATCCTCC
alpha_6_23
CCAGCTTGTTGGGCCATGAGGACTT
verru_2_23
CGCTACCCTAACTTTCGTCCATGAG





flavo_15_24
TGCGCCGGTCGTCAGCAAAAGCAAG
alpha_6_24
ACTAACCCCGAAGCTTCGTTCGACT
verru_2_24
CCCTAACTTTCGTCCATGAGCGTCA





flavo_15_25
AACAGCGAGTGATGATCGTTTACGG
alpha_6_25
TCTTGCGAGTAGCTGCCCACTGTCA
verru_2_25
ACCGCTACACCAAGTGTTCCCTTCT








Claims
  • 1. A method for determination of stable isotope incorporation in a community of organisms comprising the steps of: a) supplying said community of organisms with at least two substrates simultaneously for a defined period of time, wherein each of the at least two substrates is labeled with a different stable isotope;b) extracting RNA from the organisms;c) fragmenting said RNA to provide fragmented RNA;d) labeling a fraction of the fragmented RNA with a detectable label to provide labeled fragmented RNA;e) hybridizing the labeled fragmented RNA to a set of oligonucleotide probes, wherein the set of oligonucleotide probes is an array of oligonucleotide probes attached to a substrate;f) detecting hybridization signal strength of labeled fragmented RNA hybridized to the oligonucleotide probes to determine the community organism composition;g) identifying a responsive set of oligonucleotide probes based on the hybridization signal strength in step f);h) hybridizing a fraction of unlabeled fragmented RNA to a second array of oligonucleotide probes, wherein the second array comprises the responsive set of oligonucleotide probes attached to a conductive substrate;i) detecting the unlabeled fragmented RNA hybridized to the responsive set of probes to determine the stable isotope incorporation into the community of organisms using imaging mass spectrometry or spectroscopy.
  • 2. The method of claim 1, wherein said organism is a bacterium, archaea, virus, fungus, plant, arthropod, nematode, or other eukaryote.
  • 3. The method of claim 2, wherein said organism is a bacterium.
  • 4. The method of claim 1, wherein the stable isotopes are selected from the group consisting of 3H, 13C, 15N, and 18O.
  • 5. The method of claim 1, wherein in step b) the extracting step is carried out by physical or chemical cell lysis followed by affinity column purification.
  • 6. The method of claim 1, wherein in step c) the fragmenting step is carried out by using enzymes, chemicals, or heat, or a combination of these.
  • 7. The method of claim 1, wherein in step d) the RNA is labeled with a fluorescent molecule or a non-fluorescent molecule.
  • 8. The method of claim 1, wherein steps c) and d) are carried out concurrently.
  • 9. The method of claim 1, wherein step e) further comprises the steps of adding said labeled fragmented RNA to a hybridization solution and contacting said hybridization solution with the array of oligonucleotide probes.
  • 10. The method of claim 1, wherein the set of oligonucleotide probes comprises 16S rRNA phylogenetic oligonucleotide probes.
  • 11. The method of claim 10, wherein said set of 16S rRNA phylogenetic probes further comprises probes from the 16S rRNA gene, 23S rRNA gene, 5S rRNA gene, 5.8S rRNA gene, 12S rRNA gene, 18S rRNA gene, 28S rRNA gene, gyrB gene, rpoB gene, fusA gene, recA gene, cox1 gene, nif13 gene, or a combination thereof.
  • 12. The method of claim 7, wherein the RNA is labeled with a fluorescent molecule.
  • 13. The method of claim 7, wherein the RNA is labeled with a non-fluorescent molecule.
  • 14. The method of claim 1, wherein in step f) the hybridized labeled RNA is imaged with a fluorescence scanner and fluorescence intensity is measured for each probe feature.
  • 15. The method of claim 1, wherein in step f) the detection of hybridization signal strength provides a determination of genes present in the community of organisms.
  • 16. The method of claim 1, wherein in step f) the detection of hybridization signal strength is used for normalization of the isotope signals detected in step i).
  • 17. The method of claim 1, wherein in step i) the hybridized unlabeled fragmented RNA are imaged with a secondary ion mass spectrometer and isotope ratios are measured for each probe feature.
  • 18. The method of claim 1, wherein in step i) the hybridized unlabeled fragmented RNA are imaged with a nano-scale secondary ion mass spectrometer device and isotope ratios are measured for each probe feature.
  • 19. The method of claim 1, wherein in step e) the substrate is a solid planar substrate, a microarray slide, spheres or beads, wherein the substrate is comprised of silicon, glass, metals, semiconductor materials, polymers or plastics.
  • 20. The method of claim 18, wherein in step h) the responsive probe substrate is a solid planar substrate, a microarray slide, spheres or beads, wherein the responsive probe substrate is comprised of silicon, glass, metals, semiconductor materials, polymers or plastics.
  • 21. The method of claim 20, wherein the responsive probe substrate is a solid planar substrate coated with indium tin oxide (ITO).
  • 22. The method of claim 1, wherein in step e) the set of oligonucleotide probes is identified and selected from unique sequence regions of the fragmented RNA.
