Vaccine composition

Information

  • Patent Application
  • 20040131625
  • Publication Number
    20040131625
  • Date Filed
    February 03, 2004
    21 years ago
  • Date Published
    July 08, 2004
    20 years ago
Abstract
The present invention relates to the field of Gram-negative bacterial vaccine compositions, their manufacture, and the use of such compositions in medicine. More particularly it relates to the field of useful Gram-negative bacterial outer membrane vesicle (or bleb) compositions comprising heterologously expressed Chlamydia antigens, and advantageous methods of rendering these compositions more effective and safer as a vaccine.
Description


FIELD OF THE INVENTION

[0002] The present invention relates to the field of Gram-negative bacterial vaccine compositions, their manufacture, and the use of such compositions in medicine. More particularly it relates to the field of useful Gram-negative bacterial outer membrane vesicle (or bleb) compositions comprising heterologously expressed Chlamydia antigens, and advantageous methods of rendering these compositions more effective and safer as a vaccine.



BACKGROUND OF THE INVENTION

[0003] Chlamydiae are obligate intracellular Gram negative bacteria which replicate only in cytoplasmic inclusions of eukaryotic cells. They have a unique developmental cycle which is represented by two major forms, the spore-like elementary body (EB) which is the infectious form transmitted from cell to cell, and the non infectious, metabolically active reticulate body (RB) which replicates within the host-cell.


[0004] Of the four known chlamydial species, Chlamydia trachomatis and C. pneumoniae are the important human pathogens. The recently defined species C. pneumoniae (Grayston 1989) is now recognized as a major cause of respiratory tract infections (Grayston 1993) and data are now growing for an association with atherosclerosis. The association is supported by seroepidemiological studies, studies demonstrating the presence of the bacterium in the atherosclerotic lesions, studies showing C. pneumoniae capability to replicate in the different cell types present in the atheroclerotic lesions, interventional trials with antibiotics in patients with coronary artery disease and experimental respiratory tract infection in rabbits or apolipoprotein-E deficient mice which leads to inflammatory changes in the aorta (Danesh 1997, Fong 1997, Laitinen 1997, Moazed 1997). Overall, those data implicate C. pneumoniae as a causative and/or aggravating factor of atherosclerosis.


[0005]

C. trachomatis
is a major human pathogen; transmitted from human to human (there is no known animal reservoir), it causes ocular and genital infections which can result in long term sequelae. Trachoma, a chlamydial ocular infection, is endemic in several developing countries and is the world's leading cause of preventable blindness with millions people affected by the disease. Genital chlamydial infections constitute the most common bacterial sexually transmitted disease (STD) worldwide. In 1996, WHO generated a new set of global estimates for four major STDs drawing an extensive review of the published and unpublished prevalence data (Gerbase 1998). It has been estimated that in 1995, 4 and 5.2 million new cases of C. trachomatis infection occured in individuals aged 15-49 for North America and Western Europe, respectively; worlwide, C. trachomatis totalized an estimate of 89.1 million new cases. Collectively, data show higher infection rates in women as compared to men (Washington 1987, Peeling 1995, Cates 1991); higher incidence is found in adolescent and young adults, approximately 70% of the chlamydial infections being reported in the 15-24 years of age group (Peeling 1995).


[0006] There is a clear need for effective vaccines against Chlamydia trachomatis and Chlamydia pneumoniae.


[0007] Outer Membrane Vesicles (blebs)


[0008] Gram-negative bacteria are separated from the external medium by two successive layers of membrane structures. These structures, referred to as the cytoplasmic membrane and the outer membrane (OM), differ both structurally and functionally. The outer membrane plays an important role in the interaction of pathogenic bacteria with their respective hosts. Consequently, the surface exposed bacterial molecules represent important targets for the host immune response, making outer-membrane components attractive candidates in providing vaccine, diagnostic and therapeutics reagents.


[0009] Whole cell bacterial vaccines (killed or attenuated) have the advantage of supplying multiple antigens in their natural micro-environment. Drawbacks around this approach are the side effects induced by bacterial components such as endotoxin and peptidoglycan fragments. On the other hand, acellular subunit vaccines containing purified components from the outer membrane may supply only limited protection and may not present the antigens properly to the immune system of the host.


