All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
Endometrial ablation (i.e., the removal or destruction of the endometrial lining of the uterus) is used as an alternative to hysterectomy for treating menorrhagia, or other uterine diseases. One prior technique for performing endometrial ablation employ a resectoscope (i.e., a hysteroscope with a built-in wire loop or other ablative devices) that is inserted transcervically into the uterus, and uses radio-frequency electrical current (RF current) to remove or coagulate the endometrial tissue. These standard techniques typically are performed in a hospital setting.
Some approaches make use of heated fluid to ablate the endometrium. For example, early journal articles describe the use of steam to treat uterine hemorrhage. See, e.g., Van de Velde, “Vapo-“Cauterization of the Uterus,” Amer. J. Med. Sci., vol. CXVIII (1899); Blacker, “Vaporization of the Uterus,” J. Obstet. & Gyn., pp. 488-511 (c. 1901). The use of steam for this purpose was later discredited, apparently due to patient morbidity and mortality. See, e.g., Fuller U.S. Pat. No. 6,139,571. More recent descriptions of the use of injecting hot fluid into the uterus may be found in Goldrath U.S. Pat. No. 5,451,208 and Evans et al. U.S. Pat. No. 5,540,658; U.S. Pat. No. 5,437,629.
Uterine therapies employing a contained fluid have also been described. See, e.g., Quint U.S. Pat. No. 5,084,044; Chin U.S. Pat. No. 5,449,380; Neuwirth et al., “The Endometrial Ablator: A New Instrument”, Obst. & Gyn., 1994, Vol. 83, No. 5, Part 1, pp 792-796. Another balloon-based system using ultrasound as the energy source is described in U.S. Pat. No. 7,004,940.
High frequency, or radiofrequency (RF), energy has been used to perform thermal ablation of endometrial tissue. See, e.g., Prior et al., “Treatment of Mennorrhagia By Radiofrequency Heating”, Int. J. Hyperthermia, 1991 Vol. 7, No. 2, pp. 213-220; Stern et al. U.S. Pat. No. 5,443,470; U.S. Pat. No. 5,769,880; U.S. Pat. No. 6,929,642.
Current products for performing endometrial ablation include the NovaSure® procedure and a system marketed under the trade name THERMACHOICE®, by Ethicon, Inc. of Somerville, N.J.
Cryogenic ablation, or “cryoablation,” is another endometrial treatment approach. See, e.g., Droegemueller et al. U.S. Pat. No. 3,924,628; U.S. Pat. No. 6,306,129; and U.S. Pat. No. 7,101,367.
Finally, U.S. Pat. Appl. Publ. No. 2004/0068306 describes the use of vapor, such as steam, for endometrial or other tissue ablation, and U.S. Pat. Appl. Publ. No. 2002/0177846 describes the use of vapor for treating uterine fibroids.
One aspect of the invention provides a method of providing therapy to a patient's uterus. The method includes the steps of inserting an access tool through a cervix and a cervical canal into the uterus; actively cooling the cervical canal; delivering vapor through the access tool lumen into the uterus; and condensing the vapor on tissue within the uterus. In some embodiments, the step of actively cooling comprising supplying a flow of coolant through a coolant flowpath in the access tool. The access tool may have an expandable member (such as, e.g., a balloon), in which case the coolant flowpath may be disposed within the expandable member, and the expandable member may be expanded with the coolant. The coolant flowpath may also have a coolant inlet communicating with a coolant source and a coolant outlet communicating with an interior volume of the expandable member, in which case the supplying step may include the step of supplying coolant flow from the coolant inlet through the coolant outlet. The coolant flowpath may also be a coolant lumen formed in the access tool, in which case the supplying step may include the step of supplying coolant flow from the coolant inlet through the coolant lumen.
In some embodiments, the method also includes the step of sealing an interior cervical os after the inserting step, e.g., by expanding an expandable member such as a balloon. The expanding step may also include the step of preferentially expanding a sealing portion of the balloon disposed at the interior cervical os prior to expanding an indicator portion of the balloon disposed proximal to the interior cervical os. The balloon may be expanded with coolant.
Some embodiments of the invention include the step of placing an expansion mechanism in contact with tissue within the uterus to move uterine tissue away from an opening in the lumen. The method may also include the step of advancing the expansion mechanism distally prior to the placing step.
In some embodiments, the step of delivering vapor includes the step of inserting a vapor delivery tool through the access tool lumen. The method may also include the step of exhausting vapor and vapor condensate from the uterus.