  • 23. A method for determination of stable isotope incorporation in a community of organisms comprising the steps of: a) supplying said community of organisms with at least two substrates simultaneously for a defined period of time, wherein each of the at least two substrates is labeled with a different stable isotope;b) extracting RNA from the organisms;c) fragmenting said RNA to provide fragmented RNA, generating cDNAs from a fraction of said fragmented RNA and sequencing said cDNAs;d) designing a first set of oligonucleotide probes based on unique sequence regions of said sequenced cDNAs generated from the fragmented RNA;e) labeling a fraction of the fragmented RNA with a detectable label to provide labeled fragmented RNA;f) hybridizing the labeled fragmented RNA to the first set of oligonucleotide probes, wherein the first set of oligonucleotide probes is an array of oligonucleotide probes attached to a substrate, and detecting hybridization signal strength of the labeled fragmented RNA hybridized to the first set of oligonucleotide probes to determine the community organism composition;g) identifying a responsive set of oligonucleotide probes based on the hybridization signal strength in step f);h) hybridizing a fraction of unlabeled fragmented RNA to a second array of oligonucleotide probes, wherein the second array comprises the responsive set of oligonucleotide probes attached to a conductive substrate;i) detecting the unlabeled fragmented RNA hybridized to the responsive set of probes to determine the stable isotope incorporation into the community of organisms using imaging mass spectrometry or spectroscopy.
  • 24. The method of claim 23, wherein said organism is a bacterium, archaea, virus, fungus, plant, arthropod, nematode, or other eukaryote.
  • 25. The method of claim 24, wherein said organism is a bacterium.
  • 26. The method of claim 23, wherein the stable isotopes are selected from the group consisting of 3H, 13C, 15N, and 18O.
  • 27. The method of claim 23, wherein in step b) the extracting step is carried out by physical or chemical cell lysis followed by affinity column purification.
  • 28. The method of claim 23, wherein in step c) the fragmenting step is carried out by using enzymes, chemicals, or heat, or a combination of these.
  • 29. The method of claim 23, wherein in step e) the RNA is labeled with a fluorescent molecule or a non-fluorescent molecule.
  • 30. The method of claim 23, wherein steps c) and e) are carried out concurrently.
  • 31. The method of claim 23, wherein step f) further comprises the steps of adding said labeled fragmented RNA to a hybridization solution and contacting said hybridization solution with the array of oligonucleotide probes.
  • 32. The method of claim 23, wherein the set of oligonucleotide probes comprises 16S rRNA phylogenetic oligonucleotide probes.
  • 33. The method of claim 32, wherein said set of 16S rRNA phylogenetic probes further comprises probes from the 16S rRNA gene, 23S rRNA gene, 5S rRNA gene, 5.8S rRNA gene, 12S rRNA gene, 18S rRNA gene, 28S rRNA gene, gyrB gene, rpoB gene, fusA gene, recA gene, cox1 gene, nif13 gene, or a combination thereof.
  • 34. The method of claim 29, wherein the RNA is labeled with a fluorescent molecule.
  • 35. The method of claim 29, wherein the RNA is labeled with a non-fluorescent molecule.
  • 36. The method of claim 23, wherein in step f) the hybridized labeled RNA is imaged with a fluorescence scanner and fluorescence intensity is measured for each probe feature.
  • 37. The method of claim 23, wherein in step f) the detection of hybridization signal strength provides a determination of genes present in the community of organisms.
  • 38. The method of claim 23, wherein in step f) the detection of hybridization signal strength is used for normalization of isotope signals detected in step i).
  • 39. The method of claim 23, wherein in step i) the hybridized unlabeled fragmented RNA are imaged with a secondary ion mass spectrometer and isotope ratios are measured for each probe feature.
  • 40. The method of claim 23, wherein in step i) the hybridized unlabeled fragmented RNA are imaged with a nano-scale secondary ion mass spectrometer device and isotope ratios are measured for each probe feature.
  • 41. The method of claim 23, wherein in step f) the substrate is a solid planar substrate, a microarray slide, spheres or beads, wherein the substrate is comprised of silicon, glass, metals, semiconductor materials, polymers or plastics.
  • 42. The method of claim 23, wherein in step h) the responsive probe substrate is a solid planar substrate, a microarray slide, spheres or beads, wherein the responsive probe substrate is comprised of silicon, glass, metals, semiconductor materials, polymers or plastics.
  • 43. The method of claim 25, wherein the responsive probe substrate is a solid planar substrate coated with indium tin oxide (ITO).
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application No. 61/302,535, filed on Feb. 8, 2010 and to U.S. Provisional Patent Application No. 61/302,827 filed on Feb. 9, 2010, both of which are hereby incorporated by reference. This application is related to concurrently filed U.S. patent application Ser. No. 13/023,468, filed on Feb. 8, 2011, entitled “Devices, Methods and Systems for Targeted Detection,” which claims priority to these same U.S. Provisional Patent applications and is hereby incorporated by reference in its entirety.

STATEMENT OF GOVERNMENTAL SUPPORT

This invention was made in part by the US DOE Office of Biological and Environmental Research Genomic Sciences research program and the LLNL Laboratory Directed Research and Development (LDRD) program with government support under Contract No. DE-AC02-05CH11231 and under Contract DE-AC52-07NA27344 awarded by the U.S. Department of Energy. The government has certain rights in the invention.

US Referenced Citations (11)
Number Name Date Kind
7015471 Franzen et al. Mar 2006 B2
20040058380 Levon et al. Mar 2004 A1
20040086423 Wohlstadter et al. May 2004 A1
20040180369 Franzen et al. Sep 2004 A1
20050244414 Mundy et al. Nov 2005 A1
20060147969 Kuimelis et al. Jul 2006 A1
20080076128 Hah et al. Mar 2008 A1
20080182758 Ugolin et al. Jul 2008 A1
20090137426 Jung et al. May 2009 A1
20090203549 Hoeprich Aug 2009 A1
20090291858 Andersen et al. Nov 2009 A1
Foreign Referenced Citations (7)
Number Date Country
0065099 Nov 2000 WO
2006054297 May 2006 WO
2006078356 Jul 2006 WO
2006114420 Nov 2006 WO
2007050501 May 2007 WO
2008028206 Mar 2008 WO
2009100201 Aug 2009 WO
Non-Patent Literature Citations (182)
Entry
Hesselsoe et al., Isotope array analysis of Rhodocyclales uncovers functional redundancy and versatility in an activated sludge; The ISME Journal, vol. 3, pp. 1349-1364, 2009.