[0010] Proteins, phospholipids and lipopolysaccharides are the three major constituents found in the outer-membrane of all Gram-negative bacteria. These molecules are distributed asymmetrically: membrane phospholipids (mostly in the inner leaflet), lipooligosaccharides (exclusively in the outer leaflet) and proteins (inner and outer leaflet lipoproteins, integral or polytopic membrane proteins). For many bacterial pathogens which impact on human health, lipopolysaccharide and outer-membrane proteins have been shown to be immunogenic and amenable to confer protection against the corresponding disease by way of immunization.


[0011] The OM of Gram-negative bacteria is dynamic and, depending on the environmental conditions, can undergo drastic morphological transformations. Among these manifestations, the formation of outer-membrane vesicles or “blebs” has been studied and documented in many Gram-negative bacteria (Zhou, L et al. 1998. FEMS Microbiol. Lett. 163: 223-228). Among these, a non-exhaustive list of bacterial pathogens reported to produce blebs include: Bordetella pertussis, Borrelia burgdorferi, Brucella melitensis, Brucella ovis, Chlamydia psittaci, Chlamydia trachomatis, Esherichia coli, Haemophilus influenzae, Legionella pneumophila, Neisseria gonorrhoeae, Neisseria meningitidis, Pseudomonas aeruginosa and Yersinia enterocolitica. Although the biochemical mechanism responsible for the production of OM blebs is not fully understood, these outer membrane vesicles have been extensively studied as they represent a powerful methodology in order to isolate outer-membrane protein preparations in their native conformation.


[0012] Examples of bacterial species from which bleb vaccines can be made have been reviewed in WO 01/09350 (incorporated by reference herein). For example, N. meningitidis serogroup B (menB) excretes outer membrane blebs in sufficient quantities to allow their manufacture on an industrial scale. Such multicomponent outer-membrane protein vaccines from naturally-occurring menB strains have been found to be efficacious in protecting teenagers from menB disease and have become registered in Latin America. An alternative method of preparing outer-membrane vesicles is via the process of detergent extraction of the bacterial cells (EP 11243).



SUMMARY OF THE INVENTION

[0013] The present inventors have found that Gram-negative bacterial blebs are an ideal context to present Chlamydia outer membrane proteins. In particular gonococcal blebs are useful in the case of presenting C. trachomatis OMPs and meningococcal blebs are useful in the case of presenting C. pneumoniae OMPs. This is because a) these outer-membrane proteins can integrate into such blebs in a native (or near-native) conformation thus retaining a useful immunological effect; b) blebs (particularly from Neisseria strains) can be produced in industrial quantities, c) blebs may be mucosally administered, and d) the combination of Chlamydia antigens with native bleb antigens can have important interactions for certain conditions such as salpingitis.


[0014] The present invention thus provides advantageous Gram-negative bacterial bleb preparations (derived from bleb-producing bacterial strains listed above, and preferably not derived from Chlamydia) presenting on its surface one or more recombinant (and preferably heterologous) protein antigens from Chlamydia trachomatis or Chlamydia pneumoniae. Advantagous vaccine formulations and methods of administration are also provided.



DESCRIPTION OF THE INVENTION

[0015] The present invention provides a Gram-negative bacterial bleb presenting on its surface one or more outer membrane protein from Chlamydia.


[0016] In the context of this application the term “presenting on its surface” indicates that the Chlamydia protein should be exposed to the outer surface of the bleb and tethered to the outer membrane (preferably by being integrated into the outer membrane). Most preferably it should take up its native fold within the heterologous bleb context.


[0017] An efficient strategy to modulate the composition of a Bleb preparation in this way is to deliver one or more copies of a DNA segment containing an expression cassette comprising a gene encoding said Chlamydia outer membrane protein into the genome of a Gram-negative bacterium.


[0018] A non exhaustive list of preferred bacterial species that could be used as a recipient for such a cassette includes: Bordetella pertussis, Borrelia burgdorferi, Brucella melitensis, Brucella ovis, Chlamydia psittaci, Chlamydia trachomatis, Esherichia coli, Haemophilus influenzae, Legionella pneumophila, Neisseria gonorrhoeae, Neisseria meningitidis, Pseudomonas aeruginosa and Yersinia enterocolitica. Neisseria meningitidis, Neisseiria gonorrhoeae, Moraxella catarrhalis, Haemophilus influenzae, Pseudomonas aeruginosa, Chlamydia trachomatis, Chlamydia pneumoniae are more preferred for this purpose, and Neisseria gonorrhoeae and Neisseria meningitidis are most preferred for making the blebs of this invention. Preferably the Chlamydia OMPs are expressed heterologously, and in such situations Chlamydia strains should not be used to make the blebs of the invention.


