V-shaped disc screen and method of classifying mixed recyclable materials into four streams

Information

  • Patent Grant
  • 6648145
  • Patent Number
    6,648,145
  • Date Filed
    Wednesday, August 28, 2002
    21 years ago
  • Date Issued
    Tuesday, November 18, 2003
    20 years ago
Abstract
A disc screen apparatus has a V-shaped configuration with a lowermost region that provides a laterally inclined trough that receives the mixed recyclable materials. Broken glass falls downwardly between the discs of the lowermost region. Plastic milk bottles and soda pop containers tumble down the trough and eventually fall off its lower end. Newspaper is conveyed upwardly over the terminal upper ends of a pair of vertically inclined regions of the disc screen apparatus. The frame of the disc screen apparatus can incorporate ducting for connecting a source of pressurized air to one or more air manifolds the blow air toward the vertically inclined regions for helping the discs in these regions convey newspaper up the inclined regions and over their terminal upper ends. The angle of inclination of the vertically inclined regions may be adjustable to optimize the efficiency of classification.
Description




FIELD OF THE INVENTION




The present invention relates to machines for processing mixed recyclable materials, and more particularly, to disc screen apparatus suited for separating paper from a stream of mixed recyclable materials.




BACKGROUND OF THE INVENTION




Material recycling has become an important industry in recent years due to decreasing landfill capacity, environmental concerns and dwindling natural resources. Many industries and communities have adopted voluntary and mandatory recycling programs for reusable materials. Solid waste and trash that is collected from homes, apartments or companies often combine several recyclable materials into one container. When brought to a processing center, the recyclable materials are frequently mixed together in a heterogenous mass of material. These mixed recyclable materials include newspaper, magazines, mixed paper, cardboard, aluminum cans, plastic bottles, glass bottles and other materials that may be recycled.




Disc apparatus or “disc screens” are increasingly used to separate streams of mixed recyclable materials into respective streams or collections of similar materials. This process is referred to as “classifying”, and the results are called “classification”. A disc screen typically includes a frame in which a plurality of rotatable shafts are mounted in parallel relationship. A plurality of discs are mounted on each shaft and a chain drive commonly rotates the shafts in the same direction. The discs on one shaft interleave with the discs on each adjacent shaft to form screen openings between the peripheral edges of the discs. The size of the openings determines the dimension (and thus the type) of material that will fall through the screen. Rotation of the discs, which have an irregular outer contour, agitates the mixed recyclable materials to enhance classification. The rotating discs propel the larger articles which are too big to fall between the discs across the screen. The general flow direction extends from an input area where the stream of material pours onto the disc screen to an output where the larger articles pour off of the disc screen. The smaller articles fall between the discs onto another disc screen or a conveyor, or into a collection bin.




There is a substantial market for recycled newspaper. Therefore, it is important that any disc screen which is designed to classify mixed recyclable materials be capable of thoroughly separating newspaper from the heterogenous mass of material. Prior disc screen apparatus designed to handle a stream of mixed recyclable materials have included multiple overlapping disc screens with different angles of inclination and different sizes of openings between the discs. They are capable of separating broken glass from containers. They are also capable of separating mixed paper and newspaper from the stream of mixed recyclable materials. These apparatus can be tilted at various angles to improve the efficiency of separation. However, a consistent problem that has been encountered with disc screen apparatus that is used to classify mixed recyclable materials is the fact that newspaper sometimes rolls into a clump or mass midway up the final disc screen and will not be ejected off of the upper terminal end thereof If the angle of inclination of the final disc screen is reduced, then containers and bottles will be undesirably conveyed up the final disc screen and off of its discharge end. This problem is exacerbated where the newspaper is wet or damp.




Most disc screen apparatus that have been developed for classifying mixed recyclable materials have used a flat, generally planar disc screen. The stream of mixed recyclable material is conventionally deposited toward the lower end of the screen along a conveying direction which is generally perpendicular to that of the shafts. The screen is typically inclined and much of the material swirls at the location of deposit. Paper tries to move upwardly as containers try to roll rearwardly and this conflict in flow directions inherently limits the throughput of the screening apparatus. The efficiency of the classification process is also significantly impeded by this conflict in flow directions. Furthermore, it has sometimes been necessary to install multiple blowers along the relatively wide lower end of the disc screen in order to prevent paper from falling off the same.