Li et al., Simultaneous analysis of microbial identity and function using NanoSIMS; Environmental Microbiology, vol. 10, No. 3, pp. 580-588, 2008.
Godin et al., Simultaneous measurement of 13C- and 15N-isotopic enrichments of threonine by mass spectrometry; Rapid Communications in Mass Spectrometry, vol. 23, pp. 1109-1115, 2009.
Adamczyk, J. et al. (Nov. 2003). “The Isotope Array, A New Tool that Employs Substrate-Mediated Labeling of rRNA for Determination of Microbial Community Structure and Function,” Applied and Environmental Microbiology 69 (11):6875-6887.
Addison, S. L. et al. (2010). “Stable Isotope Probing: Technical Considerations when Resolving 15N-Labeled RNA in Gradients,” Journal of Microbiological Methods 80:70-75.
Ammerman, J. W. et al. (Mar. 15, 1985). “Bacterial 5′-Nucleotidase in Aquatic Ecosystems: A Novel Mechanism of Phosphorous Regeneration,” Science 227:1338-1340.
Behrens, S. et al. (May 2008). “Linking Microbial Phylogeny to Metabolic Activity at the Single-Cell Level by Using Enhanced Element Labeling-Catalyzed Reporter Deposition Fluorescence in Situ Hybridization (EL-FISH) and NanoSIMS,” Applied and Environment Microbiology 74(1):3143-3150.
Boschker, H. T. S. et al. (Apr. 23, 1998). “Direct Linking of Microbial Populations to Specific Biogeochemical Processes by 13C-Labelling of Biomarkers,” Nature 392:801-805.
Brodie, E. L. et al. (Sep. 2006). “Application of a High-Density Oligonucleotide Microarray Approach to Study Bacterial Population Dynamics During Uranium Reduction and Reoxidation,” Applied and Environmental Microbiology 72(9):6288-6298.
Cline, M. S. et al. (2007). “Integration of Biological Networks and Gene Expression Data Using Cytoscape,” Nature Protocols 2(10):2366-2382.
DeFlaun, M. F. et al. (May 21, 1987). “Distribution and Molecular Weight of Dissolved DNA in Subtropical Estuarine and Oceanic Environments,” Marine Ecology-Progress Series 38:65-73.
DeLong, E. F. et al. (Jan. 27, 2006). “Community Genomics Among Stratified Microbial Assemblages in the Ocean's Interior,” Science 311:496-503.
DeSantis, T. Z. et al. (Jul. 2006). “Greengenes, A Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB,” Applied and Environmental Microbiology 72(7):5069-5072.
Doolittle, W. F. et al. (2009). “On the Origin of Prokaryotic Species,” Genome Research 19:744-756.
Dugdale, R. C. et al. (2007). “The Role of Ammonium and Nitrate in Spring Bloom Development in San Francisco Bay,” Estuarine, Coastal and Shelf Science 73:17-29.
Dumont, M. G. et al. (Jun. 2005). “Stable Isotope Probing: Linking Microbial Identity to Function,” Nature Reviews Microbiology 3:499-504.
Evens, R. et al. (1988). “A Seasonal Comparison of the Dissolved Free Amino Acid Levels in Estuarine and English Channel Waters,” The Science of the Total Environment 76:69-78.
Falkowski, P. et al. (Oct. 13, 2000). “The Global Carbon Cycle: A Test of Our Knowledge of Earth as a System,” Science 290:291-296.
Fernandez-Reiriz, M. J. et al. (1989). “Biomass Production and Variation in the Biochemical Profile (Total Protein, Carbohydrates, RNA, Lipids and Fatty Acids) of Seven Species of Marine Microalgae,” Aquaculture 83:17-37.
Fuhrman, J. A. et al. (Jun. 1980). “Bacterioplankton Secondary Production Estimates for Coastal Waters of British Columbia, Canada, Antarctica, and California,” Applied and Environmental Microbiology 39(6):1085-1095.
Giovannoni, S. J. et al. (Sep. 15, 2005). “Molecular Diversity and Ecology of Microbial Plankton,” Nature 437:343-348.
Goldman, J. C. et al. (1991). “Ammonium Regeneration and Carbon Utilization by Marine Bacteria Grown on Mixed Substrates,” Marine Biology 109:369-378.
Hanson, R. B. et al. (1980). “Glucose Exchanges in a Salt Marsh-Estuary: Biological Activity and Chemical Measurements,” Limnology and Oceanography 25(4):633-642.
Hunt, D. E. et al. (May 23, 2008). “Resource Partitioning and Sympatric Differentiation Among Closely Related Bacterioplankton,” Science 320:1081-1085.
Kirchman, D. et al. (Mar. 1985). “Leucine Incorporation and its Potential as a Measure of Protein Synthesis by Bacteria in Natural Aquatic Systems,” Applied and Environmental Microbiology 49(3):599-607.
Lauro, F. M. et al. (Sep. 15, 2009). “The Genomic Basis of Trophic Strategy in Marine Bacteria,” Proceedings of the National Academy of Sciences of the United States of America 106(37):15527-15533.
Lennon, J. T. (May 2007). “Diversity and Metabolism of Marine Bacteria Cultivated on Dissolved DNA,” Applied and Environmental Microbiology 73(9):2799-2805.