Another aspect of the invention provides a uterine heat therapy system including: an access tool with a lumen, the access tool being adapted to be inserted through a human cervical canal to place an opening of the lumen within a uterus when the access tool is inserted through the cervical canal; an active cooling mechanism adapted to cool the cervical canal, the active cooling mechanism having a coolant source; and a vapor delivery mechanism adapted to deliver condensable vapor through the access tool to the uterus, the condensable vapor being adapted to condense within the uterus. The access tool may have further a coolant flowpath communicating with the coolant source. The access tool may also have an expandable member (such as a balloon), with the coolant flowpath being disposed within the expandable member. The coolant flowpath may include a coolant inlet communicating with the coolant source and a coolant outlet communicating with an interior volume of the expandable member. The coolant flowpath may also be a coolant lumen formed in the access tool.
In some embodiments, the system has a seal disposed at a distal region of the access tool and adapted to seal against an interior cervical os. The seal may be, e.g., an expandable member, such as a balloon. The balloon may have a distal sealing portion adapted to preferentially expand prior to a proximal indicator portion when the balloon is expanded with fluid.
Some embodiments of the system also have an expansion mechanism adapted to contact tissue within the uterus to move uterine tissue away from the opening in the access tool lumen. Such a system may also have an advancement mechanism operatively connected to the expansion mechanism to move the expansion mechanism distally with respect to the access tool.
Some embodiments may also provide a vapor delivery tool adapted to be inserted through the access tool lumen.
Still another aspect of the invention provides a method of providing heat therapy to a patient's uterus. In some embodiments the method includes the steps of: inserting an access tool through a cervix and a cervical canal into the uterus; placing an expansion mechanism in contact with tissue within the uterus to move uterine tissue surfaces away from an opening in an access tool lumen; delivering vapor through the vapor delivery tool into the uterus; and condensing the vapor on tissue within the uterus.
In some embodiments, the method includes the step of advancing the expansion mechanism distally prior to the placing step. In some embodiments the expansion mechanism may be advanced to place a distal portion of the advancement mechanism adjacent a fallopian os prior to delivering vapor, and in some embodiments advancement of the expansion mechanism will cease before a distal portion of the advancement mechanism reaches a fallopian os and prior to delivery of vapor. Advancement of the expansion mechanism may be performed by moving an expansion mechanism actuator on the access tool.
In some embodiments the expansion mechanism may have two expansion arms, in which case the placing step may include the step of moving the expansion arms apart. In some embodiments distal portions of the expansion arms together form an obturator tip prior to the step of moving the expansion arms apart.
Some embodiments of the invention include the step of sealing an interior cervical os after the inserting step. In some embodiments, the step of delivering vapor includes the step of inserting a vapor delivery tool through the access tool lumen.
Yet another aspect of the invention provides a uterine heat therapy system including: an access tool adapted to be inserted through a human cervical canal to place an opening of an access tool lumen within a uterus when the access tool is inserted through the cervical canal; an expansion mechanism adapted to be advanced into the uterus to move uterine tissue surfaces away from the opening in the access tool lumen; and a vapor delivery mechanism adapted to deliver condensable vapor through the access tool to the uterus, the condensable vapor being adapted to condense within the uterus.
In some embodiments, the expansion mechanism, when fully advanced, is adapted to extend beyond the opening of the access tool lumen less than a distance from an interior cervical os of the uterus to a fallopian tube os of the uterus. In other embodiments the expansion mechanism, when fully advanced, is adapted to extend beyond the opening of the access tool lumen substantially all a distance from an interior cervical os of the uterus to a fallopian tube os of the uterus.
In some embodiments, the access tool includes an expansion mechanism actuator operatively connected to the expansion tool to expand the expansion tool. The expansion mechanism actuator may also be further adapted to advance the expansion mechanism distally beyond the opening of the access tool lumen.
In some embodiments, the expansion mechanism includes two expansion arms adapted to move apart as the expansion mechanism is advanced beyond the opening of the access tool lumen. In some of these embodiments, distal portions of the expansion arms together form an obturator tip prior to moving the expansion arms apart. In addition, each of the distal portions of the expansion arms is sized to substantially occlude a fallopian os of the uterus.
Some embodiments also include a seal disposed at a distal region of the access tool and adapted to seal against an interior cervical os. Some embodiments of the system also include a vapor delivery tool adapted to be inserted through the access tool lumen.
Still another aspect of the invention provides a method of providing heat therapy to a patient's uterus including the following steps: inserting an access tool through a cervix and a cervical canal into the uterus; after inserting the access tool into the uterus, inserting a vapor delivery tool through an access tool lumen; delivering vapor through the vapor delivery tool into the uterus; and condensing the vapor on tissue within the uterus.