[0019] The gene(s) contained in the expression cassette may be homologous (or endogenous) (i.e. exist naturally in the genome of the manipulated bacterium) or, preferably, heterologous (i.e. do not exist naturally in the genome of the manipulated bacterium). The introduced expression cassette may consist of unmodified, “natural” promoter/gene/operon sequences or engineered expression cassettes in which the promoter region and/or the coding region or both have been altered. A non-exhaustive list of preferred promoters (preferably strong) that could be used for expression includes the promoters porA, porB, lbpB, tbpB, p110, lst, hpuAB from N. meningitidis or N. gonorroheae, the promoters p2, p5, p4, ompF, p1, ompH, p6, hin47 from H. influenzae, the promoters ompH, ompG, ompCD, ompE, ompB1, ompB2, ompA of M. catarrhalis, the promoter •pL, lac, tac, araB of Escherichia coli or promoters recognized specifically by bacteriophage RNA polymerase such as the E. coli bacteriophage T7.


[0020] In a preferred embodiment of the invention the expression cassette is delivered and integrated in the bacterial chromosome by means of homologous and/or site specific recombination (as discussed in WO 01/09350 incorporated by reference herein). Integrative vectors used to deliver such genes and/or operons can be conditionally replicative or suicide plasmids, bacteriophages, transposons or linear DNA fragments obtained by restriction hydrolysis or PCR amplification. Integration is preferably targeted to chromosomal regions dispensable for growth in vitro. A non exhaustive list of preferred loci that can be used to target DNA integration includes the porA, porB, opa, opc, rmp, omp26, lecA, cps, lgtB genes of Neisseiria meningitidis and Neisseria gonorrhoeae, the P1, P5, hmw1/2, IgA-protease, fimE genes of NTHi; the lecA1, lecA2, omp106, uspA1, uspA2 genes of Moraxella catarrhalis. Alternatively, the expression cassette used to modulate the expression of bleb component(s) can be delivered into a bacterium of choice by means of episomal vectors such as circular/linear replicative plasmids, cosmids, phasmids, lysogenic bacteriophages or bacterial artificial chromosomes. Selection of the recombination event can be selected by means of selectable genetic marker such as genes conferring resistance to antibiotics (for instance kanamycin, erythromycin, chloramphenicol, or gentamycin), genes conferring resistance to heavy metals and/or toxic compounds or genes complementing auxotrophic mutations (for instance pur, leu, met, aro). Blebs may be made from the resulting modified strain.


[0021] The expression of some heterologous proteins in bacterial blebs may require the addition of outer-membrane targeting signal(s). The preferred method to solve this problem is by creating a genetic fusion between a heterologous gene and a gene coding for a resident OMP as a specific approach to target recombinant proteins to blebs. Most preferably, the heterologous gene is fused to the signal peptides sequences of such an OMP.


[0022] A particularly preferred application of this invention is the introduction of Chlamydia (trachomatis or pneumoniae) protective antigens (preferably outer membrane proteins) into Gram-negative bacterial blebs (preferably not from Chlamydia strains). This has several advantages including the fact that such blebs (and vaccines comprising them) are extremely suitable for mucosal administration, which is beneficial as a mucosal (IgA) immune response against the Chlamydia antigens present in the bleb will be more protective against Chlamydia infections which manifest themselves in the mucosa. Recombinant bacteria capable of producing blebs of the invention, processes of making such bacteria, and processes of making bleb preparations are further aspects of this invention.