Ludwig, W. et al. (2004). “ARB: A Software Environment for Sequence Data,” Nucleic Acids Research 32 (4):1363-1371.
Manefield, M. et al. (Nov. 2002). “RNA Stable Isotope Probing, A Novel Means of Linking Microbial Community Function to Phylogeny,” Applied and Environmental Microbiology 68(11):5367-5373.
Martinez , J. et al. (Jun. 27, 1996). “Variability in Ectohydrolytic Enzyme Activities of Pelagic Marine Bacteria and its Significance for Substrate Processing in the Sea,” Aquatic Microbial Ecology 10:223-230.
Murrell, J. C. et al. eds. (Dec. 2010). Stable Isotope Probing and Related Technologies. ASM Press: Washington D.C. (Table of Contents only, 4 pages).
Neufeld, J. D. et al. (2007). “Who Eats What, Where and When? Isotope-Labelling Experiments are Coming of Age,” The ISME Journal 1:103-110.
Ouverney, C. C. et al. (Apr. 1999). “Combined Microautoradiography-16S rRNA Probe Technique for Determination of Radioisotope Uptake by Specific Microbial Cell Types in Situ,” Applied and Environmental Microbiology 65 (4):1746-1752.
Pomeroy, L. R. et al. (2007). “The Microbial Loop,” Oceanography 20(2):28-33.
Poretsky, R. S. et al. (2010). “Transporter Genes Expressed by Coastal Bacterioplankton in Response to Dissolved Organic Carbon,” Environmental Microbiology 12(3):616-627.
Radajewski, S. et al. (Feb. 10, 2000). “Stable-Isotope Probing as a Tool in Microbial Ecology,” Nature 403:646-649.
Rappe, M. S. et al. (1997). “Phylogenetic Diversity of Marine Coastal Picoplankton 16S rRNA Genes Cloned from the Continental Shelf Off Cape Hatteras, North Carolina,” Limnology and Oceanography 42(5):811-826.
Rappe, M. S. et al. (Aug. 8, 2002). “Cultivation of the Ubiquitous SAR11 Marine Bacterioplankton Clade,” Nature 418:630-633.
Singh-Gasson, S. et al. (Oct. 1999). “Maskless Fabrication of Light-Directed Oligonucleotide Microarrays Using a Digital Micromirror Array,” Nature Biotechnology 17:974-978.
Stauffer, T. B. et al. (Dec. 1970). “Dissolved Fatty Acids in the James River Estuary, Virginia, and Adjacent Ocean Waters,” Chesapeake Science 11(4):216-220.
Suttle, C. A. et al. (1990). “Rapid Ammonium Cycling and Concentration-Dependent Partitioning of Ammonium and Phosphate: Implications for Carbon Transfer in Planktonic Communities,” Limnology and Oceanography 35 (2):424-433.
Uhlik, O. et al. (2009). “DNA-Based Stable Isotope Probing: A Link Between Community Structure and Function,” Science of the Total Environment 407:3611-3619.
U.S. Office Action mailed on Oct. 26, 2012, for U.S. Appl. No. 13/023,468, filed Feb. 8, 2011, 12 pages.
U.S. Office Action mailed on Aug. 31, 2012, for U.S. Appl. No. 13/023,468, filed Feb. 8, 2011, 5 pages.
Cole, K., et al., Direct labeling of RNA with multiple biotins allows sensitive expression profiling acute leukemia class predictor genes, Nucleic Acids Research 2004, 32: e86.
Curtis, T., et al., Estimating prokaryotic diversity and its limits. PNAS 2002, 99: 10494-10499.
DeSantis, TZ, et al., Comprehensive aligned sequence construction for automated design of effective probes (cascade-p) using 16S rDNA, Bioinformatics 2003, 19: 1461-1468.
Marxer, C.G., et al., Supported membrane composition analysis by secondary ion mass spectrometry with high lateral resolution, Biophysical Journal 2005, 88: 2965-2975.
Gans, J., et al., Computational improvements reveal great bacterial diversity and high metal toxicity in soil, Science 2005, 309: 1387-1390.
Ghosal, S., et al., Analysis of bacterial spore permeability to water and ions using nano-secondary ion mass spectrometry (NanoSIMS), 232nd American Chemical Society National Meeting, Boston MA Aug. 19-23, 2007.
Gilbert, D., NewsOnLine newsletter, Lawrence Livermore National Laboratory Mar. 16, 2007.
Goodfellow, M., et al., Roots of bacterial systematic, In: Handbook of new bacterial systematic, 1993, pp. 2-54.
Hallegot, P. et al., In-Situ Imaging Mass Spectrometry Analysis of Melanin Granules in the Human Hair Shaft, Journal of Investigative Dermatology, 2004, vol. 122, pp. 381-386.
Hillion, F., et al., A new high performance SIMS instrument: The cameca “Nanosims 50”, Secondary Ion Mass Spectrometry SIMS IX, 1993, pp. 254-257.
Horner-Devine, M., et al., An ecological perspective on bacterial biodiversity, Proceedings of the Royal Society of London—Series B: Biological Sciences 2004, 271: 113-122.
Hu, P., et al., Whole-genome transcriptional analysis of heavy metal stresses in Caulobactor crescentus, Journal of Bacteriology 2005, 187: 8437-8449.
Jeffries, TW, et al., Genome sequence of the lignocelluloses-bioconverting and xylose-fermenting yeast Pichia stipitis, Nature Biotechnology 2007, 25: 319-326.
Kleinfeld, MA, et al., Transport of 13C-oleate in adipocytes measured using multi-imaging mass spectrometry, Journal of the American Society for Mass Spectrometry 2004, 15: 1572-1580.