Some embodiments of the invention also include the step of connecting the vapor delivery tool to a vapor source prior to the step of inserting the vapor delivery tool through the access tool lumen. In some of those embodiments, the method also includes the step of passing vapor from the vapor source through at least a portion of the vapor delivery tool to an exhaust port exterior the patient prior to delivering vapor to the uterus. In embodiments in which the vapor delivery tool has a vapor delivery actuator operatively connected to the vapor source, the method may further include the step actuating the vapor delivery actuator prior to the step of delivering vapor.
In some embodiments, the delivering step includes the step of delivering vapor through a plurality of exit ports in the vapor delivery tool, such as through an exit port disposed at a distal tip of the vapor delivery tool and through an exit port on a longitudinal portion of the vapor delivery tool. The delivering step may also further include the step of moving a movable member disposed within a vapor delivery tool lumen adjacent at least one exit port to alter vapor flow through the at least one exit port.
Some embodiments of the invention include the step of exhausting vapor and/or vapor condensate from the uterus, such as through a vapor exhaust channel disposed radially outward from a vapor delivery channel; through a vapor exhaust channel disposed between an exterior surface of the vapor delivery tool and an interior surface of the access tool; and/or through a vapor exhaust channel disposed in the vapor delivery tool. The method may also include the step of sealing an interior cervical os after the inserting step.
In some embodiments, the method includes the step of placing an expansion mechanism in contact with tissue within the uterus to move uterine tissue away from an opening in the lumen prior to the delivering step. The method may also include the step of advancing the expansion mechanism distally with respect to the access tool lumen prior to the placing step.
Another aspect of the invention provides a uterine heat therapy system including: an access tool, the access tool being adapted to be inserted through a human cervical canal to place an opening of the access tool lumen within a uterus when the access tool is inserted through the cervical canal; and a vapor delivery mechanism, the vapor delivery mechanism having a vapor delivery tool and a vapor source, the vapor delivery tool being adapted to be inserted through the access tool to deliver condensable vapor from the vapor source to the uterus, the condensable vapor being adapted to condense within the uterus.
Some embodiments of the vapor delivery tool have a vapor exit port, in which case the vapor delivery mechanism may further have a vapor delivery tool warming circuit with a vapor flow path from the vapor source to a vapor exhaust without passing through the vapor delivery tool vapor exit port. In such embodiments, the vapor delivery mechanism may also have a vapor delivery tool connector, with the vapor delivery mechanism being configured to deliver vapor through the warming circuit automatically when the vapor delivery tool connector is connected to the vapor source. The vapor delivery mechanism may also have a vapor delivery actuator operatively connected to the vapor delivery tool and the vapor source to control delivery of vapor from the vapor source to a vapor delivery tool exit port and to direct vapor through the vapor delivery tool warming circuit.
Some embodiments of the vapor delivery tool have a plurality of vapor exit ports. In some of such embodiments, none of the vapor exit ports is at a distal tip of the vapor delivery tool. In some such embodiments, the plurality of exit ports include one or more exit ports on a longitudinal portion of the vapor delivery tool proximal to a distal tip of the vapor delivery tool. The vapor delivery tool may also include a movable member disposed within a vapor delivery tool lumen adjacent at least one exit port, the movable member being adapted to alter vapor flow through the at least one exit port in response to vapor flow through the vapor delivery tool.
In some embodiments, the vapor delivery tool has a vapor delivery channel, with the uterine heat therapy system further including a vapor exhaust channel adapted to exhaust vapor and/or condensed vapor from the uterus. The vapor delivery channel may be disposed radially inward from the vapor exhaust channel. In some embodiments, the vapor exhaust channel may be disposed between an exterior surface of the vapor delivery tool and an interior surface of the access tool. In some embodiments, the vapor exhaust channel may be disposed in the vapor delivery tool.
In some embodiments, the vapor delivery tool has an exit port at a distal end of a vapor delivery channel and an atraumatic tip disposed distal to the exit port. The vapor delivery tool may also have a flexible support (such as a coil) supporting the atraumatic tip. The flexible support may surround the exit port and may have a vapor passage.
In some embodiments, the vapor delivery tool has a vapor exhaust channel disposed radially outward from the vapor delivery channel. The vapor exhaust channel may have an inlet disposed proximal to the vapor delivery channel exit port.
Some embodiments of the invention have a seal disposed at a distal region of the access tool and adapted to seal against an interior cervical os. Some embodiments also have an expansion mechanism adapted to contact tissue within the uterus when the opening of the access tool is inserted into the uterus to move uterine tissue away from the opening in the access tool lumen.
Still another aspect of the invention provides a method of providing heat therapy to a patient's uterus, including the following steps: inserting an access tool through a cervix and a cervical canal into the uterus; after inserting the access tool into the uterus, creating a seal between an exterior surface of the access tool and an interior cervical os; providing an indication to a user that the seal has been created; delivering vapor through the access tool lumen into the uterus; and condensing the vapor on tissue within the uterus.
