Consumers perform many transactions, such as applying for a vehicle loan, a mortgage loan, a payday loan, an appliance loan, a home equity loan, a student loan, a personal loan, a small business loan, and/or the like. When performing such transactions, a consumer applies for the loan with an entity (e.g., a bank, a credit union, a mortgage company, a vehicle financing company, and/or the like), and the entity checks a credit score of the consumer. The credit score is based on information in the consumer's credit report, and the credit report includes information about each account that the consumer has established with lenders. The information about each account includes information indicating a type of account (e.g. a bank card, an automotive loan, a mortgage, and/or the like), date the account was established, a credit limit, a loan amount, an account balance, a payment history, and/or the like.
The entity utilizes the credit score to determine a loan rate and a loan term for the loan, and prequalifies the consumer for the loan rate and the loan term. A consumer with a higher credit score will prequalify for a better loan rate and loan term than a loan rate and loan term allocated to a consumer with a lower credit score.
According to some implementations, a device may include one or more memories, and one or more processors, communicatively coupled to the one or more memories, to receive a first set of information from a first group of servers, where the first set of information relates to bank accounts associated with a plurality of users. The one or more processors may receive a second set of information from a second group of servers, where the second set of information relates to loyalty credits associated with the plurality of users, and may receive a third set of information from a third group of servers, where the third set of information relates to stored-value cards associated with the plurality of users. The one or more processors may train a model based on the first set of information, the second set of information, and the third set of information, and may receive, from a client device associated with a user, a request for a transaction. The one or more processors may utilize the trained model to generate one or more recommendations associated with the transaction, and may provide, to the client device, the one or more recommendations and a request for transaction information associated with the user. The one or more processors may receive, from the client device, the transaction information based on the request for the transaction information, where the transaction information includes account information associated with a bank account of the user, loyalty credits information identifying loyalty credits associated with the user, and stored-value card information identifying a stored-value card associated with the user. The one or more processors may determine transaction terms for the transaction based on the account information, the loyalty credits information, and the stored-value card information, and may provide information identifying the transaction terms to the client device.
According to some implementations, a non-transitory computer-readable medium may store instructions that include one or more instructions that, when executed by one or more processors, cause the one or more processors to receive a first set of information from a first group of servers, where the first set of information relates to bank accounts associated with a plurality of users, and receive a second set of information from a second group of servers, where the second set of information relates to loyalty credits associated with the plurality of users. The one or more instructions may cause the one or more processors to receive a third set of information from a third group of servers, where the third set of information relates to stored-value cards associated with the plurality of users, and train a model based on the first set of information, the second set of information, and the third set of information. The one or more instructions may cause the one or more processors to receive, from a client device associated with a user, a request for a transaction, and utilize the trained model to generate one or more recommendations associated with the transaction. The one or more instructions may cause the one or more processors to provide, to the client device, the one or more recommendations and a request for transaction information associated with the user, and receive, from the client device, the transaction information based on the one or more recommendations and based on the request for the transaction information, where the transaction information includes account information associated with a bank account of the user, and loyalty credits information identifying loyalty credits associated with the user. The one or more instructions may cause the one or more processors to determine transaction terms for the transaction based on the account information and the loyalty credits information, and provide information identifying the transaction terms to the client device.
According to some implementations, a method may include receiving, by a device, a first set of information from a first group of servers, where the first set of information relates to bank accounts associated with a plurality of users, and receiving, by the device, a second set of information from a second group of servers, where the second set of information relates to loyalty credits associated with the plurality of users. The method may include receiving, by the device, a third set of information from a third group of servers, where the third set of information relates to stored-value cards associated with the plurality of users, and training, by the device, a model based on the first set of information, the second set of information, and the third set of information. The method may include receiving, by the device and from a client device associated with a user, a request for a transaction, and utilizing, by the device, the trained model to generate one or more recommendations associated with the transaction and the user. The method may include providing, by the device and to the client device, the one or more recommendations, and obtaining, by the device and based on the one or more recommendations, account information associated with a bank account of the user. The method may include obtaining, by the device and based on the one or more recommendations, loyalty credits information identifying loyalty credits associated with the user, and obtaining, by the device and based on the one or more recommendations, stored-value card information identifying a stored-value card associated with the user. The method may include determining, by the device, transaction terms for the transaction based on the account information and at least one of the loyalty credits information or the stored-value card information, and providing, by the device, information identifying the transaction terms to the client device.