Klug, MJ, et al., Response of microbial communities to changing environmental conditions: Chemical and physiological approaches, In: Trends in microbial ecology, Spanish Society for Microbiology 1993, pp. 371-374.
Kraft, ML, et al., Phase separation of lipid membranes analyzed with high-resolution secondary mass ion spectrometry, Science 2006, 313: 1948-1951.
Kraft, ML, et al., Quantitative analysis of supported membrane composition using the NanoSIMS, Applied Surface Science 2006, 252: 6950-6956.
Kuypers, MM, et al., The future of single-cell environmental microbiology, Environmental Microbiology 2007, 9: 6-7.
Lehner, A., et al., Oligonucleotide microarray for identification of entrerococcus species, FEMS Microbiology Letters 2005, 246: 133-142.
Lin, LH, et al., Long-Term Sustainability of a High-Energy, Low-Diversity Crustal Biome, Science 2006, 314: 479-482.
Loy, A, et al., 16S rRNA Gene-Based Oligonucleotide Microarray for Environmental Monitoring of the Betaproteobacterial Order “Rhodocyclales”, Appl. Environ. Microbiol. 2005, 71: 1373-1386.
MacGregor, BJ, et al., Isolation of small sub-unit rRNA for stable isotopic characterization, Environmental Microbiology 2002, 4: 451-464.
McMahon, G., et al. Quantitative imaging of cells with multi-isotope imaging mass spectrometry (MIMS)—nanoautography with stable isotope tracers, Appl. Surface Science 2006, 252: 6895-6906.
Moreau, JW, et al., Extracellular Proteins Limit the Dispersal of Biogenic Nanoparticles, Science 2007, 316: 1600-1603.
Moreau, JW, et al., Submicron-scale isotopic variations within biogene ZnS record the mechanism and kinetics of extracellular metal-sulfide biomineralization, presented at the Goldschmidt Conference, Melbourne Australia, Aug. 27, 2006 in Geochimica et Cosmochimica Acta 2006, 70: A428.
Nannipieri, P., et al., Microbial diversity and soil functions, Eur. Soil Sci. 2003, 54: 655-670.
Nardi, JB, et al., Communities of microbes that inhabit the changing hindgut landscape of a subsocial beetle, Arthropod Structure and Development 2006, 35: 57-68.
Nguyen, N.H. et al., Metschnikowia noctiluminum sp. nov., Metschnikowia corniflorae sp. nov., and Candida chrysomelidarum sp. nov., isolated from green lacewings and beetles, Mycological Research, 2006, 110: 346-356.
Orphan, JV, et al., Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis, Science 2001, 293: 484-487.
Peteranderl, R., et al., Measure of carbon and nitrogen stable isotope ratios in cultured cells, Journal of the American Society for Mass Spectrometry 2004, 15: 478-485.
Pett-Ridge, J., et al., Redox fluctuation structures in microbial communities in a wet tropical soil, Appl. Environ. Microbiol. 2005, 71: 6998-7007.
Pett-Ridge, J., et al., NanoSIMS analyses of molybdenum indicate nitrogenase activity and help solve a N and C fixation puzzle in a marine cyanobacterium, American Geophysical Union Fall Meeting 2006, San Francisco.
Phelps, TJ, et al. Comparison between geochemical and biological estimates of subsurface microbial activities, Microbial Ecology 1994, V28: 335-349.
Popa, R., et al., Carbon and nitrogen fixation and mobilization in and between individual cells of Anabaena oscillarioides, ISME 2007, 1: 1-7.
Radajewski, S. et al., Identification of active methylotroph populations in an acidic forest soil by stable-isotope probing, Microbiology 2002, 148: 2331-2342.
Radajewski, S., et al., Stable-isotope probing of nucleic acids: a window to the function of uncultured microorganisms, Current Opinion in Biotechnology 2004, 14: 296-302.
Rhee, SK, et al., Detection of Genes Involved in Biodegradation and Biotransformation in Microbial Communities by Using 50-Mer Oligonucleotide Microarrays, Applied and Environmental Microbiology 2004, 70: 4303-4317.
Romer, W., et al., Sub-cellular localization of a 15N-labelled peptide vector using NanoSIMS imaging, Applied Surface Science 2006, 252: 6925-6930.
Rosello-Mora, R., et al., The species concept for prokaryotes, FEMS Microbiology Reviews 2001, 25: 39-67.
Schubert, C., Can biofuels finally take center stage?, Nature Biotechnology 2006, 24: 777-784.
Small, JD, et al., Direct detection of 16S rRNA in soil extracts by using oligonucleotide microarrays, Applied and Environmental Microbiology 2001, 67: 4708-4716.
Smyth, C., et al., Auto-associative multivariate regression trees for cluster analysis. Chemometrics and Intelligent Laboratory Systems 2006, 80: 120-129.
Stadermann, FJ, et al., Sub-micron isotopic measurements with the Cameca NanoSIMS, 30th Lunar and Planetary Science Conference, Houston TX 1999.
Suh, S., et al., Wood ingestion by passalid beetles in the presence of xylose-fermenting gut yeasts, Molecular Ecology 2003, 12: 3137-3145.
Suh, S., et al., Expansion of the Candida tanzawaensis yeast clade: 16 novel Candida species from basidiocarp-feeding beetles, International Journal of Systematics and Evolutionary Microbiology 2004, 54: 2409-2429.
Torsvik, V., et al., High diversity in DNA of soil bacteria, Applied and Environmental Microbiology 1990, 56: 782-787.