SUMMARY OF THE INVENTION




In accordance with the present invention a disc screen apparatus has a V-shaped configuration with a lowermost region that provides a laterally inclined trough that receives the mixed recyclable materials. Broken glass falls downwardly between the discs of the lowermost region. Large articles, such as plastic milk bottles and soda pop containers, tumble down the trough and eventually fall off its lower end. Newspaper is conveyed upwardly over the terminal upper ends of a pair of vertically inclined regions of the disc screen apparatus. In the preferred embodiment, the frame of the disc screen apparatus incorporates ducting for connecting a source of pressurized air to one or more air manifolds that blow air toward the vertically inclined regions of the disc screen apparatus for helping the discs in these regions convey newspaper up the inclined regions and over their upper ends. The angle of inclination of the vertically inclined regions is preferably adjustable with a lifting mechanism in order to optimize the efficiency of classification of the V-shaped disc screen apparatus.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a diagrammatic side elevation view of a first embodiment of the present invention.





FIG. 2

is a fragmentary top plan elevation view of the first embodiment embodiment.





FIGS. 3 and 4

illustrate a preferred structure for rotatably mounting and driving the shafts of the first embodiment that carry the discs that classify the mixed recyclable materials.





FIG. 5

is an elevation view of an infeed end of a second embodiment of the present invention.





FIG. 6

is a side elevation view of the second embodiment.





FIG. 7

is an elevation view of an outfeed end of the second embodiment.





FIG. 8

is a top plan view of the second embodiment





FIG. 9A

is a top plan view of a third embodiment of the present invention that incorporates air ducting in its frame that feeds a plurality of air manifolds.





FIG. 9B

is a longitudinal sectional view of the third embodiment taken along line


9


B—


9


B of FIG.


9


A.





FIG. 9C

is a cross-sectional view of the third embodiment taken along line


9


C—


9


C of FIG.


9


A.





FIG. 10

is a diagrammatic side elevation view of a V-shaped disc screen with articulating inclined sections representing a fourth embodiment of the present invention.











DESCRIPTION OF THE PREFERRED EMBODIMENTS




Referring to

FIG. 1

, a first embodiment of the present invention comprises a recycling apparatus


110


in the form of a trough-shaped disc screen


112


equipped with a pair of separate air manifolds


114


and


116


. Referring to

FIG. 2

, the recycling apparatus


110


includes a frame


118


that rotatably supports a plurality of laterally extending shafts


22


that spin about laterally extending axes such as


120


. The shafts


22


of the trough-shaped disc screen


112


are longitudinally spaced and are located at progressive heights to provide a generally V-shaped configuration as best seen in FIG.


1


. The shaft that rotates about the axis


120


(

FIG. 2

) and the additional shafts to the left of axis


120


are rotated by a motor


122


through a drive linkage


124


in a counter-clockwise direction in FIG.


1


. The shafts to the right of the axis


120


(

FIG. 2

) are rotated by another motor


126


(

FIG. 1

) via a drive linkage


128


to rotate the discs


30


on these shafts in a clockwise direction in FIG.


1


. The drive linkages


124


and


128


preferably each include a plurality of sprockets as described hereafter which are mounted to the ends of the shafts


22


and a plurality of separate chains (not illustrated) entrained about these sprockets. Sprockets (not illustrated) are also mounted on separate gear reduction assemblies (not illustrated) driven by each of the motors


122


and


126


. The shafts


22


could be driven directly or indirectly with gears, belts, chain drives, transmissions, electric motors, hydraulic motors, internal combustion engines, and various combinations of these drive means.




A stream of mixed recyclable materials is carried by a conveyor


130


(

FIG. 1

) and deposited onto a lowermost region


131


of the trough-shaped disc screen


112


. While the discs


30


are referred to as “discs” they preferably have an irregular outer contour or shape so that when all of the shafts


22


of the recycling apparatus


110


are rotated, mixed recyclable materials deposited thereon will be agitated and moved along in various conveying directions. In accordance with well know techniques, the spacing of the discs


30


and the resulting dimensions of the openings therebetween determines the size of the materials that will fall downwardly between the discs


30


.




