The present invention relates to a V-track support structure for a vehicle track. More specifically, the present invention relates to a modular support structure for use in connection with a vehicle track on an amusement ride.
Tracked vehicles are quite common in a wide variety of applications, from public transit vehicles, to factory floor robots to amusement park rides. Tracked vehicle systems can provide easily automated, safe and energy efficient solutions for moving people, livestock or goods over a variety of terrains and have relatively rapid installation times.
In all of these applications, a vehicle can ride on provided rail(s) which must be able to easily support the weight of the vehicle without undue flexing while being able to absorb the static and dynamic loads that can occur as the vehicle rolls over the rails. Accordingly, the rails can be laid directly on the ground, such as in the case of a traditional railroad track, or can be mounted to an underlying support structure that is designed to withstand the significant engineering challenges that are presented when a heavy vehicle rolls on rails.
In the case where rails are laid on an underlying support structure, it will be readily appreciated that it is preferable if the underlying support structure can be constructed of a series of modular components that can withstand the dynamic and static loads to which the system is exposed in the particular end user application.
Moreover, in the context of amusement ride applications, it will be readily appreciated that a support structure component that is relatively lightweight yet torsionally stiff and resistant to bending moments and fatigue will permit ride designers more options and flexibility in terms of the forces that can be applied to the passenger cart and the shape of track that can be safely constructed resulting in a more exciting and vibrant ride experience.
Presently available box and tube-shaped backbone structures can be prone to flexing, thereby introducing a relatively large degree of vertical eccentricity between the central axis of the backbone structure and the supported rails. This vertical eccentricity stresses both the rails and connecting components which can shorten the working life of the system and increase maintenance costs.
Finally, in all applications, it is desirable that the support structure component having the requisite physical properties can be manufactured in an economical manner using fewer components and requiring fewer welds than available prior art solutions, such as box and tube-shaped backbone structures.
Accordingly, there is need for a track structure that is modular, economical to manufacture, relatively lightweight, torsionally stiff, resistant to bending moments and fatigue and easy to install in a wide variety of applications.
The present invention provides a track structure component that can be modular, economical to manufacture, torsionally stiff, resistant to bending moments and fatigue and easy to install in a wide variety of applications.
In at least one embodiment, the present invention provides a track structure support component having a triangular girder, the triangular girder having a top plate longitudinally extending between a first end and a second end and having a longitudinally extending first edge, a longitudinally extending second edge, a longitudinally extending upper surface and a longitudinally extending lower surface, a first side plate longitudinally extending between a first end and a second end having a longitudinally extending first edge and a longitudinally extending second edge, and a second side plate longitudinally extending between a first end and a second end and having a longitudinally extending first edge and a longitudinally extending second edge wherein the lower surface of the top plate abuts the first edge of the first side plate and the first edge of the second side plate and the second side edge of the first side plate abuts the second side edge of the second side plate to form the triangular girder, and a rail component, the rail component having at least one rail longitudinally extending between a first end and a second end and positioned adjacent to the upper surface of the top plate.
The present invention will be better understood in connection with the following Figures, in which:
The present invention provides a track support structure component that can be modular, economical to manufacture, torsionally stiff, resistant to bending moments and fatigue and easy to install in a wide variety of applications.
It will be readily understood that all of the components discussed herein can be manufactured by any suitable process and of any suitable material that will be readily understood by the skilled person. It will be further understood that the present invention can be produced in any suitable dimensions as required by a particular end user application.
It will be readily understood that all components described herein can have any surface finish as required by the end-user application. Further, it will be readily appreciated that all components described herein can be finished with radial corners and edges, orthogonal corners and edges, singly or multiply beveled corners and edges, among any other arrangements required by the chosen manufacturing process and end user application, as will be readily understood by the skilled person. Analogously and as discussed below, all bores, cutouts and slots discussed herein can optionally be threaded or countersunk as required.