The following detailed description of example implementations refers to the accompanying drawings. The same reference numbers in different drawings may identify the same or similar elements.
Consumers today own assets that would improve their credit scores, but those assets are not considered when calculating their credit scores. For example, consumers can own loyalty credits associated with credit cards, debit cards, loyalty cards, rewards cards, points cards, advantage cards, club cards, and/or the like that identify the card holders as participants in loyalty programs (e.g., programs that encourage consumers to continue to shop at or use services of businesses associated with each program). In another example, consumers can own stored-value cards (e.g., gift cards, calling cards, fare cards, and/or the like) that include monetary values stored on the cards rather than in an external account maintained by a financial institution, and may be anonymous (e.g., not issued in the names of the consumers). However, such assets are not considered by entities when prequalifying consumers for loans, resulting in poorer loan rates and terms for consumers. Furthermore, such assets cannot be utilized to satisfy or reduce terms of a loan, such as a down payment, processing fees, tax fees, and/or the like.
Some implementations described herein provide a transaction platform that utilizes machine learning to generate recommendations and better terms for a transaction based on loyalty credits and stored-value cards. For example, the transaction platform may train a model based on information that relates to bank accounts associated with users, information that relates to loyalty credits associated with the users, and information that relates to stored-value cards associated with the users. The transaction platform may utilize the trained model to generate recommendations associated with a transaction requested by a consumer, and may provide the recommendations to the consumer. The transaction platform may receive account information associated with a bank account of the consumer, loyalty credits information identifying loyalty credits associated with the consumer, and stored-value card information identifying a stored-value card associated with the consumer. The transaction platform may determine transaction terms for the transaction based on the account information, the loyalty credits information, and the stored-value card information, and may provide information identifying the transaction terms to the consumer.
In some implementations, the prior transaction information may be provided in a particular format, such as a spreadsheet format that includes the prior transaction information, a table that includes the prior transaction information, and/or the like. In some implementations, the transaction platform may automatically retrieve the prior transaction information from other devices (e.g., devices associated with the other users, devices associated with providing loans, devices associated with selling products and/or services, devices associated with accounts of the other users, devices associated with the loyalty credits of the other users, devices associated with the stored-value cards of the other users, and/or the like).
In some implementations, the transaction platform may receive the prior transaction information, and may store the prior transaction information in a data structure, such as a database, a table, a linked-list, a tree, and/or the like. In some implementations, the data structure may be provided in a memory associated with the transaction platform. The transaction platform may store the prior transaction information so that the transaction platform may perform further processing on the prior transaction information. In some implementations, the transaction platform may provide security features so that prior transaction information is maintained in confidence.
As further shown in
As further shown in
As further shown in
As shown in
As further shown in
As shown in
In some implementations, the transaction platform may update the model based on the transaction information. For example, the transaction platform may update the model based on the stored-value card information associated with the user, the loyalty information associated with the user, and/or the like. In some implementations, the transaction platform may utilize the transaction information to identify preferences of the user. For example, the transaction platform may identify preferences associated with a bank account, credit card account, debit card account, loyalty program, stored-value card, and/or the like, associated with the user. In some implementations, the preferences may influence the recommendations output by the model, may override the recommendations output by the model, may be used in combination with the recommendations output by the model, and/or the like. In some implementations, the transaction platform may identify preferences associated with providers (e.g., of loyalty programs, stored-value cards, payment cards, and/or the like), financial institutions (e.g., banks, credit card companies, and/or the like), sellers of products and/or services (e.g., to accept and/or refuse particular cards, accounts, and/or the like), and/or the like.
As further shown in
As further shown in
With reference to
As further shown in
As further shown in
As shown in
As further shown in
As further shown in
With reference to
As further shown in
As shown in
In some implementations, the transaction platform may determine and validate a quantity of loyalty credits on the particular loyalty card (e.g., card number xxxx-xxxx-xxxx) of the user by querying a device associated with the particular loyalty card, and determining the quantity of loyalty credits on the particular loyalty card. In some implementations, the transaction platform may determine and validate a quantity of cash on the particular stored-value card (e.g., ABC Card) of the user by querying a device associated with the particular stored-value card, and determining the quantity of cash on the particular stored-value card.
