The present invention relates to utility lights.
The present invention provides, in one aspect, a utility light comprising a main body and a light assembly defined on the main body including a light source disposed within a light housing. The light housing is pivotable and rotatable relative to the main body. The utility light also comprises a handle movably coupled to the main body. The handle is linearly extensible relative to the main body to a position in which an opening is defined between the handle and the main body, such that the opening is configured to receive a workpiece to support the utility light. The handle has a gripping portion defined by an aperture extending through the handle.
The present invention provides, in another aspect, a utility light comprising a main body and a light assembly defined on the main body including a light source disposed within a light housing. The light housing is pivotable and rotatable relative to the main body. The utility light also comprises a handle including a portion that is movably coupled to the main body. The handle is linearly extensible relative to the main body and biased toward the main body such that the handle is configured to clamp a workpiece between the handle and the main body.
The present invention provides, in yet another aspect, a utility light comprising a main body and a handle movably coupled to the main body. The handle linearly extensible in a first direction relative to the main body and biased toward the main body in a second direction that is opposite the first direction. The utility light also comprises a light assembly defined on the main body including a light source disposed within a light housing, the light housing being pivotally supported within a yoke that is rotatable relative to the main body.
Other features and aspects of the invention will become apparent by consideration of the following detailed description and accompanying drawings.
Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting.
With reference to
The yoke 42 is further coupled to the main housing 14 via a joint 46 that may be rotatable about a second pivot axis B that is orthogonal to the first pivot axis A such that a rotational orientation of the yoke 42 is adjustable by a user. In some embodiments, the yoke 42 is coupled to the main housing via a joint 46 that is rotatable 360° about the second pivot axis B. In other embodiments, the yoke 42 is coupled to the main housing 14 via a joint 46 that limits rotation (e.g., using stops in the joint 46). For example, rotation may be limited to discrete angles less than 360° but more than 180°, or rotation may be limited to discrete angles less than or equal to 180°. These configurations allow the light assemblies 26 to be directed in a variety of directions and orientations, and also allow the light assemblies 26 to be movable independently of one another.
In one embodiment, the light housing 38 may be fixed within the yoke 42 (i.e., the light housing is not pivotable) while the yoke 42 is rotatably coupled to the main housing 14 via a joint 46 that permits rotation as described above. In another embodiment, the yoke 42 may be fixedly coupled to the main housing 14 (i.e., the yoke 42 is not rotatable) while the light housing 38 is pivotable within the yoke 42 as described above. In yet another embodiment, the light housing 38 may be fixed within the yoke 42 (i.e., the light housing is not pivotable) and the yoke 42 may be fixedly coupled to the main housing 14 (i.e., the yoke 42 is not rotatable).
As seen in
The light housings 38 further support a plurality of lights. The lights may be, for example, spot LEDs, flood LEDs, a fluorescent bulb, an incandescent bulb, or any other suitable lighting elements. In a preferred embodiment, the lights supported within the light housing 30 are a combination of multiple spot LEDs and/or multiple flood LEDs configured to be operated separately and/or in tandem. The lights may be surrounded by a light guide disposed within the housing that directs light through lenses 50 of the light assemblies 26.
With reference to
With reference to
The processor is implemented as a microprocessor including a non-transitory, computer-readable memory that stores executable instructions to carry out functionalities of the utility mount light 10. The processor 12 may be implemented partially or entirely as, for example, a field-programmable gate array (FPGA), and application specific integrated circuit (ASIC).
The power actuator may be operated by a user to simultaneously turn both light assemblies 26 on or off. The first mode actuator may be successively operated by a user to cycle one of the light assemblies 26 through a plurality of modes, and the second mode actuator may be successively operated by a user to cycle the other light assembly 26 through the plurality of modes. The plurality of modes may include, for example, a spot mode in which spot LEDs are activated, a flood mode in which flood LEDs are activated, spot/flood mode in which both spot LEDs and flood LEDs are activated, and an off mode (i.e., such that each light assembly 26 may be independently turned off). In one embodiment, the plurality of modes may further include brightness modes for one or more of the spot mode, the flood mode, and the spot/flood mode. In another embodiment, the plurality of modes may be a multiple discrete brightness modes (e.g., low/medium/high, etc.).