All components discussed herein can be formed of separate components suitably joined together by any suitable process (such as welding or mechanical fastening) or alternatively can be formed of a single, unitary component.
The present invention can provide a track support structure component that includes a triangular backbone structure in the form of a triangular girder having a top plate having an upper surface, a first side plate and a second side plate. A rail component having at least one rail is provided adjacent to the upper surface of the top plate for receiving a tracked vehicle.
In some embodiments it is contemplated that the triangular girder is composed of three separate longitudinal plate elements suitably joined together or alternatively can be formed of a single, unitary element that is manufactured by a suitable process (such as, but not limited to, extrusion or cold forming) to provide the requisite shape.
It is contemplated that in some embodiments, the present track structure component will be generally straight, while in other embodiments, the present track structure component will be generally curved, as required by the end user application. In this way, multiple track structure components can be linked together to form a track system of any shape, as will be discussed in further detail below. In some embodiments the track structure component will be used to support a tracked vehicle in an upright manner while in other embodiments the track structure component may be used to suspend a tracked vehicle in an upside down manner or sideways manner, among other arrangements that will be readily appreciated by the skilled person.
It is contemplated that the present track structure component can be delivered to the jobsite fully assembled or alternatively, it is contemplated that the constituent components can be delivered to the jobsite unassembled (or partially assembled) and assembled in situ.
It is contemplated that the at least one rail can have any suitable cross-sectional shape, including but not limited to, square, circular, elliptical, semi-circular, semi-elliptical, grooved, among any other type of known rail shape as required by the end user application and that will be readily appreciated by the skilled person.
In at least one embodiment it is contemplated that the at least one rail is two rails and these two rails can have a series of laterally extending cross ties, each cross tie adjoining the first rail to the second rail. In some embodiments it is contemplated that the cross tie is directly affixed to an upper surface of the top plate of the triangular girder while in other embodiments it is contemplated that an L-bracket is placed between the cross tie and the upper surface of the top plate of the triangular girder to affix the cross tie to the upper surface of the triangular girder, among other arrangements that will be readily understood by the skilled person.
It is contemplated that the present track structure component can be mounted to a supporting surface (such as, but not limited to, a pillar or a concrete foundation) by way of a mounting stool. In at least one embodiment the mounting stool can consist of a laterally oriented stool web having an angular upper edge that abuts the lower surface of the triangular girder. The stool web can have a lower edge that abuts a mounting flange. In at least one embodiment, the mounting flange is oriented perpendicularly to the stool web, however other arrangements are also contemplated depending on the needs of the end user application.
It is contemplated that in some embodiments the stool web can further include at least one support plate having a proximal surface that abuts an outer edge of the stool web. The support plate has an upper edge that can abut a lower surface of the triangular girder and a lower edge that abuts an upper surface of the mounting flange.
It is further contemplated that the mounting stool can have at least one stiffening rib that abuts an outer surface of the support plate and extends between the upper surface of the mounting flange and at least the lower surface of the triangular girder. In some embodiments, it is contemplated that the stiffening rib extends upwardly to a lower surface of a top plate that forms the upper surface of the triangular girder, as will be discussed in further detail below.
It is further contemplated that multiple track structure components as described herein can be linked together to form a continuously supported track structure. In some embodiments, it is contemplated that at least one girder splice plate is located on an outer surface of one end of the triangular girder. Further, in some embodiments it is contemplated that at least one rail splice plate is located at one end on the at least one rail.
In this way, it is contemplated that a first vehicle track structure component can be linked to a second track structure component by way of girder splice plates and rail splice plates, as will be discussed in greater detail below.
Turning to
As can be seen in
In at least one embodiment, the rail component has a first rail 20 connected to a second rail 22 by way of a cross tie 24, as seen in
As can be seen in
Turning to
Stool web 32 also has a lower edge that abuts a mounting flange 34. It is contemplated that in some embodiments, stool web 32 is oriented perpendicularly to mounting flange 34 while in other embodiments these two components can be oriented non-perpendicularly to one another as required by the instant needs of the end user application.