The shafts of the lowermost region


131


are preferably slightly downwardly angled from the horizontal, at an angle, for example, of about five degrees. The spacing of the discs


30


along the various shafts of the trough-shaped disc screen


112


and the angle of vertical inclination of the two vertically inclined regions


112




a


and


112




b


of the disc screen


112


, along with the rotational speed of these discs, is selected to optimumly classify the stream of mixed recyclable materials infed from the conveyor


130


.




Optimum classification by the recycling apparatus


110


is enhanced by the air manifolds


114


and


116


which are connected to squirrel cage blowers


132


and


134


(FIG.


2


). The manifolds


114


and


116


may be formed of segments of plastic or metal pipe with holes bored therein at intervals to form nozzles that eject streams of air toward the discs


30


to press newspaper against the discs and aid in the discs


30


conveying the same upwardly. Preferably the streams of air are inclined to help advance the newspaper upwardly. Each of the air manifolds


114


and


116


includes a plurality of laterally extending and longitudinally spaced conduits each having a plurality of laterally spaced nozzles. The conduits are coupled to a longitudinally extending header, the headers being connected to respective ones of the blowers


132


and


134


. These conduits are positioned sufficiently close to the first and second vertically inclined regions


112




a


and


112




b


so that containers that are partially conveyed upwardly along the first and second vertically inclined regions


112




a


and


112




b


can tumble over the first and second air manifolds


114


and


116


. Other sources of pressurized air besides the squirrel cage blowers


132


and


134


may be utilized, such as fans, pumps, pressurized tanks, and so forth.




The lateral spacing between the discs


30


of the lowermost region


131


is less than the lateral spacing between the discs


30


of the vertically inclined regions


112




a


and


112




b


. Broken glass falls downwardly between the discs


30


of the lowermost region


131


of the trough-shaped disc screen


112


. Mixed recyclable materials fall through the discs


30


located along the intermediate portions of the vertically inclined regions


112




a


and


112




b


. Newspaper is conveyed upwardly over the output ends at the upper terminal ends of the vertically inclined regions


112




a


and


112




b


. Large articles such as plastic milk bottles and soda pop containers tumble down the vertically inclined regions


112




a


and


112




b


of the V-shaped disc screen


112


and eventually fall off of the side of the recycling apparatus


110


. Preferably the axes of the shafts


22


of the inclined region


112




a


all extend in a first common plane and the axes of the shafts of the inclined region


112




b


all extend in a second common plane.




Thus a stream of mixed recyclable materials is conveyed onto one side of the V-shaped disc screen


112


by the conveyor


130


at the end marked “INFEED” in FIG.


1


and large articles are conveyed out the other side of the V-shaped disc screen


112


at the side marked “CONTAINERS OUT” in FIG.


1


.




Persons skilled in the art of designing recycling apparatuses will be well familiar with the various mechanical details necessary to construct the recycling apparatus


110


as well as the individual discs


30


and the bearing assemblies that support the square shafts


22


. Such additional details may be found in my U.S. Pat. No. 6,318,560 granted Nov. 20, 2001, the entire disclosure of which is specifically incorporated herein by reference.





FIGS. 3 and 4

illustrate a preferred structure for rotatably mounting and driving the shafts


22


of the recycling apparatus


110


. Each shaft


22


is preferably a hollow steel beam having a square cross-section. The square shape of the shaft


22


facilitates cutting off of twine, rope, plastic wrap, etc. that becomes tightly wrapped around the shafts


22


during the classification process. This wound material may be manually cut off the shaft


22


with a box cutter or other sharp knife. The use of square shafts


22


as the supporting axles for the discs


30


also allows them to be clamped around the shafts, or slid over the same, to achieve a positive driving engagement between the shafts


22


and the discs


30


. Each of the discs


30


has a square aperture therethrough which receives its corresponding shaft


22


. A molded polyurethane plug


142


(

FIG. 3

) having a square outer shape is inserted into the end of the shaft


22


. Preferably the internal dimensions of the square interior of the shaft


22


and the outer dimensions of the plug


142


are selected to provide a tight fit. The plug


142


has a square shoulder


142




a


which limits the depth of its insertion into the shaft


22


. A steel stub shaft


144


has a hexagonal shaped inner end


144




a


that fits snugly within a hexagonal interior opening in the plug


142


. A cylindrical collar


146


(

FIG. 4

) fits over the outer portion of the hexagonal inner end


144




a


. A round outer end


144




b


of the stub shaft


144


is journaled in a pair of bearing assemblies


148


and


150


supported on a beam


152


and a U-shaped frame member


154


. A pair of sprockets


156


and


158


are keyed to the round outer end


144




b


of the stub shaft


144


and have respective drive chains (not illustrated) entrained about the same. The use of the polyurethane plug


