1. Field of the Invention
This invention relates to land anchors that are turned into a beach or into soil for holding a boat to the shore, or as an anchor point for pulling a vehicle.
2. Prior Art
Previously land anchors, and boat shore anchors in particular, have generally consisted of large heavy weights for positioning on a shore that are connected to a floating device, such as a boat, by a line. The function of such anchors, like the invention, is to prohibit a floatation device, such as a boat, from floating away from the shore. Additionally, the anchor of the invention is useful for providing a land anchor point for pulling an item, such as an ATV, towards it. The majority of boat anchors are designed to work by submerging the anchor into water that attaches, by a line, chain, or the like, to a floating device. Such anchors have protruding arms or mechanical devices designed to either dig into the lake or sea bottom or catch outcrops at the bottom of the body of water. Land anchors are usually posts arranged to be pounded into the ground that include an attachment device, such as an ring, eyelet, pulley, or the like, that a cable is attached to, that has been un spooled from a winch mounted to the vehicle, such as an ATV, whereby, with the winch operated, the cable is reeled in, pulling the vehicle to the post.
In practice, an anchor, like the invention, is utilized by a water craft that has been moved near to a shore or beach that does not have a permanently fixed structure. I such situation, traditional anchors are not satisfactory to stabilize a boat to the shore. For such shore anchoring, where permanently fixed structures are not available, boat owners have generally attempted to secure the boat to the shore in variety of ways, that, in practice, may not adequately hold the boat, allowing it to drift away and/or be damaged. A general practice for securing a boat to a shore or beach has consisted of hammering a large stake or stakes into the shore or beach for receiving lines from the boat. Such stakes, however, have substantial drawbacks in that, unless the stakes are driven very deep, it or they can easily break free failing to adequately secure the boat. Whereas, if the stakes are deeply driven, removing the stakes takes great effort.
Another common practice as has been employed by boat owners to anchor a boat to a shore is to take a traditional boat anchor, place it into a hole and fill the hole with sand from the shore. This method has the same limitations as driving stakes into the ground. To properly secure the boat, the hole has to be deep enough to provide enough resistance to the forces as are applied to the boat, such as tides, winds and wave action, to hold the boat in place. This is also true for land anchors where, if a stake, or the like, is driven into the ground and connected to a cable end that is winched in to move a vehicle, such as an ATV, towards it, the stake will pull out of the ground. The present invention to provide a reliable land anchor, includes an auger mounted onto a shaft that is fitted through a sleeve. The shaft is turned by a handle or motor driven ratchet arrangement, turning the auger into the ground. The sleeve includes at least a pair of blades or fins that each project outwardly from opposite sides of the sleeve outer surface. In operation, the auger to pulls the sleeve and fins into the ground. The auger depth, connection of a mooring line to a bottom end of the sleeve, all contribute to maintaining the assembly in the ground when it is subjected to a load, such as a boat connected through a line to the sleeve base, or the pulling load exerted through a winch cable attached to the sleeve base end surface for pulling a vehicle, such as an ATV, towards the assembly. The invention, provides for mounting a line to a base end of the sleeve that is pulled into the ground by turning the auger, and that line buried alongside of the sleeve. When a pulling force is exerted thereon, that force first pulls the line towards the applied force. The stretched line then tends to try to pull the anchor bottom end through the sand or dirt with the blades or fins resisting that movement. In practice, the anchor will hold fast against a force that is up to twice the load the anchor will hold against when the line is connected to a mounting ring located at the top of the sleeve.
Additionally, unlike prior anchors, the anchor of the present invention optionally includes blades or fins as are mounted to the anchor sleeve that face oppositely, and form an angle of less than one hundred eighty degrees towards the pulling force, providing a cupping action when a pulling force is applied at the sleeve bottom end. That cupping action tends to compress the ground ahead of the anchor towards the pulling force, holding the anchor in place, discouraging the anchor lower end from being pulled out of the ground.
Also unlike prior anchors, the line end mounting to the lower end of the sleeve that is pulled into the ground by the auger, positions the line alongside of the anchor of the invention to be proximate to the ground surface. That line attachment causes the line to straight at an angle from the anchor shaft from its attachment point towards the pulling force, holding it in place against being pulled out of the ground even with an application of a pulling force through the line that is greater than twice an anchor where the line is attached to the top of the sleeve will sustain. Additionally, the present invention includes a mooring line locking device for prohibiting an anchor line pulled through the lower line mounting from passing back towards the item to be held or drawn thereto, and is easily released.
For various reasons a boat or land anchor may be required to be moved several times in a short period of time. Prior to the invention, the early anchors set out above have required considerable effort and time to install and remove, and none have provided the stability to anchor a heavy object, such as a boat, or to act as an anchor point for a winch cable to draw a vehicle, such as an ATV, towards the anchor.
