The present disclosure relates to hand operated tools. More particularly, the present disclosure relates to a blade retention mechanism for a utility knife.
This section is intended to provide a background or context to the disclosure recited in the claims. The description herein may include concepts that could be pursued, but are not necessarily ones that have been previously conceived or pursued. Therefore, unless otherwise indicated herein, what is described in this section is not prior art to the description and claims in this application and is not admitted to be prior art by inclusion in this section.
Hand operated tools can take a variety of forms including hand operated striking tools (e.g., a hammer) to hand operated cutting tools (e.g., a scissors). Within the general category of hand operated cutting tools, one-hand operated and two-hand operated cutting tools exist. Examples of one-hand operated cutting tools include scissors, shears, pruners, utility knives, and snips. An example of a two-hand operated cutting tool includes a lopper.
Utility knives are aptly named due to their wide array of uses from carpentry to everyday uses (e.g., cutting string for a home project or a hobby). A utility knife typically includes a handle, a blade holder coupled to the handle, and a knife or blade retained by the blade holder. Often, the blade is releasably coupled to the blade holder by a “quick-change” push-button or a swing lever, which when actuated enables the release of the blade from the blade holder. While advantageous for quickly replacing the blade in the utility knife, these quick-change mechanisms can sacrifice security due to accidental pressure or inadvertent bumps to the release mechanism loosening the retention of the blade in the blade holder or altogether discharging the blade from the blade holder. Thus, the ability to use the utility knife may be compromised due to these quick-change mechanisms.
One embodiment relates to a utility knife. The utility knife includes a handle; a blade carrier coupled to the handle, the blade carrier configured to releasably couple to a utility knife blade; and a blade retention mechanism coupled to the blade carrier. The blade retention mechanism includes a button; and a slider coupled to the button, the slider movable between a locked position and an unlocked position, wherein in the locked position the slider engages with the utility knife blade to securably retain the utility knife blade, wherein in the unlocked position the slider is disengaged from the utility knife blade to permit removal of the utility knife blade, and wherein during a movement of the slider from the locked position to the unlocked position, the slider moves away from the blade carrier. According to one embodiment, an actuation of the button enables the slider to move from the locked position to the unlocked position.
Another embodiment relates to a blade retention mechanism for a utility knife blade for a utility knife. The blade retention mechanism includes a slider having a body, the body defining a cavity; a biasing member at least partly disposed in the cavity; and an actuator coupled to the biasing member, wherein upon actuation of the actuator, the actuator and slider are movable from a locked position to an unlocked position, wherein in the locked position the slider engages with the utility knife blade to securably retain the utility knife blade, wherein in the unlocked position the slider is disengaged from the utility knife blade to permit removal of the utility knife blade. According to one configuration, during a movement of the actuator and slider to the unlocked position, the actuator is at least partly received in the cavity.
Still another embodiment relates to a utility knife. The utility knife includes a blade carrier configured to releasably couple to a blade; and a blade retention mechanism coupled to the blade carrier. The blade retention mechanism includes a first actuator; and a second actuator, wherein an actuation of the first actuator permits the second actuator to move from a locked position to an unlocked position for the blade.
Referring to the Figures generally, a blade retention mechanism for a utility knife is shown and described herein according to various embodiments. As described more fully herein, a utility knife includes a blade retention or locking system. The blade retention system includes a first actuator, shown as a button herein, coupled to a second actuator, shown as a slider herein. The slider includes a projection configured to engage with a recess of a conventional utility knife blade. In operation, a user actuates the button to enable the slider to move vertically upwards and away from a blade carrier of the utility knife. Movement of the slider vertically upwards disengages the projection from the recess to enable the utility knife blade to be removed and replaced. When the utility knife blade is positioned back within the blade carrier and the user desires to lock the utility knife blade in the utility knife for use, the user simply pushes the slider vertically downwards to engage the projection with the recess. A biasing mechanism (e.g., a spring) then pushes the button outward and away from the slider to engage with the blade carrier. Due to the coupling of the button to the slider and the engagement of the biasing mechanism with the blade carrier, the slider is then also in a locked position (i.e., unable to be moved vertically upwards). When the slider is locked, the utility knife blade is locked in place for a user to use the utility knife.