Torsvik, V., et al., Microbial diversity and function in soil: from genes to ecosystems, Current Opinion in Microbiology 2002, 5: 240-245.
van Belkum, A., et al., Nonisotopic labeling of DNA by newly developed hapten-containing platinum compounds, Biotechniques 1994, 16: 148-153.
van der Laan, MJ, et al., A new algorithm for hybrid hierarchical clustering visualization and the bootstrap, Journal of Statistical Planning and Inference 2003, 117: pp. 275-303.
Wainwright, M., et al., Studies of bacteria-like particles sampled from the stratosphere, Acorobiologia 2004, 20: 1-10.
Wan, JM, et al., Reoxidation of bioreduced uranium under reducing conditions, Environmental Science & Technology 2005, 39: 6162-6169.
Weber, PK, et al., Chemical imaging of biological materials by NanoSIMS, 31st FACSS Meeting, Portland OR, Oct. 3-7, 2004.
Weber, PK, et al., High resolution trace element and isotopic imaging of microbial systems by NanoSims, American Geophysical Union Fall Meeting, San Francisco CA, Dec. 5-9, 2005.
Wellington, EM, et al., Resolving functional diversity in relation to microbial community structure in soil: exploiting genomics and stable isotopic probing, Current Opinion in Microbiology 2003, 6: 295-301.
White, RH, The difficult road from sequence to function, J. Bacteriol. 2006, 188: 3431-3432.
Whitman, W.B. et al., Perspective: Prokaryotes: The Unseen Majority, Proc. Natl. Acad. Sci. USA, Jun. 1998, vol. 95: pp. 6578-6583.
Zhang, N. et al., Microorganisms in the gut of beetles: evidence from molecular cloning, Journal of Invertebrate Pathology 2003, 84: 226-233.
Cupples, AM, et al., DNA buoyant density shifts during 15N-DNA stable isotope probing, Microbiol. Research 2006, 162: 328-334.
Pett-Ridge, J., et al., Microarrays + NanoSIMS: Linking microbial identity and function—LDRD quadchart ER project, Jun. 5, 2006.
Pett-Ridge, J. et al., Microarrays + NanoSIMS: Linking microbial identity and function—LDRD quadchart presentation, Mar. 10, 2006.
Profiling Microbial Identity and Activity: Novel Applications of NanoSIMS and High Density Microarrays—Doe Gtl grant proposal, Mar. 20, 2007.
Pett-Ridge, J., et al., Microarrays + NanoSIMS: Linking microbial identity and function—GtL workshop poster 2007, Feb. 20, 2007.
Pett-Ridge, J., et al., Microarrays + NanoSIMS: Linking microbial identity and function—Gordon Conference poster 2007, Jul. 19, 2007.
Pett-Ridge, J., et al., Microarrays + NanoSIMS: Linking microbial identity and function—ASM poster 2008, Jun. 9, 2008.
Hoeprich, P. et al., Synthesis of DNA Microarrays on Indium—Tin Oxide Surfaces Functionalized with Organophosphonate Monolayers and Organosilanes Enable Analysis by Secondary Ion Mass Spectrometry—ITO array surface peer-review paper.
Loy, A. et al. probeBase—an online resource for rRNA-targeted oligonucleotide probes: new features 2007, Nucleic Acids Research 2007, 35: doi: 10.1093/nar/gkl856, D800-D804.
Suh, S.O. et al. The beetle gut: a hyperdiverse source of novel yeasts, Mycolog. Res. 2005, vol. 109, pp. 261-265.
Moses, S. et al., Detection of DNA hybridization on indium tim oxide surfaces, Science Direct, Sensors and Actuators B 125 (2007), pp. 574-580.
Bao, P. et al. High Sensitivity Detection of DNA Hybridization on Microarrays Using Resonance Light Scattering, Anal. Chem. 2002, vol. 74, pp. 1792-1797.
Brown, P.O. et al., Exploring the new world of the genome with DNA microarrays, Nature Genetics Supplement, Jan. 1999, vol. 21, pp. 33-37.
Brewer, S.H. et al., Formation of Thiolate and Phosphonate Adlayers on Indium—Tin Oxide: Optical and Electronic Characterization, Langmuir, 2002, vol. 18, pp. 6857-6865.
Keena, M.A., A pourable artificial diet for rearing Anoplophora glabripennis (Coleoptera: Cerambycidae) and methods to optimize larval survival and synchronize development. Ann. Entomol. Soc. Am. 2005, vol. 98, pp. 536-547.
Chen, Y. et al., DNA stable isotope probing, Stable isotope probing and related technologies, ASM Press, Washington D.C., 2010.
Finzi, J.A. et al., Chapter 4: Temporal segregation of CO2 and N2 Fixation in Trichodesmium IMS-101 using Nanometer-Resolution Secondary Ion Mass Spectrometry (NanoSIMS), Aug. 2007.
National Research Council of the National Academies. 2006. Review of the Department of Energy's Genomics: GTL Program. The National Academies Press, Washington D.C.
Orphan, V.J. et al., Multiple archeal groups mediate methane oxidation in anoxic seep sediments, PNAS, 2002, vol. 99, pp. 7663-7668.
Flanagan, J.L. et al., Loss of Bacterial Diversity during Antibiotic Treatment of Intubated Patients Colonized with Pseudomonas aeruginosa, Journal of Clinical Microbiology, Jun. 2007, vol. 45, No. 6, pp. 1954-1962.
Reiman, D.A. The human body as microbial observatory, Nature Genetics, 2002, vol. 30, pp. 131-133.
Brinig, M. et al., Prevalence of bacteria of division TM7 in human subgingival plaque and their association with disease, Applied and Environmental Microbiology, 2003, 69(3), pp. 1687-1694.