The invention relates to devices for anchoring a boat or other floatation device to a shore or beach, and can also be used as a ground anchor that a cable is attached to resist removal when a vehicle, such as an ATV is drawn towards it. The invention includes a shaft with an auger or screw located at a lower end of the shaft. The opposite or top shaft end is provided with a device for creating torque. Such devise for providing torque may be either a hand bar or a power device for turning a driver that has been fitted into a cavity formed into the shaft top end.
A cylindrical tube or sleeve is provided for fitting over the shaft top end so as to slide along the shaft, for positioning between the auger or screw top end, and the opposite shaft top end, and has an inner diameter that is sufficiently greater than the shaft diameter to allow for free passage of sand and small rocks out from between the shaft and tube or cylinder inner surface. Multiple blades or fins are attached to the outside of the cylindrical tube or sleeve to extend outwardly and the blades or fins may be less than one hundred eighty degrees in arc in the direction a line that is extended out from the anchor. Which blades or fins arrangement is to encourage ground to collect and compress against a pulling force exerted on the anchor holding a boat, or when the anchors is attached to a winch cable for drawing a vehicle towards it. The anchor cylindrical tube or sleeve has a line mounting at its lower end, for attaching the line, that may consist of holes formed through the blades or fins, adjacent to their attachment points, to the cylindrical tube or sleeve sides. Which holes allow for passage of a mooring or winch line around the cylindrical tube or sleeve. Or the line mounting may include a mounting ring, or other device, attached to the cylindrical tube or sleeve outer surface.
A self locking device can be fitted to the cylindrical tube or sleeve top end to pull the mooring line through for holding the mooring line in place after its pulled tight. A come-along or other like device can be attached to a loop end of a section of the mooring line whose other end attaches to the cylindrical tube or sleeve mount. The mooring line from the boat is pulled through the loop, pulling the loop towards the boat, and which loop can attach to a hook end of a winch line for drawing a vehicle, such as an ATV, or the like thereto.
A torque applied to the shaft turns the auger to dig or screw the shaft auger end into the shore, beach or dirt, pulling the blades or fins extending out from the cylindrical tube or sleeve outer surface into the shore or beach. So installed, the blades or fines, that are preferably at an angle of less than one hundred eighty degrees, provide surfaces to gather the beach material or dirt as a pulling force is directed into the anchor, utilize the resistance of the gathered materials to prevent the anchor from being pulled out. Which resistance of the anchor from been pulled out is further enhanced by connection of the mooring or winch line to the cylindrical tube or sleeve bottom end, with the line being pulled into the ground as the auger is turned. Whereby, when a pulling force is applied to the winch line, that winch line is pulled away from the anchor, forming an angle thereto to the applied force Thereby, the pulling force will act on the anchor lower portion against the dirt along the winch line, essentially doubling the pulling force as can be applied to the anchor before is pulls out. After use, the anchor is removed by reversing the torque direction applied to the shaft, with the arguer blades pushing the blades or fins out of the soil. In which anchor removal some materials may be lodged in the space between the shaft and cylindrical tube or sleeve. To facilitate removal thereof, the cylindrical tube or sleeve preferably includes a longitudinal slot or slots that facilitate materials removal as by rinsing the anchor in water.
It is a principal object of the invention to provide a utility land anchor with installed mooring line that is easily, efficiently and securely turned into a shore, beach or other ground for anchoring a water craft, or is for use as an anchor point that a cable attaches to for drawing a vehicle, such as an ATV, thereto.
Another object of the invention is to provide an anchor that is easily installed and removed from the shore, beach or ground that, by a placement of a mooring or winch line connection point at a lower end of a cylindrical tube or sleeve mounting blades or fins, when sleeve and blades are pulled by the turning auger into the ground, the mooring or winch line, when placed under tension will tend to pull away from the anchor, and the applied tension on the mooring or winch line will try to pivot the anchor bottom end at an angle to the ground, requiring that an applied tension sufficient to lift the anchor bottom end to follow the applied tension, being essentially twice that as required to pull out the anchor where the connection point is at the top of the anchor cylindrical tube or sleeve.
Another object of the invention is to provide a spacing distance between the anchor shaft and sleeve interior to allow for free passage of sand and small rocks out of the sleeve so as to facilitate cleaning debris out from between the opposing shaft and sleeve walls.
Still another object of the invention is to provide an anchor whose auger end can be turned manually or by a driver for applying a torque to turn an anchor sleeve to turn the anchor into a shore. beach or ground, pulling blades or fins therewith that extend outwardly from the outer surface of the cylindrical tube or sleeve, into the shore, beach or ground, for securely holding the anchor in the shore, beach or ground, and is easily removed by applying a reverse torque to the auger, turning it out of, and releasing it from the shore, beach or ground.
The invention may take form in the arrangement of component parts that are herein shown as preferred embodiments and will be described in detail and illustrated in the accompanying drawings which form a part hereof:
A first embodiment of a utility land anchor 10 of the invention, hereinafter referred to as anchor, is illustrated in
The cylindrical tube or sleeve 17, hereinafter referred to as sleeve, is fitted over the shaft 14, above the auger 15, to slide freely along the shaft, and is shown in
The blades or fins 18a are attached, as by welding, to extend outwardly from opposite sides of the sleeve 17, aligning with the sleeve longitudinal axis.