Beneficially, the blade retention mechanism of the present disclosure provides several advantages over conventional blade retention mechanisms. For example, the use of the button in combination with moving the slider represents a two-prong unlocking system, which is in contrast to conventional one-prong unlocking systems. The two-prong unlocking system is advantageous in that the completion of both prongs is more involved than conventional one-prong unlocking systems, which may prevent accidental or inadvertent unlocking of the utility knife blade relative to conventional systems. That said, Applicant has determined that accomplishing the two-prongs is still a relatively quick endeavor, such that the ability of a user to quickly replace blades is not compromised. As another example, because the slider extends upward and away from the blade carrier (and the rest of the utility knife), a visual indication is provide to the user whether the blade retention mechanism is in the locked or unlocked positions. Existing locking mechanisms are typically visually ambiguous in that no clues regarding whether the blade is securely locked or unlocked are provided. This is problematic and dangerous because users may pull on the blade to check whether the blade is secure or not. These and other features and advantages are described more fully herein.
As used herein, the term “vertical” or variations thereof (e.g., vertically) refers to a direction that is perpendicular or substantially perpendicular to a longitudinal axis of the utility knife (i.e., from the utility knife blade to the handle is representative of the longitudinal axis). With reference briefly to
Referring now to
The utility knife 100 is shown to include handle 110, a blade carrier 130 coupled to the handle 110, a replaceable utility knife blade 120 (e.g., blade, etc.) releasably coupled to the blade carrier 130, and a blade retention mechanism 150 configured to selectively lock and unlock the blade 120 to the utility knife 100.
The handle 110 generally defines a user engagement portion for the utility knife 100. In this regard, a user may grab, hold, or otherwise engage primarily with the handle 110 when using the utility knife 100. The handle 100 includes a grip part 111 and a finger recess 112. With reference to
In the example shown, the handle 110 is predominately constructed from two halves that couple to each other to define a longitudinal slot or opening 118. Coupling of the two halves may be via one or more fasteners or joining methods (e.g., adhesive, welding, etc.). In the example depicted, a fastener 113 (e.g., screw, pin, etc.) as well as the pivot mechanism 114 (e.g., pin, etc.) and button 115 facilitate coupling the two halves of the handle 110 together. In this regard, the button 115 and pivot mechanism 114 extend between the two halves to aid coupling of the halves together.
The pivot mechanism 114 couples the blade carrier 130 and blade 120 to the handle 110. The button 115 is structured to selectively engage with the pin or pivot mechanism 114 to prevent or permit rotation of the blade carrier 130 and blade 120 about the pin 114. For example, in one embodiment, the button 115 includes a projection disposed within the longitudinal slot 118 between the two halves while the pin 114 also includes a projection disposed within the longitudinal slot 118. When the button 115 is depressed, the projections disengage thereby allowing the blade carrier 130 and blade 120 to rotate about the pivot mechanism 114. When the button 115 is not depressed, the projections engage with each other to prevent relative rotation. Of course, in other embodiments, any other type rotation mechanism may be employed with utility knife 100. In operation, a user can push the button 115 (with reference to
According to an alternate embodiment, the blade carrier 130 may not be rotatable or movable relative to the handle 120. In this embodiment, the blade carrier 130 may be positioned permanently in the use position. In these embodiments, the structure of the handle 110 may differ from that depicted in the Figures, such as to exclude the slot 118. As a result, in this embodiment, the handle 110 may not be constructed from two halves but via some other construction methodology (e.g., as a unitary body).
Referring now to
Referring first to the blade carrier 130, the blade carrier 130 (e.g., blade housing, blade carriage, etc.) is configured to couple to the utility knife blade 120 to facilitate holding and retention of the utility knife blade 120 in the locked position. As shown, the blade carrier 130 is coupled to each of the handle 110 and blade retention mechanism 150. Thus, the blade carrier 130 is an intermediary between the handle 110 and the blade retention mechanism 150. While the blade carrier 130 may be constructed from a variety of materials and via a variety of different ways (e.g., one-piece component, two or more pieces coupled together, etc.), in the example depicted, the blade carrier 130 is constructed from a metal-based material. As shown, the blade carrier 130 defines a first cavity 131 (e.g., recess, void, opening, etc.), a second cavity 132 (e.g., recess, void, opening, etc.) positioned within the first cavity 131, a first opening 133 having upper ledges 134 (e.g., lower walls, lower ledges, lower or first stops, etc.), a second opening 135 having upper ledges 136 (e.g., upper walls, upper ledges, upper or second stops, etc.), a plurality of inner holes 137 (e.g., openings), and a plurality of outer holes 138 (e.g., openings).