142


avoids any necessity of welding or otherwise securing the stub shaft


144


, a collar or some other metal interface directly to the shaft


22


. The plug


142


also aligns the rotational axis of the cylindrical stub shaft


144


with the rotational axis of the square shaft


22


and provides some beneficial shock absorbing characteristics. Other plastic materials besides polyurethane will suffice if they have sufficient strength and durability, such as DELRIN® plastic. The plug should be made of a resilient deformable material to allow a squeeze fit into the interior of the shaft


22


.




Those skilled in the art of designing apparatus for classifying a stream of mixed recyclable materials will appreciate that the disc spacings, angles of inclination, and rotational speeds of the recycling apparatus


110


are selected to ensure that the rotating discs


30


will optimally classify and sort the input stream of mixed recyclable materials into three separate streams in order to achieve the highest percentage or degree of homogeneity of the portions.





FIGS. 5-8

illustrate a second embodiment of the present invention in the form of a V-shaped disc screen apparatus


170


including a V-shaped frame


172


made of welded hollow steel box beams. The apparatus


170


has a plurality of square shafts


174


whose ends are rotatably supported in the opposite sides of the frame


172


. The shafts


174


are parallel and spaced apart and carry discs


176




a


and


176




b


that are interleaved between adjacent shafts


174


. The shafts


174


and the discs


176




a


and


176




b


are divided into vertically inclined regions


180


and


182


on either side of a center line


178


of the frame


172


. The frame


172


is supported on a base


184


that can be inclined in its own configuration, or variably inclined by lifting means (not shown) such as a jack screw or hydraulic cylinder so that a lowermost region of the interleaved discs


176




a


that form a trough


186


is slightly inclined moving from left to right in FIG.


6


.




A stream of mixed recyclable materials is feed onto the trough


186


in a direction that is substantially parallel to the direction in which the shafts


174


extend. The stream of mixed recyclable materials is fed through an inlet opening


188


(

FIG. 5

) in one side wall of the frame


172


and onto the discs


176




a


of the trough


186


. The mixed recyclable materials are agitated by the irregularly shaped discs


176




a


and broken glass, along with any other small refuse, falls through the discs


176




a


of the trough


186


and through the base


184


into a catch bin (not illustrated) or onto a conveyor (not illustrated). Newspaper is conveyed upwardly by the irregularly shaped discs


176




b


in the vertically inclined regions


180


and


182


and up and over the upper terminal ends of these regions, which are defined by the discs


176




b


mounted on the highest shafts


174


. This newspaper falls onto separate conveyors (not illustrated). Large items such as bottles and containers migrate over the discs


176




a


of the trough


186


and fall off of the lower end thereof through an outlet opening


190


(

FIG. 7

) in the other side wall of the frame


172


. These containers and other large articles drop into another bin (not illustrated) or onto another conveyor (not illustrated).




As illustrated in

FIGS. 5 and 7

, the discs


176




a


of the trough


186


have a different exterior contour or shape than the discs


176




b


of the inclined regions


180


and


182


. The lateral spacing between the discs


176




b


of the inclined regions


180


and


182


is larger than the lateral spacing between the discs


176




a


of the trough


186


. Certain portions of the mixed recyclable materials such as mixed paper and cardboard and other debris falls between the spaces between the discs


176




b


of the inclined regions


180


and


182


for collection into other bins (not illustrated) or onto other conveyors (not illustrated). If desired, the V-shaped disc screen apparatus


170


can be equipped with air manifolds for pressing the newspaper against the discs


176




b


of the vertically inclined regions


180


and


182


. Also, a fan can be positioned to blow air through the outfeed opening


190


(

FIG. 7

) to prevent newspaper from falling through this opening. Only a single fan or blower need be utilized instead of the multiple fans and blowers required at the lower end of inclined flat disc screens that have a relatively wide lower end.




A major advantage of my V-shaped disc screening apparatus over conventional planar screens that have been used to classify mixed recyclable materials is that the former can achieve high rates of separation with substantially fewer discs. This means that the V-shaped disc screen apparatus can take up much less space than the typical arrangement of multiple, overlapping planar screens. Since the containers are already deposited at the trough of the V-shaped disc screen apparatus they do not roll downwardly in a manner that impedes upward movement of newspaper.