As shown in
As further shown in
Although
In this way, several different stages of the transaction process are automated using a model, which may remove human subjectivity and waste from the process, and which may improve speed and efficiency of the process and conserve computing resources (e.g., processors, memory, and/or the like). Furthermore, implementations described herein use a computerized process to perform tasks or roles that were not previously performed or were previously performed using subjective human intuition or input. For example, the transaction platform utilizes machine learning to determine transaction terms for a transaction based on loyalty credits and stored-value cards that were previously not utilized to determine transaction terms. The transaction platform also enables transaction terms to be satisfied with loyalty credits and stored-value cards in a manner that was not previously utilized to satisfy transaction terms. Finally, the transaction platform conserves computing resources (e.g., processors, memory, and/or the like) that would otherwise be wasted in determining and validating loyalty credits and stored-value cards.
As indicated above,
Client device 210 includes one or more devices capable of receiving, generating, storing, processing, and/or providing information, such as information described herein. For example, client device 210 may include a mobile phone (e.g., a smart phone, a radiotelephone, etc.), a laptop computer, a tablet computer, a desktop computer, a handheld computer, a gaming device, a wearable communication device (e.g., a smart wristwatch, a pair of smart eyeglasses, etc.), or a similar type of device. In some implementations, client device 210 may receive information from and/or transmit information to transaction platform 220.
Transaction platform 220 includes one or more devices that utilize machine learning to generate recommendations for a transaction based on loyalty credits and stored-value cards. In some implementations, transaction platform 220 may be designed to be modular such that certain software components may be swapped in or out depending on a particular need. As such, transaction platform 220 may be easily and/or quickly reconfigured for different uses. In some implementations, transaction platform 220 may receive information from and/or transmit information to one or more client devices 210.
In some implementations, as shown, transaction platform 220 may be hosted in a cloud computing environment 222. Notably, while implementations described herein describe transaction platform 220 as being hosted in cloud computing environment 222, in some implementations, transaction platform 220 may not be cloud-based (i.e., may be implemented outside of a cloud computing environment) or may be partially cloud-based.
Cloud computing environment 222 includes an environment that hosts transaction platform 220. Cloud computing environment 222 may provide computation, software, data access, storage, etc. services that do not require end-user knowledge of a physical location and configuration of system(s) and/or device(s) that hosts transaction platform 220. As shown, cloud computing environment 222 may include a group of computing resources 224 (referred to collectively as “computing resources 224” and individually as “computing resource 224”).
Computing resource 224 includes one or more personal computers, workstation computers, server devices, or other types of computation and/or communication devices. In some implementations, computing resource 224 may host transaction platform 220. The cloud resources may include compute instances executing in computing resource 224, storage devices provided in computing resource 224, data transfer devices provided by computing resource 224, etc. In some implementations, computing resource 224 may communicate with other computing resources 224 via wired connections, wireless connections, or a combination of wired and wireless connections.
As further shown in
Application 224-1 includes one or more software applications that may be provided to or accessed by client device 210. Application 224-1 may eliminate a need to install and execute the software applications on client device 210. For example, application 224-1 may include software associated with transaction platform 220 and/or any other software capable of being provided via cloud computing environment 222. In some implementations, one application 224-1 may send/receive information to/from one or more other applications 224-1, via virtual machine 224-2.
Virtual machine 224-2 includes a software implementation of a machine (e.g., a computer) that executes programs like a physical machine. Virtual machine 224-2 may be either a system virtual machine or a process virtual machine, depending upon use and degree of correspondence to any real machine by virtual machine 224-2. A system virtual machine may provide a complete system platform that supports execution of a complete operating system (“OS”). A process virtual machine may execute a single program, and may support a single process. In some implementations, virtual machine 224-2 may execute on behalf of a user (e.g., an operator of transaction platform 220), and may manage infrastructure of cloud computing environment 222, such as data management, synchronization, or long-duration data transfers.
Virtualized storage 224-3 includes one or more storage systems and/or one or more devices that use virtualization techniques within the storage systems or devices of computing resource 224. In some implementations, within the context of a storage system, types of virtualizations may include block virtualization and file virtualization. Block virtualization may refer to abstraction (or separation) of logical storage from physical storage so that the storage system may be accessed without regard to physical storage or heterogeneous structure. The separation may permit administrators of the storage system flexibility in how the administrators manage storage for end users. File virtualization may eliminate dependencies between data accessed at a file level and a location where files are physically stored. This may enable optimization of storage use, server consolidation, and/or performance of non-disruptive file migrations.
Hypervisor 224-4 may provide hardware virtualization techniques that allow multiple operating systems (e.g., “guest operating systems”) to execute concurrently on a host computer, such as computing resource 224. Hypervisor 224-4 may present a virtual operating platform to the guest operating systems, and may manage the execution of the guest operating systems. Multiple instances of a variety of operating systems may share virtualized hardware resources.