In some embodiments, the step of creating a seal comprises expanding an expandable member, such as a balloon. The expanding step may include the step of preferentially expanding a sealing portion of the balloon disposed at the interior cervical os prior to an indicator portion of the balloon disposed proximal to the interior cervical os. The expanding step may also include the step of supplying coolant to the balloon.
In some embodiments, the method includes the step of placing an expansion mechanism in contact with tissue within the uterus to move uterine tissue away from an opening in the access tool lumen. Some such embodiments include the step of advancing the expansion mechanism distally with respect to the access tool lumen prior to the placing step.
In some embodiments, the step of delivering vapor includes the step of inserting a vapor delivery tool through the access tool lumen. Some embodiments also include the step of exhausting vapor and/or vapor condensate from the uterus.
Yet another aspect of the invention provides a uterine heat therapy system having: an access tool with a lumen, the access tool being adapted to be inserted through a human cervical canal to place an opening of the lumen within a uterus when the access tool is inserted through the cervical canal; a seal disposed at a distal region of the access tool and adapted to seal the access tool against an interior cervical os; a sealing indicator adapted to provide a user with an indication that the seal has sealed the access tool with the interior cervical os; and a vapor delivery mechanism adapted to deliver condensable vapor through the access tool to the uterus, the condensable vapor being adapted to condense within the uterus.
In some embodiments, the seal includes an expandable member, such as a balloon. In some such embodiments, the balloon has a distal sealing portion adapted to preferentially expand prior to a proximal indicator portion when the balloon is expanded with fluid.
Some embodiments also include an expansion mechanism adapted to contact tissue within the uterus to move uterine tissue away from the opening in the access tool lumen. Some such embodiments also include an advancement mechanism operatively connected to the expansion mechanism to move the expansion mechanism distally with respect to the access tool. Some embodiments also include a vapor delivery tool adapted to be inserted through the access tool lumen.
The novel features of the invention are set forth with particularity in the claims that follow. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
The present invention provides improved methods and apparatus for endometrial ablation using heated vapor.
Vapor (such as steam) is produced in a handle portion 38 of vapor delivery component 16 or produced remotely by a vapor generator connected via a conduit, and introduced into the uterine cavity through ports 40 in the distal end of the vapor delivery component. Water may be supplied to handle 40 via water line 44. The steam within the uterine cavity is shown at 42. Further details of suitable vapor generation parameters and equipment may be found in US 2004/0068306.
In some embodiments it may be important to minimize heat transfer to the cervical canal. As shown in
The interior introducer shaft 80 may be provided with ridges or spokes 92 to hold the vapor delivery component 16 in the center and to provide space for the basket arms 56 and 58, as shown in
In
An alternative active cooling arrangement is to have the return of the coolant travel within a second compressible spiraling conduit running along side of the first conduit like a candy cane where one helical stripe flows in one direction proximal to distal and the other helical stripe flows distal to proximal. These conduits communicate at the distal end to complete the return path rerouting the coolant back down the shaft on the outside of the shaft instead of via the inner lumen. There could also be a temperature feedback mechanism within the conduit so that flow can be increased in response to a rise in temperature.
In this embodiment, the distal portion 213 of the balloon has a uniform diameter, and an optional intermediate stepped portion 214 is formed in the balloon. In alternative embodiments, the stepped portion may be eliminated, and/or an increased diameter balloon portion may be formed at the distal end of the balloon. In addition, the indicator portion may optionally be a separate member in alternative embodiments. The balloon 210 is shown in its inflated state in
As in earlier embodiments, access tool 202 has an expansion mechanism for moving uterine tissue apart and away from the tool. In this embodiment, the expansion mechanism has two flexible arms 216 and 218 formed, e.g., from shape memory material. Arms 216 and 218 are integral with or connected to wires or rods extending proximally through access tool 202 along or within cannula 208 to an actuator 220 on handle 206. In this embodiment, the wires extending proximally from arms 216 and 218 are disposed in lumens 217 and 219 formed in cannula 208. The lumens 217 and 219 are shown in
Actuator 220 may be operated to advance or withdraw arms 216 and 218, which are shown in their advanced state in
As shown in more detail in
A plurality of inlet and outlet ports are formed in handle 206. A coolant inlet port 228 connects to a coolant inlet line 230; a coolant outlet port 232 connects to a coolant outlet line 234; a saline flush inlet port 236 connects to a saline inlet line 238; and a saline outlet port 240 connects to a saline outlet line 242. In this embodiment, the inlet and outlet lines combine into an optional single flexible hose 244. Hose 244 connects to sources of coolant and saline flush solution (not shown) via a connector 246.