FIGS. 9A

,


9


B and


9


C illustrate a third embodiment of the present invention in the form of a disc screen apparatus


200


having a frame


201


made of hollow welded steel box beams. A blower


202


is coupled to a rear laterally extending box beam


204




a


so that pressurized air is conveyed through longitudinally extending box beams


204




b


and


204




c


that form opposite sides of the disc screen apparatus


200


. A plurality of longitudinally spaced air manifolds


206


extend laterally across a plurality of discs


208


for blowing air downwardly toward the discs


208


as indicated by the arrows in

FIGS. 9B and 9C

. This helps convey a paper portion of a stream of mixed recyclable materials upwardly (left to right in

FIGS. 9A and 9B

) along and on top of the discs


208


. The normal inclination of the disc screen apparatus


200


is not illustrated in FIG.


9


B. The opposite ends of the air manifolds


206


are coupled to respective ones of the box beams


204




b


and


204




c


for receiving pressurized air therefrom. The air manifolds


206


preferably have a construction similar to those already described in conjunction with the recycling apparatus


110


of

FIGS. 1 and 2

. Thus the disc screen apparatus


200


advantageously has ducting within the frame


201


for connecting the source of pressurized air in the form of the output duct of the blower


202


to the air manifolds


206


. In the preferred embodiment this ducting is provided in the form of hollow box beams


204




a


,


204




b


and


204




c


. The axes of the shafts


210


that carry the discs


208


extend in a common plane in the disc screen apparatus


200


, but it will be understood that the shafts could have other arrangements, such as the V-screen arrangement illustrated in

FIG. 1

, for example.





FIG. 10

illustrates a fourth embodiment of the present invention in the form of a disc screen apparatus


220


having a V-shaped configuration. It is similar to the V-shaped disc screen apparatus


170


of

FIGS. 5-8

, except that its inclined sections


222


and


224


are pivotally mounted to a base frame portion


226


via pivot assemblies


228


and


230


. In the fourth embodiment the pivot assemblies comprise selected ones of the shafts that support the discs. Lifting means in the form of hydraulic cylinders


232


and


234


are provided for independently varying the angle of inclination of the inclined sections


222


and


224


to adjust and optimize the separation of mixed recyclable materials. The lifting means


232


and


234


can be any other conventional lifting devices such as motorized jack screws, pneumatic lifters, and equivalent mechanical mechanisms used in heavy machinery to lift and move large frame members. The articulating V-shaped disc screen apparatus


220


also incorporates internal air ducting


236


and


238


, which feed air manifolds


240


, similar to those of the disc screen apparatus


200


illustrated in

FIGS. 9A

,


9


B and


9


C.




While I have described several embodiments of a recycling apparatus in accordance with the present invention, variations and modifications thereof will occur to those skilled in the art. Therefore, the protection afforded my invention should only be limited in accordance with the following claims.