Network 230 includes one or more wired and/or wireless networks. For example, network 230 may include a cellular network (e.g., a fifth generation (5G) network, a long-term evolution (LTE) network, a third generation (3G) network, a code division multiple access (CDMA) network, etc.), a public land mobile network (PLMN), a local area network (LAN), a wide area network (WAN), a metropolitan area network (MAN), a telephone network (e.g., the Public Switched Telephone Network (PSTN)), a private network, an ad hoc network, an intranet, the Internet, a fiber optic-based network, and/or the like, and/or a combination of these or other types of networks.
The number and arrangement of devices and networks shown in
Bus 310 includes a component that permits communication among the components of device 300. Processor 320 is implemented in hardware, firmware, or a combination of hardware and software. Processor 320 is a central processing unit (CPU), a graphics processing unit (GPU), an accelerated processing unit (APU), a microprocessor, a microcontroller, a digital signal processor (DSP), a field-programmable gate array (FPGA), an application-specific integrated circuit (ASIC), or another type of processing component. In some implementations, processor 320 includes one or more processors capable of being programmed to perform a function. Memory 330 includes a random access memory (RAM), a read only memory (ROM), and/or another type of dynamic or static storage device (e.g., a flash memory, a magnetic memory, and/or an optical memory) that stores information and/or instructions for use by processor 320.
Storage component 340 stores information and/or software related to the operation and use of device 300. For example, storage component 340 may include a hard disk (e.g., a magnetic disk, an optical disk, a magneto-optic disk, and/or a solid state disk), a compact disc (CD), a digital versatile disc (DVD), a floppy disk, a cartridge, a magnetic tape, and/or another type of non-transitory computer-readable medium, along with a corresponding drive.
Input component 350 includes a component that permits device 300 to receive information, such as via user input (e.g., a touch screen display, a keyboard, a keypad, a mouse, a button, a switch, and/or a microphone). Additionally, or alternatively, input component 350 may include a sensor for sensing information (e.g., a global positioning system (GPS) component, an accelerometer, a gyroscope, and/or an actuator). Output component 360 includes a component that provides output information from device 300 (e.g., a display, a speaker, and/or one or more light-emitting diodes (LEDs)).
Communication interface 370 includes a transceiver-like component (e.g., a transceiver and/or a separate receiver and transmitter) that enables device 300 to communicate with other devices, such as via a wired connection, a wireless connection, or a combination of wired and wireless connections. Communication interface 370 may permit device 300 to receive information from another device and/or provide information to another device. For example, communication interface 370 may include an Ethernet interface, an optical interface, a coaxial interface, an infrared interface, a radio frequency (RF) interface, a universal serial bus (USB) interface, a Wi-Fi interface, a cellular network interface, or the like.
Device 300 may perform one or more processes described herein. Device 300 may perform these processes based on processor 320 executing software instructions stored by a non-transitory computer-readable medium, such as memory 330 and/or storage component 340. A computer-readable medium is defined herein as a non-transitory memory device. A memory device includes memory space within a single physical storage device or memory space spread across multiple physical storage devices.
Software instructions may be read into memory 330 and/or storage component 340 from another computer-readable medium or from another device via communication interface 370. When executed, software instructions stored in memory 330 and/or storage component 340 may cause processor 320 to perform one or more processes described herein. Additionally, or alternatively, hardwired circuitry may be used in place of or in combination with software instructions to perform one or more processes described herein. Thus, implementations described herein are not limited to any specific combination of hardware circuitry and software.
The number and arrangement of components shown in
As shown in
In some implementations, the prior transaction information may include information associated with prior transactions of other users, such as applications for loans (e.g., vehicle loans, mortgage loans, payday loans, appliance loans, home equity loans, student loans, personal loans, small business loans, and/or the like) by the other users, purchases of products, services, products and services, and/or the like by the other users, and/or the like. In some implementations, the prior transaction information may include account information associated with accounts of the other users or utilized by the other users for the prior transactions, such as bank accounts, credit card accounts, debit card accounts, and/or the like of the other users. In some implementations, the prior transaction information may include loyalty credits information associated with loyalty credits of the other users or utilized by the other users for the prior transactions. In some implementations, the prior transaction information may include stored-value card information associated with stored-value cards of the other users or utilized by the other users for the prior transactions.