Ouverney, C.C. et al., Single-Cell Enumeration of an Uncultivated TM7 Subgroup in the Human Subgingival Crevice, Applied and Environmental Microbiology, Oct. 2003, vol. 69, No. 10, pp. 6294-6298.
Non-Final Office Action issued for U.S. Appl. No. 12/366,476 in the name of Lawrence Livermore National Security, LLC, mail date: Apr. 23, 2012.
Non-Final Office Action issued for U.S. Appl. No. 12/366,476 in the name of Lawrence Livermore National Security, LLC, mail date: Nov. 15, 2011.
Restriction Requirement issued for U.S. Appl. No. 12/366,476 in the name of Lawrence Livermore National Security, LLC, mail date: Sep. 23, 2011.
Blackwell, M., et al., Fungi in the hidden environment: the gut of beetles, 2007, pp. 357-370, In: British Mycological Symposia: Fungi in the environment. Ed. Geoffrey Gadd. Cambridge Univ. Press.
Mayali, X. et al., Isotopic analysis of RNA microarrays shows microbial resource use profiles decoupled from phylogeny—Chip-SIP proof of concept peer-review paper (Published as Mayali, X. et al. “High-throughput isotopic analysis of RNA microarrays to quantify microbial resource use.” The ISME Journal, 1-12, Dec. 8, 2011).
Mayali, X. et al., Chip-SIP for simultaneous analysis of 15N and 13C substrate incorporation by microbial taxa—Chip-SIP methodology peer-review paper (Published as Mayali, X. et al. “High-throughput isotopic analysis of RNA microarrays to quantify microbial resource use.” The ISME Journal, 1-12, Dec. 8, 2011).
Mayali, X. et al. High-throughput isotopic analysis of RNA microarrays to quantify microbial resource use. The ISME Journal, 1-12, Dec. 8, 2011.
Definition of “system” retrieved from Oxford Dictionaries Online (http://www.oxforddictionaries.com/definition/system?view=uk) on Dec. 16, 2010.
International Search Report for PCT/US2009/033193 filed on Feb. 5, 2009 in the name of Lawrence Livermore National Security, LLC.
Written Opinion for PCT/US2009/033193 filed on Feb. 5, 2009 in the name of Lawrence Livermore National Security, LLC.
Brodie, E., et al., Urban aerosols harbor diverse and dynamic bacterial populations, PNAS 2007, 104: 299-304.
DeSantis, T., et al., High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment, Microbial Ecology 2007, 53: 371-383.
Lechene, C., et al., High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry, Journal of Biology 2006, 5: 20-49.
Stadermann, R., et al., Nanosims: the next generation ion probe for the microanalysis of extraterrestrial material, Meteoritics & Planetary Science 1999, 34: A111.
Gardner, T.J., et al. Systems for Orthogonal Self-Assembly of Electroactive Monolayers Onau and Ito: An Approach to Molecular Electronics, Journal of the American Chemical Society 1995, 117: 6927-6933.
Brodie, E., et al. Profiling Microbial Identity and Activity: Novel Applications of NanoSIMS and High Density Microarrays. Feb. 13, 2008.
G.H. McGall et al. “The Efficiency of Light-Directed Synthesis of DNA Arrays on Glass Substrates,” J. Amer. Che. Soc. 1997, 119: 5081-5090.
M.A. Schena et al. “Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray,” Science, 1995, 270: 467-470.
M. Curreli et al. “Selective Functionalization of In2O3 Nanowire Mat Devices for Biosensing Applications,” JACS 2005, 127: 6922-6923.
S. Koh et al. “Phenylphosphonic Acid Functionalization of Indium Tin Oxide: Surface Chemistry and Work Functions,” J. Amer. Che. Soc. 2006, 22:6249-6255.
E. Moore et al. “Surface characterization of indium—tin oxide thin electrode films for use as a conducting substrate in DNA sensor development,” Thin Solid Films, 2006, xx:xxx-xxx.
Y. Zhou et al. “Potentiometric Sensing of Chemical Warfare Agents: Surface Imprinted Polymer Integrated with an Indium Tin Oxide Electrode,” Anal. Chem. 2004, 76:2689-2693.
S.H. Park et al. “A spatially resolved nucleic acid biochip based on a gradient of density of immobilized probe oligonucleotide,” Analytica Chimica Acta, 2006, 564:133-140.
N.D. Popovich et al. “Electrochemical sensor for detection of unmodified nucleic acids,” Talanta, 2002, 56:821-828.
Overview of Genechip Technology (retrieved on Jan. 14, 2009). Retrieved from the internet: http://www.ohsu.edu/gmsr/amc/amc—technology.html.
GeneChip Overview Flowchart (retrieved on Jan. 14, 2009). Retrieved from the internet: http://www.ohsu.edu/gmsr/amc/tech—images/chip—overview—pic.html.
Aoyagi, S., An orientation analysis method for protein immobilized on quantum dot particles, Applied Surface Science 2009, 256: 995-997.
Barison, S., et al., An investigation of cobalt oxide based nanocrystalline thin films by secondary ion mass spectrometry, Rapid Communications in Mass Spectrometry 2001, 15: 1621-1624.
Chia, W., et al., Improved optical transmittance and crystal characteristics of ZnS:TbOF thin film on Bi4Ti3O12/indium tin oxide/glass substrate by using a SiO2 buffer layer, Japanese Journal of applied Physics Part 1—Regular Papers Brief Communications & Review Papers 2006, 47: 5847-5852.