As shown in
In a similar manner, pressurized saline may be introduced through inlet line 238 and port 236 which communicates with lumen 222 via an opening (not shown) within handle 206 so that the uterus can be flushed with saline. Returning saline from the uterus enters a lumen 260 in cannula 208, then flows back through an opening (not shown) within handle 206, then through port 240 into return line 242.
Cannula 208 may be formed with optional longitudinal grooves 262 to provide a return flow path for the coolant through the balloon, even if the patient's anatomy does not permit the balloon to inflate in any substantial way.
Vapor probe 204 connects to a vapor source (not shown), such as a boiler or other steam generator, via an insulated flexible hose 270 and connector 246. A vapor delivery cannula 272 extending from a handle 273 has a central vapor delivery lumen 274 and a concentric annular vapor return lumen 276 surrounding lumen 274, as shown in
When connected to a vapor source, vapor flows through a vapor supply lumen (not shown) in hose 270 into handle 273 through a lumen 282 into a chamber 284. When valve 286 is in its closed position, all vapor entering chamber 284 flows through a lumen 288 back into a vapor exhaust lumen (not shown) in hose 270 to a vapor and/or condensate collection vessel (not shown). This flow of vapor within the handle portion of the vapor probe provides a warming circuit for the vapor probe to help ensure that the vapor quality will be maintained at its appropriate level when the valve is opened and vapor is delivered to the patient.
When valve 286 is opened, at least a portion of the vapor flows through valve 286 into lumen 274 of vapor cannula 272 and out the distal end of the vapor cannula for providing uterine heat therapy. Returning vapor and/or condensate flows proximally through annular lumen 276 into a vapor return lumen 290 in handle 273, then through an opening 292 into lumen 288 and the vapor exhaust lumen in hose 270. Vapor flow is shown by arrows in
In one embodiment, only a portion of the vapor supplied to chamber 284 of the vapor probe flows into vapor delivery cannula 272 when valve 286 is open. In this embodiment, most of the vapor returns through lumen 288 to hose 270. Vapor flowing in lumen 288 past the opening 292 of vapor return lumen provides a venturi action that helps pull the exhaust vapor and any condensate through lumen 290 and annular lumen 276.
A thermocouple (not shown) may be disposed at the distal end of the vapor delivery cannula 272 and connected to a monitor or controller (not shown) to monitor intrauterine temperature and provide a signal to a vapor delivery controller for controlling the therapy.
When using the system of the invention to provide uterine heat therapy to a patient to treat, e.g., endometriosis, access to the uterus is obtained by inserting a speculum into the patient's vagina and grasping the cervix with a tenaculum. The tenaculum pulls the cervix forward while the speculum pushes down on the patient's peritoneum to straighten the uterine canal and align it with the vaginal canal. If desired, a hysteroscope may be inserted through port 224 of the access tool with the distal end of the hysteroscope at the level of the obturator tip 201 of the access tool, and the Tuohy-Borst seal may be tightened around the hysteroscope. The access tool cannula may then be lubricated and inserted through the cervix. The flexibility of the access tool (including the flexible cannula 208 and flexible expansion arms 216 and 218) permits insertion with a minimum of straightening of the cervical canal. In addition, the blunt obturator tip 201 of the access cannula 208 helps minimize the likelihood of perforation as the access tool is advanced.
Once the distal end of the access cannula 208 has passed through the internal cervical os into the uterine cavity, the hysteroscope can be used to confirm placement. The hysteroscope may be advanced beyond the distal end of the access cannula 208, if desired. After confirming position of the access cannula, the expansion arms 216 and 218 are advanced by pushing actuator 220 forward. This action engages arms 216 and 218 with the uterine wall tissue to move the tissue away from the distal end of the vapor probe.
The coolant balloon 210 may then be inflated by providing pressurized coolant through the coolant inlet, as described above. Balloon 210 expands to seal the cervical canal up to the internal cervical os. As the balloon engages the cervical canal wall, coolant pressure will continue to rise up toward the coolant inlet pressure. When the pressure of coolant within the balloon reaches an indicator pressure, the indicator portion 212 of the balloon will expand to provide an indication to the user that the distal portion of the balloon has engaged the wall of the cervical canal to seal the opening. If a hysteroscope was used, it can now be removed.
The vapor delivery cannula 272 of vapor probe 204 is then inserted through port 224 until the distal tip 280 extends through the distal end of the access cannula 208, as shown in
In one embodiment, a thermocouple disposed at the distal end of the vapor delivery cannula monitors intrauterine temperature. The thermocouple provides a temperature signal to a vapor delivery controller to initiate a timed sequence once the uterine cavity reaches a threshold temperature, such as 50° C. The controller discontinues vapor flow after the predetermined time.