[0023]

Chlamydia trachomatis
Antigens Integrated into a Gram Negative Bacterial bleb


[0024] A particularly preferred embodiment is in the field of the prophylaxis or treatment of sexually-transmitted diseaseses (STDs). It is often difficult for practitioners to determine whether the principal cause of a STD is due to gonococcus or Chlamydia trachomatis infection. These two organisms are major causes of salpingitis—a disease which can lead to sterility in the host. It would be useful if a STD could be vaccinated against or treated with a combined vaccine effective against disease caused by both organisms. The Major Outer Membrane Protein (MOMP or OMP1 or OMPI) of C. trachomatis has been shown to be the target of protective antibodies. However, the structural integrity of this integral membrane protein is important for inducing such antibodies. In addition, the epitopes recognised by these antibodies are variable and define more than 10 serovars. The bleb context of the invention allows the proper folding of one or more MOMP or other Chlamydia membrane proteins for vaccine purposes. The engineering of (preferably) a gonococcal strain expressing one or more C. trachomatis MOMP serovars and/or one or more other protective Chlamydia OMPs in the outer membrane, and the production of blebs therefrom, produces a single solution to the multiple problems of correctly folded membrane proteins, the presentation of sufficient MOMP serovars and/or other Chlamydia OMPs to protect against a wide spectrum of serovars, and the simultaneous prophylaxis/treatment of gonococcal infection (and consequently the non-requirement of practitioners to initially decide which organism is causing particular clinical symptoms—both organisms can be vaccinated against simultaneously thus allowing the treatment of the STD at a very early stage). Preferred loci for gene insertion in the gonoccocal chromosome are give above. Other preferred, protective C. trachomatis genes that could be incorporated are HMWP, PmpG and those OMPs disclosed in WO 99/28475 (incorporated by reference herein).


[0025] A particularly preferrred embodiment of the invention provides a Gram-negative bacterial bleb (preferably gonococcal) presenting on its surface the PorB outer membrane protein (see below) from Chlamydia trachomatis. A bacterial strain capable of producing such a bleb is a further aspect of the invention.
1PorB Chlamydia trachomatis serovar D (D/UW-3/Cx) DNA sequence [SEQ ID NO:1]ATGAGTAGCAAGCTAGTGAACTATCTCCGTTTGACTTTCCTATCTTTTTTAGGGATCGCATCTACTTCATTAGACGCTATGCCTGCGGGGAATCCGGCGTTTCCAGTCATCCCGGGGATTAATATTGAACAGAAAAATGCCTGTTCTTTCATTTATGTAATTCTTATGATGTACTATCCGCACTGTCCGGTAACCTGAAGCTCTGCTTCTGCGGAGATTATATCTTTTCGAAGAAGCTCAGGTAAAAGATGTCCCTGTCGTTACCTCTGTGACAACAGCTGGGGTTGGTCCTTCTCCTGATATTACTTCGACAACCAAAACGCGAAATTTCGATCTCGTGAACTGTAATCTCAATACAAACTGTGTAGCTGTAGCTTTTTCCCTTCCTATCGTTCGCTGAGCGCGATTCCTCTGTTTGATGTGAGTTTCGAAGTGAAAGTAGGAGGACTGAAACAATACTACCGCCTTCCCATGAATGCCTATCGAGACTTCACCTCGGAACCTCTCAATTCTGAATCAGAAGTTACGGACGGGATGATTGAAGTACGTCCAATTACGGATTTGTTTGGGATGTTAGCTTGAAAAAAGTCATATGGAAAGATGGCGTTTCCTTTGTAGGCGTCGGTCAGACTATCGCCATGCTTCTTGCCCTATTGACTACATCATTGCAAACAGTCAAGCTAATCCAGAAGTATTCATCGCTGATCGGATGGGAAACTGAACTTCAAGGAGTGGAGTGTCTGCGTAGGTCTTACTACCTATGTGAATGACTACGTTCTTCCTTCTTAGCGTTTTCTATAGGGAGTGTTTCTCGCCAAGCTCCGGACGACAGCTTCAAAAAATTAGAAGATCGCTTCACTAACTCAAATTTAAAGTTCGTAAAATTACCAGCTCTCATCGTGGAAACATCTGCATCGGAGCGACAAACTATGTCGCCGATAATTCTTCTACAACGTAGAAGGAAGATGGGGAAGCCAGCGCGCTGTGAACGTCTCCGGAGGATTCCAATTCTAATranslated amino acid sequence [SEQ ID NO:2]           MSSKLVNYLR LTFLSFLGIA STSLDAMPAG NPAFPVIPGINIEQKNACSF DLCNSYDVLS ALSGNLKLCF CGDYIFSEEA QVKDVPVVTSVTTAGVGPSP DITSTTKTRN FDLVNCNLNT NCVAVAFSLP DRSLSAIPLFDVSFEVKVGG LKQYYRLPMN AYRDFTSEPL NSESEVTDGM IEVQSNYGFVWDVSLKKVIW KDGVSFVGVG ADYRHASCPI DYIIANSQAN PEVFIADSDGKLNFKEWSVC VGLTTYVNDY VLPYLAFSIG SVSRQAPDDS FKKLEDRFTNLKFKVRKITS SHRGNICIGA TNYVADNFFY NVEGRWGSQR AVNVSGGFQF


[0026] The presence of PorB in the blebs means that the antigen can be mucosally administered more easily, and provides more effective protection than if administered alone.