In some embodiments mounting flange 34 will have a series of holes or bores for receiving a mechanical fastener in order to secure the mounting stool to the underlying support structure, which could be a pillar or concrete slab, among any other arrangements that will be readily appreciated by the skilled person. Further, mounting flange 34 can have any suitable shape as required by the end user application, including but not limited to square, circular and rectangular.
Mounting stool 30 can further include at least one support plate 36. Support plate 36 has a proximal surface that abuts an outer edge of stool web 32, an upper edge which abuts a lower surface of the triangular girder (which in this embodiment, is the outer surfaces of first side plate 14 and second side plate 16) and a lower edge which abuts mounting flange 34.
In some embodiments, it is further contemplated that mounting stool 30 can further comprise a stiffening rib 38 that has a proximal edge that abuts a distal surface of support plate 36, a lower edge that abuts an upper surface of mounting flange 34 and an upper edge that abuts at least one of the lower surface of the triangular girder (which in this embodiment, is the outer surfaces of first side plate 14 and second side plate 16) and the lower surface of the top plate 12, as seen in
As can be seen in
It will therefore be readily understood that a first track structure component can be connected to a second track structure component by way of girder splice plate 52. Specifically, girder splice plate 52 can be mounted directly to one end of at least one of top plate 12, first side plate 14 or second side plate 16 of a first track structure component and to one end of at least one of top plate 12, first side plate 14 or second side plate 16 of a second track structure component to connect these two track structure components together.
Further, in some embodiments, rail 20, 22 can also have a rail splice plate 54 that is located at an end of rail 20, 22. It is further contemplated that rail splice plate 54 can have an outwardly projecting flange having a hole for receiving a mechanical fastener such as a bolt or a rivet. In this way a first rail splice of a first track structure component can abut and be connected to a second rail splice on a second track structure component to form one smoothly continuous rail.
In this way, multiple track structure components can be linked together to form a track system having a shape as required by the selected end-user application.
It is obvious that the foregoing embodiments of the invention are examples and can be varied in many ways. Such present or future variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.
This application is a continuation application of U.S. Provisional Patent Application No. 62/101,729 filed on Jan. 9, 2015. The forgoing application is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
218895 | Osborne | Aug 1879 | A |
354558 | Latimer | Dec 1886 | A |
5027713 | Kindmann | Jul 1991 | A |
5511488 | Powell | Apr 1996 | A |
5823114 | Cioletti | Oct 1998 | A |
6279484 | Shaw | Aug 2001 | B1 |
6782832 | Reichel | Aug 2004 | B2 |
6785945 | Reichel | Sep 2004 | B2 |
6796246 | Atzpodien | Sep 2004 | B1 |
7699006 | Miller | Apr 2010 | B2 |
7699007 | Miller | Apr 2010 | B2 |
8061494 | Rameau | Nov 2011 | B2 |
8066200 | Hepner | Nov 2011 | B2 |
8297017 | Platt | Oct 2012 | B2 |
8312678 | Haddock | Nov 2012 | B1 |
8342101 | Kissel | Jan 2013 | B2 |
9096235 | Kissel | Aug 2015 | B2 |
9096236 | Kissel, Jr. | Aug 2015 | B2 |
20030101896 | Cummins | Jun 2003 | A1 |
20030183117 | Morris | Oct 2003 | A1 |
20120137923 | Hepner | Jun 2012 | A1 |
Number | Date | Country |
---|---|---|
1495143 | Dec 1977 | GB |
2007062646 | Jun 2007 | WO |
Entry |
---|
International Search Report for PCT/CA2016/050011 dated Mar. 1, 2016. |
Written Opinion for PCT/CA2016/050011 dated Mar. 7, 2016. |
Number | Date | Country | |
---|---|---|---|
20160222593 A1 | Aug 2016 | US |
Number | Date | Country | |
---|---|---|---|
62101729 | Jan 2015 | US |