Claims
  • 1. A recycling apparatus, comprising:a frame having a pair of sides spaced apart in a lateral direction and extending in a longitudinal direction; a plurality of shafts rotatably mounted in the frame, the shafts being spaced apart along the longitudinal direction at progressively greater heights and extending in the lateral direction; drive means for rotating the shafts; a plurality of discs mounted on the shafts, the discs being dimensioned, configured and spaced apart in the lateral direction for classifying a stream of mixed recyclable materials deposited onto the discs as the discs are rotated by the drive means to convey a portion of the stream along an inclined conveying direction; a source of pressurized air; an air manifold extending laterally across the plurality of discs for blowing air to help covey the portion of the stream upwardly off of the discs by rotation of the discs; and ducting within frame for connecting the source of pressurized air and the air manifold, the ducting extending through at least one side of the frame.
  • 2. The recycling apparatus of claim 1 wherein the ducting is comprised of hollow box beams forming at least a portion of the frame.
  • 3. The recycling apparatus of claim 1 wherein the source of pressurized air comprises a blower operatively coupled to the ducting within the frame.
  • 4. The recycling apparatus of claim 1 wherein the air manifold is mounted above the discs for blowing air downward toward the discs for pushing the portion of the stream against the discs.
  • 5. The recycling apparatus of claim 1 wherein the axes of at least some of the shafts extend in a common plane.
  • 6. The recycling apparatus of claim 1 wherein the shafts are arranged in a generally V-shaped configuration.
  • 7. The recycling apparatus of claim 6 wherein the disc screen is also inclined along the lateral direction so that bottles and containers will travel laterally off of a lowermost region of the recycling apparatus.
  • 8. The recycling apparatus of claim 1 wherein the air manifold includes at least one conduit extending in the lateral direction and having a plurality of laterally spaced nozzles.
  • 9. The recycling apparatus of claim 8 wherein the conduit is formed of a segment of pipe with holes bored therein to form nozzles that eject streams of air toward the discs.
  • 10. The recycling apparatus of claim 1 wherein the air manifold includes a plurality of conduits spaced apart along the longitudinal direction and extending in the lateral direction, each of the conduits having a plurality of nozzles spaced along the lateral direction.
  • 11. A recycling apparatus for classifying a stream of mixed recyclable materials, comprising:a frame including a base and a pair of inclined sections hingedly mounted to the base to define a generally V-shaped configuration; a plurality of shafts rotatably mounted on the frame and spaced apart in a longitudinal direction at a plurality of different vertical heights to follow the generally V-shaped configuration; a plurality of discs mounted on each of the shafts, the discs being laterally spaced along corresponding shafts and interleaved with the discs of adjacent shafts and defining a centrally located lowermost region and first and second vertically inclined regions extending from opposite sides of the lowermost region, the discs being shaped, spaced and configured for classifying a stream of mixed recyclable materials deposited onto the lowermost region; means for rotating the shafts of a first portion of the lowermost region and the shafts of the first vertically inclined region adjacent thereto in a first direction; means for rotating the shafts of a second portion of the lowermost region and the shafts of the second vertically inclined region adjacent thereto in a second direction; the first and second vertically inclined regions being configured so that a portion of the stream of mixed recyclable materials deposited onto the lowermost region can be conveyed up the inclined regions and over a pair of terminal upper ends of the inclined regions; and lifting means for variably inclining the frame a selected amount so that another portion of the stream of mixed recyclable materials will be conveyed laterally off the lowermost region.
  • 12. The recycling apparatus of claim 11 and further comprising a first air manifold for directing air downwardly against the discs of the first vertically inclined region and a second air manifold for directing air downwardly against the discs of the second vertically inclined region.
  • 13. The recycling apparatus of claim 12 wherein the first and second air manifolds each include a plurality of laterally extending conduits each having a plurality of laterally spaced nozzles.
  • 14. The recycling apparatus of claim 12 and further comprising a blower coupled to the first and second air manifolds.
  • 15. The recycling apparatus of claim 14 wherein the blower and the air manifolds are coupled via ducting in the frame.
  • 16. The recycling apparatus of claim 12 wherein the first and second air manifolds are positioned sufficiently close to the first and second vertically inclined regions so that containers that are partially conveyed upwardly along the first and second vertically inclined regions can tumble over the first and second air manifolds.
  • 17. The recycling apparatus of claim 11 and further comprising a second lifting means for varying an angle of vertical inclination of the inclined regions of the frame.
  • 18. The recycling apparatus of claim 11 wherein the discs each have an irregular outer contour for agitating mixed recyclable materials.
  • 19. The recycling apparatus of claim 11 wherein the first lateral spacing between the discs of the lowermost region is less than the second lateral spacing between the discs of the first and second vertically inclined regions.
  • 20. A method of classifying mixed recyclable materials, comprising the steps of:providing a generally V-shaped disc screen with a lowermost region and a pair of vertically inclined regions, the lowermost region forming a trough inclined in a lateral direction; depositing an incoming stream of mixed recyclable materials onto the trough; passing a first portion of the mixed recyclable materials between a first plurality of discs in the trough to form a first stream of classified materials; conveying a second portion of the mixed recyclable materials up and over a second plurality of discs in the vertically inclined regions of the disc screen and off a pair of upper terminal ends of the vertically inclined regions to form second and third streams of classified materials; and conveying a third portion of the mixed recyclable materials along the lateral direction over the trough and off of a lower end of the trough to form a fourth stream of classified materials.
  • 21. A recycling apparatus for classifying a stream of mixed recyclable materials, comprising:a frame having a pair of opposite sides and including a base and a pair of inclined sections hingedly mounted to the base to define a generally V-shaped configuration; a plurality of shafts each having hollow ends; means for rotatably mounting the ends of each of the shafts to the sides of the frame so that the shafts extend in a longitudinally spaced apart, substantially parallel relation, at a plurality of different vertical heights to follow the generally V-shaped configuration, including a resilient deformable plug inserted into an end of a corresponding shaft, a stub shaft inserted into a hollow interior opening in the plug, and at least one bearing assembly supported by a corresponding side of the frame, the stub shaft having a portion journaled in the bearing assembly; means for rotating the shafts of a first portion of a lowermost region and the shafts of a first vertically inclined region adjacent thereto in a first direction; means for rotating the shafts of a second portion of the lowermost region and the shafts of a second vertically inclined region adjacent thereto in a second direction; the first and second vertically inclined regions being configured so that a portion of the stream of mixed recyclable materials deposited onto the lowermost region can be conveyed up the inclined regions and over a pair of terminal upper ends of the inclined regions; and lifting means for variably inclining the frame a selected amount so that another portion of the stream of mixed recyclable materials will be conveyed laterally off the lowermost region.
Priority Claims (1)
Number Date Country Kind
PCT/US02/18565 Jun 2002 WO
CROSS-REFERENCE TO RELATED APPLICATIONS AND PRIORITY CLAIMS