In another embodiment, the utility mount light 10 may include separate power actuators for each light, such that there is a first power actuator, a second power actuator, a first mode switch, and a second mode switch. In such an embodiment, the first power actuator controls the on/off state of one of the light assemblies 26, while the second power actuator controls the on/off state of the other light assembly 26.
In yet another embodiment, the utility mount light may include a first actuator and a second actuator. In this embodiment, the first actuator is configured to operate one of the light assemblies 26 while the second actuator is configured to operate the other light assembly. The first actuator may be successively operated by a user to turn the light assembly 26 on, cycle the light assembly 26 through a plurality of modes, and turn the light assembly 26 off. The second actuator may be successively operated by a user to turn the other light assembly 26 on, cycle the other light assembly 26 through a plurality of modes, and turn the other light assembly 26 off.
In any of the embodiments described above, it should be clear that each light assembly 26 may be individually operated (i.e., turned on/off) and/or individually cycled through the plurality of modes such that the light assemblies 26 may be in independent operating states.
With reference to
In operation, the utility mount light 10 may be attached to a work platform or a workpiece using the handle 22. A user may grasp the gripping portion 66 and the main housing 14, for example, and pull the handle 22 against the bias of the constant force spring 86 toward the open position to disengage contact between the handle 22 and the support surface 78 to create a gap. The handle 22 and support surface 78 may then be placed on opposing sides of a workpiece or a work platform (i.e., a bucket, etc.) and subsequently released such that the bias of the constant force spring 86 pulls the handle 22 toward the support surface 78 to clamp the work platform or workpiece between the handle 22 and the support surface 78. In one embodiment, the movable range of the handle 22 may be limited such that the maximum gap is approximately 3.5 inches.
The utility mount light 10 may be detached from a work platform or workpiece by pulling the handle 22 against the bias of the constant force spring 86 to open a gap between the work platform or workpiece and the handle 22 and/or the support surface 78 (i.e., un-clamp the utility mount light 10 form the work platform or workpiece). However, pulling the handle 22 may not be required in some embodiments. For example, the biasing force of the constant force spring 86 may be set such that the spring 86 retracts the handle and provides the desired clamping/frictional force on the work platform or workpiece, but allows the user to detach the utility mount light 10 from the work platform or workpiece by grasping the handle portion 18 and lifting the utility mount light 10 away from the workpiece. Using this method, a user can remove the light 10 with one hand by simply grasping the handle portion 18 and pulling the light upward.
It should be noted that the placement of the gripping portion 66 of the handle 22 adjacent to the handle portion 18 provides certain advantages. This placement reduces the distance between a gripping portion 66 and the spring, thereby reducing rotational torqueing on the handle 22 and the spring during operation thereby increasing the operational life.
In addition, the linearly displaceable handle 22 advantageously allows the utility light 10 to be coupled to work platforms or workpieces of various sizes (e.g., various widths).
Various features of the invention are set forth in the following claims.
This application is a continuation of co-pending U.S. patent application Ser. No. 17/862,844, filed on Jul. 12, 2022, which is a continuation of U.S. patent application Ser. No. 17/381,791, filed on Jul. 21, 2021, now U.S. Pat. No. 11,448,383, which is a continuation of U.S. patent application Ser. No. 16/999,742, filed on Aug. 21, 2020, now U.S. Pat. No. 11,073,265, which is a continuation of U.S. patent application Ser. No. 16/404,197, filed on May 6, 2019, now U.S. Pat. No. 10,753,585, which is a continuation of U.S. patent application Ser. No. 15/349,689, filed on Nov. 11, 2016, now U.S. Pat. No. 10,323,831, which claims priority to U.S. Provisional Patent Application No. 62/255,078, filed on Nov. 13, 2015, the entire contents of all of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62255078 | Nov 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17862844 | Jul 2022 | US |
Child | 17987048 | US | |
Parent | 17381791 | Jul 2021 | US |
Child | 17862844 | US | |
Parent | 16999742 | Aug 2020 | US |
Child | 17381791 | US | |
Parent | 16404197 | May 2019 | US |
Child | 16999742 | US | |
Parent | 15349689 | Nov 2016 | US |
Child | 16404197 | US |