A mooring ring 19 is shown in
An alternative to the moor ring 19, as a mooring line connection device, is shown in
It should be understood that the mounting ring 19 of
The shaft 14 top end 20, opposite to the pointed shaft end 15, is to couple to a torque generation arrangement, that is shown as a hand bar 21, in
Shown best in
In operation, the anchor 10 vertical shaft 14 end 15 is urged into the shore, beach or ground by creating rotational torque on the shaft 14 that causes the auger 16 to turn. When the turning auger 16 engages the surface of the shore, beach or ground it turns therein and, and, with continued turning, it pulls the sleeve 17 that includes the oppositely pointing blades or fins 18, into that shore beach or ground. Turning of the shaft 14 into the shore, beach or ground pulls the sleeve 17 to a depth where the blades or fins are at least partially buried and, preferably to where the blade or fins top edges align with the shore, beach or ground. When the sleeve 17 has been pulled by the auger into the ground to a desired depth, the torque applied to the auger 16 is stopped and the mooring line 12 is alongside of the sleeve, and travels along the shore, beach or ground, to the boat or for attachment to a second line that attaches to the boat. The mooring line 12 is then placed under tension, pivoting from its mounting to the sleeve 17, through the shore, beach or ground, as illustrated in
In operation, applying a torque to the shaft 14 turns the shaft 14 and auger 16 into the shore, beach or ground, tending to pull the sleeve 17 therewith. In such drilling operations the shaft 14 and cylindrical tube or sleeve 17 travel into the shore, beach or ground, collecting debris between the opposing shaft and sleeve tube outer and inner surfaces, respectively, that, if not removed after the anchor 10 is turned out of the shore, beach or ground, may later hinder re-installation of the anchor 10. To facilitate such debris removal the sleeve 17, shown in
While a preferred embodiment of my invention in a utility land anchor has been shown and described herein, it should be understood, that although the description above contains many specificities, these should not be construed as limiting the scope of the embodiment but as merely providing illustrations of some of the presently preferred embodiment components. Thus, the scope of the embodiment should be determined by the appended claims and their legal equivalents, rather than by the examples given.
This application is a continuation-in-part application of an application Ser. No. 12/151,288 for a “BOAT ANCHOR” filed on May 6, 2008, that is abandoned with the entry of this CIP application.
Number | Name | Date | Kind |
---|---|---|---|
3986 | Mitchell | Apr 1845 | A |
88891 | McMahen | Apr 1869 | A |
598003 | Oliver | Jan 1898 | A |
633574 | Densmore | Sep 1899 | A |
857751 | Parker | Jun 1907 | A |
1195724 | Preston | Aug 1916 | A |
1373560 | Holland | Apr 1921 | A |
1800504 | Chance | Apr 1931 | A |
2320612 | Kandle | Jun 1943 | A |
2352326 | Kandle | Jun 1944 | A |
2846192 | Ostling | Aug 1958 | A |
2964115 | Clatfelter | Dec 1960 | A |
3011598 | Galloway et al. | Dec 1961 | A |
3063402 | Vallquist | Nov 1962 | A |
3148510 | Sullivan | Sep 1964 | A |
3838657 | Fleming | Oct 1974 | A |
3850128 | Lovell | Nov 1974 | A |
3961671 | Adams et al. | Jun 1976 | A |
3971329 | Kosmatka | Jul 1976 | A |
4057114 | Anderson | Nov 1977 | A |
4161922 | Fogg | Jul 1979 | A |
4334392 | Dziedzic | Jun 1982 | A |
4387483 | Larrabee | Jun 1983 | A |
4702047 | Stokes | Oct 1987 | A |
4858876 | Moreno | Aug 1989 | A |
5322386 | Trangsrud | Jun 1994 | A |
5699864 | Dvorak et al. | Dec 1997 | A |
5996705 | Downs | Dec 1999 | A |
6237289 | Jewett et al. | May 2001 | B1 |
6481364 | Woyjeck | Nov 2002 | B2 |
6820573 | McMullin | Nov 2004 | B1 |
6824331 | Parker | Nov 2004 | B2 |
6899187 | McCarthy | May 2005 | B1 |
D546167 | Noethe | Jul 2007 | S |
7270073 | Waldrop et al. | Sep 2007 | B1 |
7887263 | Moffat | Feb 2011 | B2 |
8096368 | Rider | Jan 2012 | B1 |
20030147704 | Parker | Aug 2003 | A1 |
Number | Date | Country |
---|---|---|
05239983 | Sep 1993 | JP |
Number | Date | Country | |
---|---|---|---|
20100300017 A1 | Dec 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12151288 | May 2008 | US |
Child | 12803929 | US |