U.S. provisional patent application 61/437,094 filed Jan. 28, 2011.
Not Applicable.
This invention relates to electric meters of the type installed at homes and businesses to monitor electricity usage at the site; and, more particularly, to a web server installed in an electric meter and used, in addition to providing information concerning electricity usage to an electrical utility, to provide information to the home owner or business owner concerning current energy consumption, energy consumption over a period of time (i.e., a billing cycle), current costs for levels of energy usage, programming of energy usage by appliances at the home or business, comparison shopping for different energy providers, and other information helpful to the home or business owner in understanding his energy costs and how better to control them while using the energy supplied as efficiently and economically as possible.
Electric meter technology has substantially increased in recent times. No longer does a meter simply provide an indication of energy usage at a particular time and allow a utility to bill for usage during a billing cycle. Rather, “smart” meters are now in use which enable a utility to not only monitor usage, but to also control it. In addition, these meters are also capable of providing the owner or user of the facility at which they are installed with up-to-date information regarding the energy usage. This has the advantage of increasing consumer knowledge concerning their electricity usage, and also enables the owner or user to use the energy more efficiently than has previously been possible.
In this regard, monthly bills from the utility are too slow. Utility web pages which can contain significant amounts of pertinent information require users to have internet access and the ability to remember their login information. Wireless protocols such as Zigbee®, for example, (similar to Bluetooth®) can provide information quickly, but their usage involves a number of hardware devices which significantly increases system cost. And, use of these devices is not widespread and would therefore require a utility to provide them to their customers. This would impose an initial cost and additional installation/service/maintenance costs which a utility may not want to bear.
As to other means of communication, the internet has been used to deliver information to a utility. A drawback with this approach, however, is that it requires a customer to always have “on” an internet connection. Further, it is not available to all customers, particularly those in rural areas, who only have a dial-up connection or no home internet service at all.
In accordance with the present invention, having an electric meter with a web server installed allows meter data to be instantaneously available to a consumer over their network.
The present disclosure is directed to a utility meter such as an electric meter, gas meter, or water meter, with a web server installed in the meter. The server implements IEEE 802.11 standards and readily interfaces with devices customers already have. These devices include personal computers (PCs) such as laptop computers, televisions (TVs), smart phones, personal digital assistants (PDAs) and portable media players, game consoles, entertainment centers, and other internet enabled devices. The web server is connected to a customer's network (e.g., LAN) using, for example, a Wi-Fi® router, or simply connected directly to a customer device via an ad-hoc type connection for customers who do not have an existing home network.
Meter information is displayed to a customer using standard web browser protocols which are directly connected to the meter. No internet access is required, and the connection between the meter and the customer can be a secure connection.
The meter and web server allow a wide range of information to be provided to the customer. This information includes:
a) electricity usage including instantaneous usage, usage over an interval of time, or a summary of usage;
b) pricing information as to the cost of electricity which can include tiered pricing information, time-of-use pricing, and other utility pricing schemes;
c) customized pricing information that allows the customer to compare the effects of alternate energy rate plans;
d) the current cost of usage, past usage costs, predicted costs for future usage;
e) messages from the utility;
f) consumer configurable items including, for example, Wi-Fi settings as well as, for example, price settings for the commodity whose usage is monitored by the meter; and,
g) other information.
In addition to the above, the invention also allows interfaces with devices and appliances or equipment at the customer site including such things as thermostats, heaters, air conditioners, and other home area network (HAN) devices, as well as industrial machinery. The appliances and machinery can be internet enabled for communications with the meter using the local area network.
The meter is easy to install either as original equipment at a site, or as a replacement or retrofit unit, is readily serviced, and can be replaced, if necessary, with minimal disruption to the customer.
Other objects and features will be in part apparent and in part pointed out hereinafter.
The objects of the invention are achieved as set forth in the illustrative embodiments shown in the drawings which form a part of the specification.
The following detailed description illustrates the invention by way of example and not by way of limitation. This description clearly enables one skilled in the art to make and use the invention, and describes several embodiments, adaptations, variations, alternatives and uses of the invention, including what is presently believed to be the best mode of carrying out the invention. Additionally, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or carried out in various ways. Also, it will be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting.
Referring to
More particularly, in the embodiment of the invention shown in
In the embodiment of
In the embodiment of
Referring to
Referring to
In the displays, values are dynamically updated using AJAX and supporting JavaScript, for example, while all else in the display is generated using HTML and CSS. The displays may employ a standard web browser such as Firefox®, Internet Explorer®, Chrome®, Safari®, Opera®, for example; or a non-standard proprietary browser that is compatible with the features employed by the server, and it will be understood that the display can as readily appear on a smart phone display, or other customer device D with a standard web browser such as Mobile Safari®, Opera Mini®, etc.
Using meter M, other features are available to the customer. For example, web server S can provide data to an “embedded” device such a thermostat. If the customer programmed the thermostat to indicate that only X dollars of electricity over a given period of time was to be used for heating and cooling, the thermostat could automatically adjust its settings to achieve this goal.
Or, end user appliances or equipment (refrigerators, freezers, industrial machinery) can be equipped to request power through meter M. These appliances and this equipment are, for example, internet enabled. The communications between the meter and appliances or equipment is important because it allows the customer to program the appliance or equipment about prospective electrical usage before it is turned “on”. This, in turn, enables usage decisions to be made taking into account time of day when the appliance or equipment will be used so to account for electricity rate fluctuations, settings limits on how long the appliance or equipment is to be used; i.e., dollar amount of usage as in the thermostat example above; or, times of turn “on” and turn “off” if the customer only wants to use the equipment when a certain rate (or rates) are in effect; or, when other conditions (room temperature falls below or rises above a set temperature) exist. Accordingly, an appropriately configured appliance is able to obtain utility pricing and related information from meter M which enables the appliance to, in effect, know when, and for how long, it can most cost efficiently operate.
With regard to electronic messaging, if an internet connection is available between meter M and the customer, the customer could, via a webpage, set up their usage or cost to be linked to their Facebook® page or Twitter® account, an RSS (Really Simple Syndication) feed, etc. Further, the data and information provided by the meter or utility could also be made available to other third party applications such as Google® Power Meter.
Overall, the features of the invention include:
the ability to send email messages to or from the customer;
the ability to send text messages and alerts from the server to the customer;
the ability to transfer files to the customer;
encryption of emails, data, messages and files;
downloading of firmware;
enabling a third party software/hardware interface with the server so to, for example, upload web pages;
the ability to switch from current to new protocols as they come into use;
dynamic customization for a customer;
enabling a utility to remotely upload web pages so data can be presented in different formats with the customer as well as being able to configure the settings on a page;
unlock features to paying customers.
Finally, meter M, besides being an electric meter, can also be, for example, a water meter or a gas meter. In many facilities, there are separate meters for each commodity provided by the appropriate utility to the premises. In accordance with the invention, web server S can be installed in one of the meters and, using a separate interface, communicates with one or more of these other meters. In such an installation, all the data and information from the other meters can be collected by the one meter and then provided to the user (i.e., the customer. This allows all the relevant usage data for all the metered utilities to be displayed to the customer on a web page provided by the first meter.
In addition, it will be understood by those skilled in the art that while the above description addresses web servers incorporated with utility meters, an embedded web server can also be implemented in other appliances or devices such as a demand response unit or DRU. In such installations, it enables configuration control of the unit and its settings to an end consumer.
In view of the above, it will be seen that the several objects and advantages of the present disclosure have been achieved and other advantageous results have been obtained.
Number | Date | Country | |
---|---|---|---|
61437094 | Jan 2011 | US |