The first cavity 131 is structured to engage with the first plate 170 (e.g., inner plate, etc.). In this regard, the first cavity 131 is sized and shaped to at least partly receive the first plate 170. In the embodiment depicted, the first cavity 131 receives the first plate 170, such that the first plate 170 sits flush or substantially flush with the outer surface of the blade carrier 130 that defines the first cavity 131. As also shown, the plurality of inner holes 137 are defined by the blade carrier 130 and disposed within the first cavity 131. The plurality of inner holes 137, which in this embodiment are shown as three (3) holes, are each structured to receive a fastener (e.g., a screw) to couple the first plate 170 to the blade carrier 130. Of course, in other embodiments, various other adhesion or joining processes (e.g., welding, glue, etc.) may be used to couple the first plate 170 to the blade carrier 130. As described herein, coupling of the first plate 170 to the blade carrier 130 functions to constrain, secure, or otherwise at least partly hold the slider 154 of the blade retention mechanism 150.
The second cavity 132 is structured to receive or at least partly receive the slider 154 of the blade retention mechanism 150. In this regard and as shown, the second cavity 132 has a shape that matches or substantially matches the shape of the slider 154. In other embodiments, the size and shape of the second cavity 132 may differ from that depicted in the Figures. In operation, the first plate 170 is received in the first cavity 131 when coupled to the blade carrier 130. Coupling of the first plate 170 to the blade carrier 130 then provides a wall or a barrier on a back side of the second cavity 132, such that the button 151 (and parts of the blade carrier 130) and the first plate 170 sandwich in the slider 154.
As mentioned above, the blade carrier 130 includes a plurality of outer holes 138. In this example, there are four (4) holes 138. Each of the holes 138 is structured to receive a fastener (e.g., a screw, etc.) to couple the outer plate 180 to the blade carrier 130. In other embodiments, a variety of other joining mechanisms may be used to couple the blade carrier 130 to the outer plate 170 (e.g., an adhesive, a joining process such as welding, etc.). As described herein, the gap defined between the inner and outer plates 170 and 180 is structured to receive the utility knife blade 120.
The first opening 133 represents a receptacle for the button 151 when the button 151 is in the locked position. A pair of ledges 134 (e.g., lower wall, lower ledge, lower or first stop, first part of the blade carrier 130, etc.) form an upper or vertical barrier for the first opening 133 and a barrier for upward vertical movement for the button 151 (note that only one of the ledges 134 is shown in
Thus, as shown, a step system is provided between the first opening 133 and first ledges 134 with the second opening 135 and second ledges 136. In this regard, the first opening 133 protrudes or extends closer to an external surface of the blade carrier 130 proximate to the button 151 than the second opening 135. However, the second ledges 136 are positioned vertically above the first ledges 134. Placement of the button 151 in the first opening 133 represents the locked position or configuration while a placement of the button 151 in the second opening 135 represents the unlocked position or configuration.
Before turning to the blade retention mechanism 150, the first and second plates 170 and 180 are firstly described. In the example depicted, the first and second plates 170 and 180 are separate components (i.e., individual pieces). In other embodiments, the first and second plates 170 and 180 may be joined to each other and then collectively coupled to the blade carrier 130. In the example shown, the first and second plates 170 and 180 are constructed from a metal-based material. However, in other embodiments, a variety of other types of materials may be used to construct the first and second plates 170 and 180.
The first plate 170 is structured to hold, retain, or otherwise constrain the movement of the slider 154 of the blade retention mechanism 150 to only or substantially only a vertically upward and downward movement. In this regard, the blade carrier 130 and the first plate 170 surround or substantially surround the slider 154. As shown, the first plate 170 has a trapezoidal-type shape, which corresponds with the trapezoidal-type shape of the first cavity 131. In other embodiments, a variety of other shapes may be implemented with one or both of the first cavity 131 and the first plate 170.