After completion of the vapor therapy, the expansion arms are retracted and coolant flow is stopped. After the indicator balloon segment deflates, the access tool and vapor delivery probe may be removed from the patient.
In some embodiments of the method, a saline flush may be provided prior to the procedure and/or at the end of the procedure. As described above, saline may be provided through lumen 222 around the hysteroscope or vapor delivery probe. Delivering saline at the end of the procedure may be desirable to release any vacuum formed in the uterus due to condensation of vapor.
Vapor may be delivered to the uterus at an intrauterine pressure of 5 to 35 mm Hg. Coolant pressure within the sealing balloon may be 50 to 300 mm Hg. Typical therapy time for treating endometrial tissue may range from 15 sec. to 120 sec., with a preferred duration of 45-60 sec.
A central fenestration channel is formed by the cooperation of two half channels 318 and 320 formed on cooperating interior surfaces 319 and 321 of expansion mechanism ends 306 and 308 to provide an opening through the expansion mechanism, even in its undeployed position, to permit access through the expansion mechanism by a hysteroscope or probe 322 as shown in
Actuation wires or rods 324 extend proximally from the distal ends of the expansion mechanism through an interior lumen 326 of the cannula to an actuator (not shown). Other lumens 328 may be formed in cannula 304 for coolant flow, saline flush, etc. as described in earlier embodiments.
When the expansion mechanism is actuated, the distal ends 306 and 308 move distally. As the ends 306 and 308 move distally, camming surface 330 on distal end 306 and camming surface 332 on distal end 308 slide against the hysteroscope (or other inserted component) 322, and camming surface 334 on distal end 306 and camming surface 336 on distal end 308 slide against the distal end of cannula 304 to cause the distal ends 306 and 308 to move apart, thereby engaging and moving uterine tissue away from the distal end of the inserted tool 322, as shown in
An atraumatic tip 414 is supported distal to the distal end of the vapor delivery probe by a coil 410. Coil 410 may be attached to the probe 412 by, e.g. welding. During vapor delivery, vapor will pass through adjacent windings of coil 410 to reach uterine tissue.
This application claims the benefit under 35 U.S.C. §119 of U.S. Provisional Application No. 60/957,626, filed Aug. 23, 2007, the disclosure of which is incorporated by reference as if fully set forth herein. This application is related to U.S. application Ser. No. 12/197,096, filed Aug. 22, 2008, entitled “Uterine Therapy Device and Method”; and to U.S. application Ser. No. 12/197,104, filed Aug. 22, 2008, entitled “Uterine Therapy Device and Method”; and to U.S. application Ser. No. 12/197,111, filed Aug. 22, 2008, entitled “Uterine Therapy Device and Method”, all of which are commonly owned.
Number | Name | Date | Kind |
---|---|---|---|
3924628 | Droegemueller et al. | Dec 1975 | A |
4976711 | Parins et al. | Dec 1990 | A |
5045056 | Behl | Sep 1991 | A |
5084044 | Quint | Jan 1992 | A |
5122138 | Manwaring | Jun 1992 | A |
5437629 | Goldrath | Aug 1995 | A |
5443470 | Stern et al. | Aug 1995 | A |
5449380 | Chin | Sep 1995 | A |
5451208 | Goldrath | Sep 1995 | A |
5540658 | Evans et al. | Jul 1996 | A |
5542928 | Evans et al. | Aug 1996 | A |
5674191 | Edwards et al. | Oct 1997 | A |
5683366 | Eggers et al. | Nov 1997 | A |