In some implementations, transaction platform 220 may store the prior transaction information in a data structure, such as a database, a table, a linked-list, a tree, and/or the like. In some implementations, the data structure may be provided in a memory associated with transaction platform 220. Transaction platform 220 may store the prior transaction information so that transaction platform 220 may perform further processing on the prior transaction information. In some implementations, transaction platform 220 may provide security features so that prior transaction information is maintained in confidence. For example, transaction platform 220 may apply one or more types of encryption, tokenization, authentication, and/or other security techniques to protect the prior transaction information while the prior transaction information is stored (e.g., in a database) and/or when the prior transaction information is transmitted (e.g., over a network).
As further shown in
In some implementations, transaction platform 220 may train the model by using a machine learning algorithm or a similar technique. In some implementations, transaction platform 220 may train the model using a training data set of prior transactions (e.g., account information, loyalty credits information, and/or stored-value card information) to determine patterns associated with the prior transactions. For example, transaction platform 220 may train the model using a supervised learning method (e.g., a gradient descent, a stochastic gradient descent, and/or the like). In some implementations, transaction platform 220 may train the model using a test data set that is independent of the training data set, but that follows a same probability distribution as the training data set. In some implementations, transaction platform 220 may train the model using a validation data set.
In some implementations, transaction platform 220 may utilize a collaborative filtering model. In some implementations, the collaborative filtering model may filter for information or patterns using techniques involving collaboration among multiple agents, viewpoints, data sources, and/or the like. For example, the collaborative filtering model may make automatic predictions (e.g., filtering) about interests of a user by collecting preferences or taste information from many users (e.g., collaborating). In this case, the collaborative filtering model may determine that if a first user has a preference that is the same as a preference of a second user with respect to a particular choice (e.g., to select a particular type of vehicle for purchase), then the first user is more likely to have a preference that is the same as a preference of a second user with respect to a different particular choice (e.g., to use a particular stored-value card to be applied to a down payment for a vehicle loan).
As further shown in
In some implementations, transaction platform 220 may utilize the trained model to generate recommendations for the transaction. In some implementations, transaction platform 220 may utilize the information included the request with the trained model in order to determine similarities between the prior transaction information and the request for the transaction, and to generate the recommendations based on the similarities. Transaction platform 220 may provide the recommendations to client device 210, and client device 210 may provide the recommendations for display to the user.
In some implementations, transaction platform 220 may utilize a collaborative filtering model with the prior transaction information to automatically predict interests of a user based on preferences of many users (e.g., the prior transaction information). In some implementations, transaction platform 220 may develop the collaborative filtering model using different data mining and machine learning techniques to predict a user's rating of unrated information. The collaborative filtering model may include, for example, a Bayesian network model, a clustering model, a latent semantic model such as singular value decomposition model, a probabilistic latent semantic analysis model, a multiple multiplicative factor model, latent Dirichlet allocation model, Markov decision process model, and/or the like.
As further shown in
In some implementations, the account information may include information associated with accounts to be utilized by the user for the transaction, such as bank accounts, credit card accounts, debit card accounts, and/or the like of the user. In some implementations, the stored-value card information may include information associated with stored-value cards to be utilized by the user for the transaction. In some implementations, the loyalty information may include information associated with loyalty credits to be utilized by the user for the transaction.
In some implementations, the user may cause client device 210 to provide the transaction information to transaction platform 220. In some implementations, the transaction information may be provided based on one or more of the recommendations or none of the recommendations. Transaction platform 220 may receive the transaction information.
In some implementations, rather than requesting the transaction information, transaction platform 220 may automatically select one or more accounts of the user, one or more loyalty credits of the user, and/or one or more stored-value cards of the user that will provide the most value for the user (e.g., that will ensure that the user receives the best terms for the new car loan). In some implementations, transaction platform 220 may determine a best mix of accounts, loyalty credits, and stored-value cards to provide a greatest credit score for the user. In some implementations, transaction platform 220 may determine a best mix of loyalty credits and stored-value cards, when combined with all accounts associated with the user, to provide a greatest credit score for the user.
As further shown in
In some implementations, transaction platform 220 may determine transaction terms for the user based on the validation of the transaction information (e.g., the account information associated with the user, the stored-value card information associated with the user, the loyalty information associated with the user, and/or the like). In some implementations, transaction platform 220 may calculate a credit score for the user based on the transaction information, and may determine the transaction terms based on the credit score for the user. In some implementations, transaction platform 220 may provide the transaction information to a device associated with an entity (e.g., a bank, a credit union, a vehicle financing company, and/or the like) that is financing the transaction, and the device may calculate the credit score for the user and determine the transaction terms based on the credit score. In some implementations, the transaction terms may include information indicating a quantity of cash needed for a down payment, a rate of interest for a loan, a term for a loan, and/or the like.
