This invention relates to a vehicle power distribution module that houses fuses for utility vehicle electrical systems on tractors and other off road utility vehicles.
Power distribution modules or fuse blocks are commonly provided on utility vehicles such as tractors or off road vehicles for housing fuses under the vehicle hood or elsewhere on the chassis near the battery. The utility vehicle power distribution module may be connected to a positive battery cable, and may include an electrical bus bar to a plurality of electrical fuses for protecting electrical systems such as vehicle lighting and other power accessories from high current or power. The fuses may be strip or link fuses connected between pairs of fuse connection terminals which may be threaded studs.
Typically, 60 to 500 amp AMG/MEGA fuses have mounting hole pairs spaced apart by 50 mm on center or more, and 30 to 200 amp AMI/MIDI or ATM/MINI fuses have mounting hole pairs or other terminals spaced apart by 30 mm on center or less. In the past, different power distribution modules were typically used for the larger and smaller fuses, or the overall size of the module and location of fuse mounting terminals was based on the dimensions of the larger fuse. A smaller, more compact utility vehicle power distribution module is needed that can house larger and smaller fuses in the same housing with a smaller footprint because of space demands for other components such as emissions equipment.
In the past, utility vehicle power distribution modules have only limited entry/exit openings for battery cables. For example, the module may have an opening on one side for a cable that is connected to a large fuse or bus bar. It can be difficult to route battery cables around the module into the opening, especially where space is limited and the cables are relatively thick and nonflexible. As a result, it can be difficult to mount power distribution modules at some locations. A utility vehicle power distribution module is needed that reduces or solves the problem of routing battery cables into cable entry or exit openings, and without as many mounting limitations.
A utility vehicle power distribution module includes a multi-level housing having at least a first level and a second level, each level having fuse connection terminals for installing fuses. The fuses on the second level may be perpendicular to those on the first level, and cable entry/exit openings are provided on each of at least two sides of the bi-level housing to simplify and enable routing battery cables into the module. The power distribution module accommodates larger high current fuses as well as smaller fuses in a small and compact housing.
In the embodiment of the invention shown in
In one embodiment, fuses installed in the utility vehicle power distribution module may be strip, in-line or link fuses. For example, the power distribution module may accommodate fuses such as 60 to 500 amp AMG/MEGA fuses with mounting hole pairs spaced apart by 50 mm on center or more, and 30 to 200 amp AMI/MIDI or ATM/MINI fuses with mounting hole pairs or other terminals spaced apart 30 mm on center or less. The module includes pairs of fuse connection terminals on the first or lower level for larger fuses that are spaced apart by at least 50% more than the pairs of fuse connection terminals on the second or upper level for smaller fuses. Other types of fuses or other electrical components also may be installed in the module and connected to the terminals. The fuse connection terminals shown in
In one embodiment, utility vehicle power distribution module 100 may include multi-level housing 102 along with an upper cover 104 and lower cover 106. The upper and lower covers may be latched to and removable from the multi-level housing. Fuses may be installed on each level of the multi-level housing. The multi-level housing may include fuse mounting terminals on a first or lower level 108 and a second or upper level 110, with an intermediate shelf or partition 112 between the first and second levels. The embodiment shown in
In one embodiment, as shown in
In one embodiment, as shown in
In one embodiment, the multi-level housing may include fuse connection terminals arranged so that fuses 128 installed on the second or upper level may be perpendicular to each fuse 118 on the first or lower level of the power distribution module. For example, fuses 128 may be strip or link fuses installed between pairs of fuse connection terminals 124, 126 that are aligned to be parallel with a first or shorter side of the multi-level housing and power distribution module. Fuse 118 may be a strip or link fuse between fuse connection terminals 114 and 116 aligned to be parallel with a second or longer side of the multi-level housing and power distribution module.
In one embodiment, fuse 118 may be a larger, high current fuse installed on the first or lower level of the multi-level housing, and fuses 128 may be smaller, lower current fuses installed side-by-side on the second or upper level. For example, fuse 118 may be a 60 to 500 amp fuse, such as an AMG/MEGA fuse having mounting hole pairs spaced apart by about 50 mm on center or more. Power may enter the power distribution module through battery cable 146 attached to terminal 114, and through fuse 118 connected between terminals 114 and 116. Fuse connection terminal 116 may pass power through electrical bus bar 134 to fuses 128 on the second or upper level. For example, fuses 128 may be 30 to 200 amp AMI/MIDI or ATM/MINI fuses have mounting hole pairs or other terminals spaced apart by 30 mm on center or less. Terminal 116 also may pass power through starter cable 160 to an electric starter for the vehicle engine.