Chiou, B., et al., Effect of reactive ion etching and post-etching annealing on the electrical characteristics of indium—tin oxide silicon junctions. Journal of Materials Science—Materials in Electronics 1998, 9: 151-157.
Choi, N., et al., Novel surface modification of indium—tin—oxide films using ion implantation for organic light-emitting diodes, Japanese Journal of Applied Physics Part 1—Regular Papers Short Notes & Review Papers 2004, 43: 5516-5519.
Christensen, J., et al., Analysis of thin layers and interfaces in ITO/a-Si: H/c-Si heterojunction solar cell structures by secondary ion mass spectrometry, Thin Solid Films 2006, 511: 93-97.
Decker, F., et al., Li+ distribution into V2O5 films resulting from electrochemical intercalation reactions, Journal of the Brazilian Chemical Society 2008, 19: 667-671.
Jeong, J., et al., Electrostatic bonding of silicon-to-ITO coated #7059 glass using Li-doped oxide interlayer, Journal of the Korean Physical Society 1998, 33: S406-S410.
Lee, H., et al., Creating advanced multifunctional biosensors with surface enzymatic transformations, Langmuir 2006, 22: 5241-5250.
Lee, H., et al., Surface enzymes kinetics for biopolymer microarrays: a combination of Langmuir and Michaelis-Menten concepts, Langmuir 2005, 21: 4050-4057.
Kim, T., et al., The effect of buffer layer on the structural and electrical-properties of (BaSr)TiO3 thin films . . . , Journal of Applied Physics 1994, 76: 4316-4322.
Kim, T., et al., Influences of indium tin oxide layer on the properties of RF magnetron-sputtered (BaSr)TiO3 thin-films on indium tin oxide-coated glass substrate, Japanese Journal of Applied Physics Part 1—Regular Papers Short Notes & Review Papers 1993, 32: 2837-2841.
Lee, J., et al., Effect of barrier layers on the properties of indium tin oxide thin films on soda lime glass substrate, Thin Solid Films 2009, 517: 4074-4077.
Sauer, G., et al., Characterization of polymeric light-emitting-diodes by sims depth profiling analysis, Fresenius Journal of Analytical Chemistry 1995, 353: 642-646.
Shah, S., et al., Micropatterning of proteins and mammalian cells on indium tin oxide, ACS Applied Materials & Interfaces 2009, 1: 2592-2601.
Shah, S.S. et al., Exercising spatiotemporal control of cell attachment with optically transparent microelectrodes, Langmiur 2008, vol. 24, pp. 6837-6844.
Song, J., et al., Application of nano-cluster ion beam to surface smothering, etching, and ultra-shallow junction formation, Journal of the Korean Physical Society 2003, 42: S606-S610.
Sun, Y., et al., Label-free detection of biomolecules on microarrays using surface-colloid interaction, Analytical Biochemistry 2007, 361: 244-252.
Tang, C., et al., Adsorption and electrically stimulated desorption of triblock copolymer poly(propylene sulfideblethylene glycol) (PPS-PEG) from indium tin oxide (ITO) surface, Surface Science 2006, 600: 1510-1517.
Vaidya, A., et al., DNA attachment chemistry at the flexible silicone elastomer surface: Toward disposable microarrays, Langmuir 2004, 20: 11100-11107.
Wu, K. et al., Effects of ITO thin films on microstructural and photocatalytic properties of layered TiO2/ ITO films prepared via an extended deposition period, Applied Catalysis B-Environmental 2009, vol. 92, pp. 357-366.
Zhang, K., et al., Indium tin oxide films prepared by radio frequency magnetron sputtering method at a low processing temperature, Thin Solid Films 2000, vol. 376, pp. 255-263.
Wagner, M., et al., Linking microbial community structure with function: fluorescence in situ hybridization-microautoradiography and isotope arrays, Current Opinions in Biotechnology 2006, 17: 83-91.
Anderson, BJ, et al., Secondary ion mass spectrometry with a 50 nm spatial resolution applied to neural tissue. 2006 Neuroscience Meeting Planner, Atlanta: Society for Neuroscience 2006.
Boschker, H. et al., The contribution of macrophyte-derived organic matter to microbial biomass in salt-marsh sediments: stable carbon isotope analysis of microbial biomarkers, Limnology and Oceanography 1998, vol. 44(2), pp. 309-319.
Boschker, H., et al., Stable isotopes and biomarkers in microbial ecology, FEMS Microbiology Ecology 2002, 40: 85-95.
Brodie, E., et al., Bacterial community dynamics across a floristic gradient in a temperate upland grassland ecosystem, Microbial Ecology 2002, 44: 260-270.
Brodie, E., et al., Spatial characterization of the prokaryotic community structure in passalid beetle gut using a high-density 16S rRna PhyloChip, ASM General Meeting 2007b, Orlando, FL.
Breznak, J.,et al., Role of microorganisms in the digestion of lignocellulouse by termites, Annual Review of Entomology 1994, 39: 453-487.
Bryant, MP, et al., Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria, Appl. Environ. Microbiol. 1977, 33: 1162-1169.
Buckley, D., et al., Stable Isotope Probing with 15N Achieved by Disentangling the Effects of Genome G+C Content and Isotope Enrichment on DNA Density, Appl. Environ. Microbiol., May 2007a, vol. 73, No. 10, pp. 3189-3195.
Buckley, D., et al., Stable isotope probing with 15N2 reveals novel non-cultivated diazotrophs in soil, Appl. Environ. Microbiol., 2007b.
Related Publications (1)
Number Date Country
20110212850 A1 Sep 2011 US
Provisional Applications (2)
Number Date Country
61302535 Feb 2010 US
61302827 Feb 2010 US