As shown, the first plate 170 defines a pair of recesses 171 (e.g., openings, voids, gaps, etc.) and a plurality of holes 172. In this example, the first plate 170 defines three (3) holes 172. The holes 172 correspond with the holes 137 of the blade carrier 130 to enable a fastener to be received in each of the corresponding set of holes 172 and 137. These fasteners then couple the first plate 170 to the blade carrier 130. As mentioned above, the first plate 170 also defines a pair of recesses 171. The recesses 171 are disposed at or near the vertical top of the first plate 170 (i.e., opposite side to the finger recess 112 and proximate the blade retention mechanism 150). As described herein, the recesses 171 are sized and shape to enable the projections 156 of the slider 154 to pass there-through and, eventually, engage with corresponding recesses of the utility knife blade 120.
The second plate 180 is structured to hold, support (at least partly), or otherwise help retain the utility knife blade 120 to the utility knife 100. In this regard and as mentioned above, the second plate 180 is coupled to the blade carrier 130 on the outside of the first plate 170. As such, a gap or opening is created between the plates 170 and 180 when each is coupled to the blade carrier 130. This gap or opening is structured to receive the utility knife blade 120. Thus, in use, the utility knife blade 120 is sandwiched between the first and second plates 170 and 180. This sandwiching in combination with a lower surface of the blade carrier 130 functions to hold or otherwise couple the utility knife blade 120 to the utility knife 100 and blade carrier 130.
As shown, the second plate 180 defines a pair of recesses 181 (e.g., openings, voids, gaps, etc.) and a plurality of holes 182. In this example, the second plate 180 defines four (4) holes 182. The holes 182 correspond with the holes 138 of the blade carrier 130 to enable a fastener to be received in each of the corresponding sets of holes 182 and 138. These fasteners then couple the second plate 180 to the blade carrier 130. As mentioned above, the second plate 180 also defines a pair of recesses 181. The recesses 181 are disposed at or near the vertical top of the second plate 180 (i.e., opposite side to the finger recess 112 and proximate the blade retention mechanism 150). As described herein, the recesses 181 are sized and shape to enable the projections 156 of the slider 154 to be at least partly received by the recesses 181.
Referring now briefly to
With the above description in mind and still referring to
The button 151 (e.g., push button, first actuator) includes a user interface portion 152 interconnected with a pair of tabs 153. In the example shown, the button 151, user interface portion 152, and tabs 153 are of integral construction (i.e., a one-piece component). In other embodiments, one or more of the aforementioned components may be an independent component, which is coupled to the remaining components to form the button 151. The user interface portion 152 is an area of the button 151 that the user pushes or otherwise applies a force to when the user actuates the button 151. As shown, the user interface portion 152 extends outward and away from the button 151 (i.e., away from the slider 154). Thus, this front area of the button 151 with the user interface portion 152 represents a non-coplanar surface. In contrast, a back surface of the button 151 proximate to the spring 190 when the mechanism 150 is assembled is a substantially flat or planar surface. In the example depicted, the button 151 is constructed from a metal-based material. In other embodiments, a variety of other materials may be used to construct the button 151.
When assembled, the button 151 is received in the first opening 133 of the blade carrier 130. The tabs 153 may engage with an outer surface of the blade carrier 130 (a wall of the blade carrier that defines at least part of the opening 133) to prevent the button 151 from falling out of the opening 133 (i.e., laterally away from the slider 154). To prevent vertical upward movement, the tabs 153 may selectively engage with the first ledges or barriers 134. The interaction of the slider 154 to the spring 190 to the back side of the button 151 prevents the button 151 from moving in a lateral direction towards the first plate 170. In this regard, the first plate 170 holds the slider 154, which in turn provides the force to prevent the button 151 from being pushed without limit towards the first plate 170. However and as described herein, the spring 190 permits movement of the button 151 towards the slider 154, which is described in more detail below.