5697281 | Eggers et al. | Dec 1997 | A |
5697536 | Eggers et al. | Dec 1997 | A |
5697882 | Eggers et al. | Dec 1997 | A |
5697909 | Eggers et al. | Dec 1997 | A |
5730719 | Edwards | Mar 1998 | A |
5743870 | Edwards | Apr 1998 | A |
5769880 | Truckai et al. | Jun 1998 | A |
5800379 | Edwards | Sep 1998 | A |
5810764 | Eggers et al. | Sep 1998 | A |
5820580 | Edwards et al. | Oct 1998 | A |
5836906 | Edwards | Nov 1998 | A |
5843019 | Eggers et al. | Dec 1998 | A |
5871469 | Eggers et al. | Feb 1999 | A |
5873855 | Eggers et al. | Feb 1999 | A |
5888198 | Eggers et al. | Mar 1999 | A |
5891095 | Eggers et al. | Apr 1999 | A |
5891457 | Neuwirth | Apr 1999 | A |
5902272 | Eggers et al. | May 1999 | A |
6015406 | Goble et al. | Jan 2000 | A |
6024733 | Eggers et al. | Feb 2000 | A |
6045532 | Eggers et al. | Apr 2000 | A |
6045549 | Smethers et al. | Apr 2000 | A |
6047700 | Eggers et al. | Apr 2000 | A |
6053172 | Hovda et al. | Apr 2000 | A |
6053909 | Shadduck | Apr 2000 | A |
6063079 | Hovda et al. | May 2000 | A |
6066134 | Eggers et al. | May 2000 | A |
6086585 | Hovda et al. | Jul 2000 | A |
6102046 | Weinstein et al. | Aug 2000 | A |
6105581 | Eggers et al. | Aug 2000 | A |
6109268 | Thapliyal et al. | Aug 2000 | A |
6113597 | Eggers et al. | Sep 2000 | A |
6117109 | Eggers et al. | Sep 2000 | A |
6139571 | Fuller et al. | Oct 2000 | A |
6149620 | Baker et al. | Nov 2000 | A |
6159194 | Eggers et al. | Dec 2000 | A |
6159208 | Hovda et al. | Dec 2000 | A |
6179824 | Eggers et al. | Jan 2001 | B1 |
6179836 | Eggers et al. | Jan 2001 | B1 |
6183469 | Thapliyal et al. | Feb 2001 | B1 |
6190381 | Olsen et al. | Feb 2001 | B1 |
6203542 | Ellsberry et al. | Mar 2001 | B1 |
6210402 | Olsen et al. | Apr 2001 | B1 |
6210404 | Shadduck | Apr 2001 | B1 |
6224592 | Eggers et al. | May 2001 | B1 |
6228078 | Eggers et al. | May 2001 | B1 |
6228081 | Goble | May 2001 | B1 |
6228082 | Baker et al. | May 2001 | B1 |
6235020 | Cheng et al. | May 2001 | B1 |
6238391 | Olsen et al. | May 2001 | B1 |
6254600 | Willink et al. | Jul 2001 | B1 |
6261286 | Goble et al. | Jul 2001 | B1 |
6264650 | Hovda et al. | Jul 2001 | B1 |
6264651 | Underwood et al. | Jul 2001 | B1 |
6264652 | Eggers et al. | Jul 2001 | B1 |
6277112 | Underwood et al. | Aug 2001 | B1 |
6277114 | Bullivant et al. | Aug 2001 | B1 |
6283961 | Underwood et al. | Sep 2001 | B1 |
6293942 | Goble et al. | Sep 2001 | B1 |
6296636 | Cheng et al. | Oct 2001 | B1 |
6296638 | Davison et al. | Oct 2001 | B1 |
6306129 | Little et al. | Oct 2001 | B1 |
6306134 | Goble et al. | Oct 2001 | B1 |
6309387 | Eggers et al. | Oct 2001 | B1 |
6312408 | Eggers et al. | Nov 2001 | B1 |
6322549 | Eggers et al. | Nov 2001 | B1 |
6355032 | Hovda et al. | Mar 2002 | B1 |
6363937 | Hovda et al. | Apr 2002 | B1 |
6364877 | Goble et al. | Apr 2002 | B1 |
6379351 | Thapliyal et al. | Apr 2002 | B1 |
6391025 | Weinstein et al. | May 2002 | B1 |
6416507 | Eggers et al. | Jul 2002 | B1 |
6416508 | Eggers et al. | Jul 2002 | B1 |
6416509 | Goble et al. | Jul 2002 | B1 |
6432103 | Ellsberry et al. | Aug 2002 | B1 |
6461350 | Underwood et al. | Oct 2002 | B1 |
6461354 | Olsen et al. | Oct 2002 | B1 |
6464695 | Hovda et al. | Oct 2002 | B2 |
6468270 | Hovda et al. | Oct 2002 | B1 |
6468274 | Alleyne et al. | Oct 2002 | B1 |
6482201 | Olsen et al. | Nov 2002 | B1 |
6508816 | Shadduck | Jan 2003 | B2 |
6510854 | Goble | Jan 2003 | B2 |
6540741 | Underwood et al. | Apr 2003 | B1 |