This application claims priority of pending PCT application Serial No. PCT/US02/18565 filed Jun. 13, 2002, and it is a continuation-in-part of co-pending U.S. application Ser. No. 09/882,667 filed Jun. 15, 2001 entitled “Disc Screen Apparatus with Air Manifold,” which issued as U.S. Pat. No. 6,460,706 B1 on Oct. 8, 2002, the entire disclosure of which is hereby incorporated by reference. Said PCT was filed in English and has not yet been published under PCT Article 21(2).

US Referenced Citations (47)
Number Name Date Kind
871743 Tice Nov 1907 A
1012046 Anderson Dec 1911 A
1683918 Riddell Sep 1928 A
1989988 Jones Feb 1935 A
2055630 McLean Sep 1936 A
2477006 Pierson Jul 1949 A
2692046 Clary et al. Oct 1954 A
2786574 Clark Mar 1957 A
2976550 Silver et al. Mar 1961 A
3306441 Sanders Feb 1967 A
3861516 Inose et al. Jan 1975 A
4037723 Wahl et al. Jul 1977 A
4102502 Vaplon et al. Jul 1978 A
4152402 Walters et al. May 1979 A
4301930 Smith Nov 1981 A
4311242 Hnatko Jan 1982 A
4376042 Brown Mar 1983 A
4377474 Lindberg Mar 1983 A
4421021 Holbrook Dec 1983 A
4452694 Christensen et al. Jun 1984 A
4538734 Gill Sep 1985 A
4563273 Gessler Jan 1986 A
4579652 Bielagus Apr 1986 A
4600106 Minardi Jul 1986 A
4653648 Bielagus Mar 1987 A
4658964 Williams Apr 1987 A
4658965 Smith Apr 1987 A
4703860 Gobel et al. Nov 1987 A
4741444 Bielagus May 1988 A
4755286 Bielagus Jul 1988 A
4781205 Shakley Nov 1988 A
4795036 Williams Jan 1989 A
4903845 Artiano Feb 1990 A
5032255 Jauncey Jul 1991 A
5078274 Brown Jan 1992 A
5116486 Pederson May 1992 A
5202133 Peach et al. Apr 1993 A
5234109 Pederson Aug 1993 A
5257699 Fricker et al. Nov 1993 A
5287977 Tirschler Feb 1994 A
5298119 Brown Mar 1994 A
5480034 Kobayashi Jan 1996 A
5503712 Brown Apr 1996 A
5836527 Irwin et al. Nov 1998 A
6250478 Davis Jun 2001 B1
6318560 Davis Nov 2001 B2
20010004059 Davis Jun 2001 A1
Foreign Referenced Citations (4)
Number Date Country
2054615 May 1992 CA
439002 Jan 1927 DE
173638 Mar 1986 EP
1270-195 Nov 1986 SU
Continuation in Parts (1)
Number Date Country
Parent 09/882667 Jun 2001 US
Child 10/232032 US