In one embodiment, each pair of fuse connection terminals 114, 116 and 124, 126 may be secured to partition 112 between the first and second levels of the multi-level housing. For example, each terminal may be a threaded stud that is embedded in and/or supported by base 134, 136. Additionally, terminals 124 on the second level may engage and electrically contact bus bar 134, which may be a tin plated copper bar positioned along a second or longer side of the power distribution module. Terminal 116, also referred to as a pass through stud, may extend from the first or lower level through partition 112 to the second or upper level, and may engage and electrically contact bus bar 134.
In one embodiment, utility vehicle power distribution module 100 may have multiple cable entry/exit openings through outer walls 140 on each side of the multi-level housing. Multiple openings allow cables to enter or exit the power distribution module from multiple directions, and allow the module to be mounted in multiple locations and not significantly limited by cable routing restrictions.
In one embodiment, the utility vehicle power distribution module may have multiple cable entry/exit openings through outer walls 140 to the first or lower level on at least two sides of the multi-level housing, and preferably on three or four sides of the multi-level housing. For example, the power distribution module may have three cable entry/exit openings 142 to the first or lower level through the outer walls on the first or shorter side of the multi-level housing, and two cable entry/exit openings 144 to the first or lower level on each of the second or longer sides of the multi-level housing. These openings provide alternatives for battery cables to the larger fuse and electrical bus bar. The module also may have multiple channels for cable routing on the first or lower level, the channels between interior walls 148. FIG. 2 shows battery cable 146 and starter cable 160 inserted through cable entry/exit openings on the first or lower level, in channels between interior walls 148, and connected to terminals 114 and 116.
In one embodiment, the utility vehicle power distribution module may have multiple cable entry/exit openings through outer walls 140 to the second or upper level of the multi-level housing. For example, the power distribution module may have cable entry/exit openings 150 to the second or upper level through the outer walls on the second or longer side of the multi-level housing. Optionally, the module also may have cable entry/exit openings to the second or upper level through the outer walls on another side of the multi-level housing. The module also may have multiple channels for cable routing on the second or upper level, the channels between interior walls 154. As shown in
In one embodiment, the utility vehicle power distribution module also may include smaller fuses 164 installed in mini-fuse module 166 on the second or upper level 110 of the multi-level housing. Fuses 164 may be connected to fuse connection terminals instead of threaded studs. The mini-fuse module also may include link 162 to electrical bus 138, and a multi-pin electrical connector to the electrical systems protected by fuses 164. Cover 168 may be removably attached over mini-fuse module 166.
Having described the preferred embodiment, it will become apparent that various modifications can be made without departing from the scope of the invention as defined in the accompanying claims.
Number | Name | Date | Kind |
---|---|---|---|
5023752 | Detter et al. | Jun 1991 | A |
5067905 | Matsumoto et al. | Nov 1991 | A |
5088940 | Saito | Feb 1992 | A |
5088947 | Ishitani et al. | Oct 1992 | A |
5179503 | Fouts et al. | Jan 1993 | A |
5438310 | Ikari | Aug 1995 | A |
5504655 | Underwood et al. | Apr 1996 | A |
5755579 | Yanase et al. | May 1998 | A |
5785532 | Maue et al. | Jul 1998 | A |
5980302 | Saka | Nov 1999 | A |
6396380 | Girke et al. | May 2002 | B1 |
6848946 | Vicenza et al. | Feb 2005 | B2 |
6902434 | Stack | Jun 2005 | B2 |
7046115 | Higuchi et al. | May 2006 | B2 |
7095628 | Friedrich et al. | Aug 2006 | B2 |
8587931 | Shiraiwa et al. | Nov 2013 | B2 |
9265164 | Darr et al. | Feb 2016 | B2 |
20040048142 | Marusak | Mar 2004 | A1 |
20040189092 | Burlak | Sep 2004 | A1 |
20060164797 | Korczynski | Jul 2006 | A1 |
20080105460 | Kasai | May 2008 | A1 |
20110148564 | Staylor | Jun 2011 | A1 |
20140305693 | Greenberg | Oct 2014 | A1 |
20150069829 | Dulle | Mar 2015 | A1 |
20150165992 | Scheele | Jun 2015 | A1 |
20170050591 | Matsumura | Feb 2017 | A1 |
20170098523 | Schwartz | Apr 2017 | A1 |
20170103864 | Matsumura | Apr 2017 | A1 |
Number | Date | Country |
---|---|---|
0135910 | Apr 1985 | EP |
0569820 | Nov 1993 | EP |
0665570 | Aug 1995 | EP |
1109190 | Jun 2001 | EP |
1369305 | Dec 2003 | EP |
2826674 | Jan 2015 | EP |
2215916 | Sep 1989 | GB |
2015097534 | Jul 2015 | WO |
Entry |
---|
European Search Report issued in counterpart application No. 17170392.9 dated Oct. 9, 2017. (12 pages). |
Number | Date | Country | |
---|---|---|---|
20170327064 A1 | Nov 2017 | US |