Referring now to
As shown, a pair of projections 156 extend laterally outward and away from the body 155. In this regard, the projections 156 extend away from the button 151 when the blade retention mechanism 150 is coupled to the blade carrier 130. The projections 156 are sized and shaped to correspond with conventional recesses in conventional utility knife blades. In this regard and as shown, the projections 156 have an oval type shape. With reference to
As mentioned above, the top portion 157 and bottom portion 158 of the body 155 define a cavity 159 (e.g., recess). A back surface 160 of the recess 159 extends laterally outward and away from the body 155 to form/provide a pair of oppositely positioned tabs 161. In other words, the tabs 161 and cavity 159 are positioned as an intermediary between the top portion 157 and the bottom portion 158. As shown, the cavity 159 is generally rectangular shaped, and sized to selectively receive the spring 190 and the button 151. In other words, the cavity 159 has a matching or a substantially matching shape to that of the spring 190 and the button 151. As described herein, the cavity 159 receives the spring 190 and at least part of the button 151. As such and once assembled, the top and bottom portions 157 and 158 constrain or restrict a vertical upward and downward movement of the spring 190 and button 151.
The spring or biasing member 190 is structured to bias the button 151 away from the slider 154. More particularly, the spring 190 is structured to bias the button 151 in a lateral direction away from the slider 154 to position the tabs 153 of the button 151 in the first opening 133, such that the tabs 153 may engage with the ledges 134 (when in the locked position to, in turn, restrict vertical movement of the slider 154 and button 151). In the example shown, the spring 190 is structured as a leaf spring. In other embodiments, a different type of spring may be utilized (e.g., a coil spring). All such variations are intended to fall within the scope of the present disclosure.
Based on the foregoing, a description of the assembly of the blade retention mechanism 150 may be described as follows. The bottom portion of the body 155 (proximate the bottom portion 158) is received in the second cavity 132. The top portion of the body 155 (proximate the top portion 157) is at least partly received in the first and second openings 133 and 135. The first plate 170 then holds the slider 154 in place and prevents or substantially prevents the slider 154 from moving in a lateral direction away from the button 151. In contrast, the tabs 161 in combination with the spring 190 and button 151 as well as at least a part of the bottom portion of the body 155 may engage with the blade carrier 130 to prevent or substantially prevent the slider 154 from moving in a lateral direction towards the button 151 (i.e., a lateral direction away from the first plate 170). Thus, the blade carrier 130 and first plate 170 hold the slider 154 in a use position (i.e., able to move between the locked and unlocked position).
With respect to the locked position of the slider 154, the spring 190 biases or otherwise forces the button 151 away from the slider 154. As a result, the tabs 153 of the button 151 are disposed in the first opening 133 and movement of the button 1511 laterally is constrained by the blade carrier 130 and vertically by the ledges 134 as well as a portion of the blade carrier 130 that defines the second cavity 132 (this portion limits vertically downward movement of the button 151). At this point, without depressing the button 151, the slider 154 cannot move to the unlocked position. This is due to the bottom portion 158 of the slider 154 engaging with the button 151, and the button 151 being unable to move upwards due to the engagement of the button 151 with the ledges 134.
In operation then and assuming the blade retention mechanism is in the locked position (i.e.,
Based on the foregoing and referring now to
Beneficially, several features and advantages of the blade retention mechanism 150 of the present disclosure are provided. First, the use of a two-stage unlock mechanism (i.e., the pushing of the button 151 and the raising of the slider 154) prevents or substantially prevents inadvertent unlocks of the blade 120. Second, the relative ease of completing the two stages still provides users with an ability to quickly replace or remove the blade. Third, the audible click that is generated when the button 151 moves to the first or locked position provides users with an indication that the blade is securely retained. Fourth, when in the unlocked position, the slider 154 protrudes above the blade carrier to thereby provide users with a visual indication that the slider 154 is in the unlocked position. This is beneficial because users can then readily see whether the blade is locked in or not. With reference to
As mentioned herein above with respect to certain components, it should further be understood that one or more additional/other components of the knife 100 may be constructed as a unitary body (e.g., a one-piece component) or as an assembly of components. Further, these components may be constructed from any suitable material including, but not limited to, a plastic material, rubber, a metal or metal alloy material, and/or any combination therewith. For example, the use of engineered plastics may provide a preferred combination of light weight and strength. According to other embodiments, a number of alternate materials can be used to produce the knife and blade retention assembly: cast or machined aluminum or brass could be utilized in the construction, a variety of steels, various composites, and/or any combination thereof. Thus, those of ordinary skill in the art will appreciate the high configurability of the components.