6544261 | Ellsberry et al. | Apr 2003 | B2 |
6551271 | Nguyen | Apr 2003 | B2 |
6551274 | Heiner | Apr 2003 | B2 |
6557559 | Eggers et al. | May 2003 | B1 |
6575968 | Eggers et al. | Jun 2003 | B1 |
6582423 | Thapliyal et al. | Jun 2003 | B1 |
6589237 | Woloszko et al. | Jul 2003 | B2 |
6595990 | Weinstein et al. | Jul 2003 | B1 |
6602248 | Sharps et al. | Aug 2003 | B1 |
6620155 | Underwood et al. | Sep 2003 | B2 |
6629974 | Penny et al. | Oct 2003 | B2 |
6632193 | Davison et al. | Oct 2003 | B1 |
6632220 | Eggers et al. | Oct 2003 | B1 |
6669694 | Shadduck | Dec 2003 | B2 |
6708056 | Duchon et al. | Mar 2004 | B2 |
6712811 | Underwood et al. | Mar 2004 | B2 |
6719754 | Underwood et al. | Apr 2004 | B2 |
6726684 | Woloszko et al. | Apr 2004 | B1 |
6746447 | Davison et al. | Jun 2004 | B2 |
6749604 | Eggers et al. | Jun 2004 | B1 |
6763836 | Tasto et al. | Jul 2004 | B2 |
6766202 | Underwood et al. | Jul 2004 | B2 |
6770071 | Woloszko et al. | Aug 2004 | B2 |
6772012 | Ricart et al. | Aug 2004 | B2 |
6773431 | Eggers et al. | Aug 2004 | B2 |
6780180 | Goble et al. | Aug 2004 | B1 |
6805130 | Tasto et al. | Oct 2004 | B2 |
6832996 | Woloszko et al. | Dec 2004 | B2 |
6837887 | Woloszko et al. | Jan 2005 | B2 |
6837888 | Ciarrocca et al. | Jan 2005 | B2 |
6896672 | Eggers et al. | May 2005 | B1 |
6896674 | Woloszko et al. | May 2005 | B1 |
6911028 | Shadduck | Jun 2005 | B2 |
6915806 | Pacek et al. | Jul 2005 | B2 |
6929640 | Underwood et al. | Aug 2005 | B1 |
6929642 | Xiao et al. | Aug 2005 | B2 |
6949096 | Davison et al. | Sep 2005 | B2 |
6960204 | Eggers et al. | Nov 2005 | B2 |
6991631 | Woloszko et al. | Jan 2006 | B2 |
7004940 | Ryan et al. | Feb 2006 | B2 |
7004941 | Tvinnereim et al. | Feb 2006 | B2 |
7094215 | Davison et al. | Aug 2006 | B2 |
7101367 | Xiao et al. | Sep 2006 | B2 |
7104986 | Hovda et al. | Sep 2006 | B2 |
7105007 | Hibler | Sep 2006 | B2 |
RE39358 | Goble | Oct 2006 | E |
7131969 | Hovda et al. | Nov 2006 | B1 |
7169143 | Eggers et al. | Jan 2007 | B2 |
7179255 | Lettice et al. | Feb 2007 | B2 |
7186234 | Dahla et al. | Mar 2007 | B2 |
7192428 | Eggers et al. | Mar 2007 | B2 |
7201750 | Eggers et al. | Apr 2007 | B1 |
7217268 | Eggers et al. | May 2007 | B2 |
7241293 | Davison | Jul 2007 | B2 |
7270658 | Woloszko et al. | Sep 2007 | B2 |
7270659 | Ricart et al. | Sep 2007 | B2 |
7270661 | Dahla et al. | Sep 2007 | B2 |
7276063 | Davison et al. | Oct 2007 | B2 |
7297143 | Woloszko et al. | Nov 2007 | B2 |
7297145 | Woloszko et al. | Nov 2007 | B2 |
7320325 | Duchon et al. | Jan 2008 | B2 |
20020013601 | Nobles et al. | Jan 2002 | A1 |
20020019627 | Maguire et al. | Feb 2002 | A1 |
20020177846 | Mulier et al. | Nov 2002 | A1 |
20040068306 | Shadduck | Apr 2004 | A1 |
20040199226 | Shadduck | Oct 2004 | A1 |
20050177147 | Vancelette et al. | Aug 2005 | A1 |
20060135955 | Shadduck | Jun 2006 | A1 |
20060161233 | Barry et al. | Jul 2006 | A1 |
20060224154 | Shadduck et al. | Oct 2006 | A1 |
20070225744 | Nobles et al. | Sep 2007 | A1 |
20070239197 | Dubey et al. | Oct 2007 | A1 |
20080132826 | Shadduck et al. | Jun 2008 | A1 |
20090125010 | Sharkey et al. | May 2009 | A1 |
Number | Date | Country |
---|---|---|
WO 9953853 | Oct 1999 | WO |
WO 0029055 | May 2000 | WO |
WO 03070302 | Aug 2003 | WO |
WO 2006055695 | May 2006 | WO |
WO 2006108974 | Oct 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20090054868 A1 | Feb 2009 | US |
Number | Date | Country | |
---|---|---|---|
60957626 | Aug 2007 | US |