As further shown in
As further shown in
In some implementations, transaction platform 220 may provide a query, to client device 210, inquiring whether the user wishes to use stored-value cards towards the down payment. The user may cause client device 210 to provide stored-value card information to transaction platform 220, and transaction platform 220 may receive the stored-value card information. In some implementations, the stored-value card information may include information indicating a card number for a particular stored-value card.
In some implementations, transaction platform 220 may determine and validate a quantity of loyalty credits on the particular loyalty card, and may determine and validate a quantity of cash on the particular stored-value card. In some implementations, transaction platform 220 may provide information indicating the quantity of loyalty credits on the particular loyalty card and the quantity of cash on the particular stored-value card to client device 210. Client device 210 may enable the user to indicate how many loyalty credits on the particular loyalty card to apply to the down payment for the transaction, and an amount of the quantity of cash on the particular stored-value card to apply to the down payment. Client device 210 may provide, to transaction platform 220, information indicating how many loyalty credits on the particular loyalty card to apply to the down payment, and the amount of the quantity of cash on the particular stored-value card to apply to the down payment. Transaction platform 220 may receive the information indicating how many loyalty credits on the particular loyalty card to apply to the down payment, and the amount of the quantity of cash on the particular stored-value card to apply to the down payment.
As further shown in
In some implementations, transaction platform 220 may automatically complete the transaction for the user when the user accepts the terms of the transaction. For example, if the user purchased a product (e.g., a vehicle, an appliance, and/or the like), transaction platform 220 may automatically order the product from a merchant, may pay for the product, and may cause the product to be shipped to the user. In another example, if the user purchased a service (e.g., an education loan), transaction platform 220 may automatically make arrangements with the educational institution to pay tuition when the tuition is due (e.g., each semester), to pay for room and board, and/or the like.
Although
Some implementations described herein provide a transaction platform that utilizes machine learning to generate recommendations and better terms for a transaction based on loyalty credits and stored-value cards. For example, the transaction platform may train a model based on information that relates to bank accounts associated with users, information that relates to loyalty credits associated with the users, and information that relates to stored-value cards associated with the users. The transaction platform may utilize the trained model to generate recommendations associated with a transaction requested by a consumer, and may provide the recommendations to the consumer. The transaction platform may receive account information associated with a bank account of the consumer, loyalty credits information identifying loyalty credits associated with the consumer, and stored-value card information identifying a stored-value card associated with the consumer. The transaction platform may determine transaction terms for the transaction based on the account information, the loyalty credits information, and the stored-value card information, and may provide information identifying the transaction terms to the consumer.
The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the implementations to the precise form disclosed. Modifications and variations are possible in light of the above disclosure or may be acquired from practice of the implementations.
As used herein, the term component is intended to be broadly construed as hardware, firmware, or a combination of hardware and software.
Certain user interfaces have been described herein and/or shown in the figures. A user interface may include a graphical user interface, a non-graphical user interface, a text-based user interface, or the like. A user interface may provide information for display. In some implementations, a user may interact with the information, such as by providing input via an input component of a device that provides the user interface for display. In some implementations, a user interface may be configurable by a device and/or a user (e.g., a user may change the size of the user interface, information provided via the user interface, a position of information provided via the user interface, etc.). Additionally, or alternatively, a user interface may be pre-configured to a standard configuration, a specific configuration based on a type of device on which the user interface is displayed, and/or a set of configurations based on capabilities and/or specifications associated with a device on which the user interface is displayed.
It will be apparent that systems and/or methods, described herein, may be implemented in different forms of hardware, firmware, or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the implementations. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code—it being understood that software and hardware may be designed to implement the systems and/or methods based on the description herein.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of possible implementations. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of possible implementations includes each dependent claim in combination with every other claim in the claim set.
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items, and may be used interchangeably with “one or more.” Furthermore, as used herein, the term “set” is intended to include one or more items (e.g., related items, unrelated items, a combination of related and unrelated items, etc.), and may be used interchangeably with “one or more.” Where only one item is intended, the term “one” or similar language is used. Also, as used herein, the terms “has,” “have,” “having,” or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.