As utilized herein, the terms “approximately,” “about,” “substantially,” and similar terms are intended to have a broad meaning in harmony with the common and accepted usage by those of ordinary skill in the art to which the subject matter of this disclosure pertains. Thus, these terms may be defined and/or interpreted in a quantifiable manner (e.g., an exact number, a range of numbers, various tolerances, etc.) and/or in a qualitative manner (e.g., analyzing the characteristics or properties of the disclosure in operation for compliance with a standard, goal, threshold, principle, or the like). Thus, those of ordinary skill in the art will readily recognize and appreciate the broad interpretability of these and similar terms, with all such interpretations intending to fall within the spirit and scope of the present disclosure.
It is important to note that the construction and arrangement of the elements of the utility knife with a blade retention mechanism is illustrative only. Although only a few embodiments have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible without materially departing from the novel teachings and advantages of the subject matter recited.
Further, all such modifications are intended to be included within the scope of the present disclosure. Other substitutions, modifications, changes and omissions may be made in the design, operating conditions and arrangement of the preferred and other exemplary embodiments without departing from the spirit of the present disclosure possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.). Thus, one of ordinary skill in the art will appreciate that many modifications, alterations, or changes may be imparted into the tools disclosed herein without departing from the spirit and scope of the present disclosure.
For the purpose of this disclosure, the term “coupled” or other similar terms, such as “attached,” means the joining of two members directly or indirectly to one another. Such joining may be achieved directly with the two members or the two members and any additional intermediate members being attached to one another and the two members. For example and for the purposes of this disclosure, component A may be referred to as being “coupled” to component B even if component C is an intermediary, such that component A is not directly connected to component B. On the other hand and for the purposes of this disclosure, component A may be considered “coupled” to component B if component A is directly connected to component B (e.g., no intermediary). Such joining may be stationary or moveable in nature. Such joining may be permanent in nature or may be removable or releasable in nature.
The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. In the claims, any means-plus-function clause is intended to cover the structures described herein as performing the recited function and not only structural equivalents but also equivalent structures. Other substitutions, modifications, changes and omissions may be made in the design, operating configuration and arrangement of the preferred and other exemplary embodiments without departing from the spirit of the present disclosure as expressed in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5495670 | Quinn | Mar 1996 | A |
5603162 | Chen | Feb 1997 | A |
6192589 | Martone | Feb 2001 | B1 |
6249975 | Lin | Jun 2001 | B1 |
6446340 | Ping | Sep 2002 | B1 |
6742261 | Ho | Jun 2004 | B2 |
6829827 | Tseng | Dec 2004 | B2 |
7107688 | Critelli et al. | Sep 2006 | B1 |
7305770 | Critelli | Dec 2007 | B2 |
7552537 | Ye | Jun 2009 | B2 |
7814664 | LeBlanc | Oct 2010 | B2 |
8001641 | Williams | Aug 2011 | B1 |
8220161 | Chang | Jul 2012 | B2 |
8567069 | Robinson | Oct 2013 | B2 |
10144139 | Squiers | Dec 2018 | B2 |
D840774 | Dechant | Feb 2019 | S |
20020029480 | Lin | Mar 2002 | A1 |
20030037444 | Chunn | Feb 2003 | A1 |
20040163261 | Lin | Aug 2004 | A1 |
20050274024 | Jinliang | Dec 2005 | A1 |
20050278955 | Lee | Dec 2005 | A1 |
20070157472 | Critelli | Jul 2007 | A1 |
20070169353 | Wu | Jul 2007 | A1 |
20080250650 | Seber | Oct 2008 | A1 |
20090165309 | Kamb et al. | Jul 2009 | A1 |
20090235535 | Circosta | Sep 2009 | A1 |
20100018060 | Lin | Jan 2010 | A1 |
20100107424 | Garcia et al. | May 2010 | A1 |
20110041344 | De | Feb 2011 | A1 |
20110283542 | Wu | Nov 2011 | A1 |
20150258696 | Wang | Sep 2015 | A1 |
20160346941 | Chen | Dec 2016 | A1 |
20180029240 | Douglass | Feb 2018 | A1 |
Number | Date | Country |
---|---|---|
20 2008 001 658 | Jul 2008 | DE |
Entry |
---|
International Search Report and Written Opinion for International Application No. PCT/US2018/041211, dated Oct. 12, 2018, 12 pages. |
Number | Date | Country | |
---|---|---|---|
20190015996 A1 | Jan 2019 | US |