[0027] The present invention additionally provides a Gram-negative bacterial bleb (preferably gonococcal) presenting on its surface one or more of the following proteins from Chlamydia trachomatis, or C. trachomatis PorB in combination with one or more of the following proteins. It will be clear to a skilled person that instead of the sequences below (and the PorB sequence above), the natural analogue of the sequences from other C. trachomatis serovars or serotypes could be used, as could genes encoding functional analogues of the proteins comprising insertions, deletions or substitutions from the recited sequences which unaffect the immunological properties of the encoded protein. Preferably a sequence from a serovar D strain should be selected. A bacterial strain capable of producing such a bleb is a further aspect of the invention.
2>gi|6578118|gb|AAC68456.2| predicted Protease containing IRBP and DHR domains[Chlamydia trachomatis][SEQ ID NO:3]MKMNRIWLLLLTFSSAIHSPVQGESLVCKNALQDLSFLEHLLQVKYAPKTWKEQYLGWDLVQSSVSAQQKLRTQENPSTSFCQQVLADFIGGLNDFHAGVTFFAIESAYLPYTVQKSSDGRFYFVDIMTFSSEIRVGDELLEVDGAPVQDVLATLYGSNHKGTAAEESAALRTLFSRMASLGHKVPSGRTTLKIRRPFGTTREVRVKWRYVPEGVGDLATIAPSIRAPQLQKSMRSFFPKKDDAFHRSSSLFYSPMVPHFWAELRNHYATSGLKSGYNIGSTDGFLPVIGPVIWESEGLFRAYISSVTDGDGKSHKVGFLRIPTYSWQDMEDFDPSGPPPWEEFAKIIQVFSSNTEALIIDQTNNPGGSVLYLYALLSMLTDRPLELPKHRMILTQDEVVDALDWLTLLENVDTNVESRLALGDNMEGYTVDLQVAEYLKSFGRQVLNCWSKGDIELSTPIPLFGFEKIHPHPRVQYSKPICVLINEQDFSCADFFPVVLKDNDRALIVGTRTAGAGGFVFNVQFPNRTGIKTCSLTGSLAVREHGAFIENIGVEPHIDLPFTANDIRYKGYSEYLDKVKKLVCQLINNDGTIILAEDGSF>gi|3329331|gb|AE001359.1:101-1906[SEQ ID NO:4]ATGAAAATGAATAGGATTTGGCTATTACTGCTTACCTTTTCTTCTGCCATACATTCTCCTGTACAAGGAGAAAGCTTGGTTTGCAAGAATGCTCTTCAAGATTTGAGTTTTTTAGAGCATTTATTACAGGTTAAATATGCTCCTAAAACATGGAAAGAGCAATACTTAGGATGGGATCTTGTTCAAAGCTCCGTTTCTGCACAGCAGAAGCTTCGTACACAAGAAAATCCATCAACAAGTTTTTGCCAGCAGGTCCTTGCTGATTTTATCGGAGGATTAAATGACTTTCACGCTGGAGTAACTTTCTTTGCGATAGAAAGTGCTTACCTTCCTTATACCGTACAAAAAAGTAGTGACGGCCGTTTCTACTTTGTAGATATCATGACTTTTTCTTCAGAGATCCGTGTTGGAGATGAGTTGCTAGAGGTGGATGGGGCGCCTGTCCAAGATGTACTCGCTACTCTATATGGAAGCAATCACAAAGGGACTGCAGCTGAAGAGTCGGCTGCTTTAAGAACACTATTTTCTCGCATGGCCTCTTTAGGGCACAAAGTACCTTCTGGGCGCACTACTTTAAAGATTCGTCGTCCTTTTGGTACTACGAGAGAAGTTCGTGTGAAATGGCGTTATGTTCCTGAAGGTGTAGGAGATTTGGCTACCATAGCTCCTTCTATCAGGGCTCCACAGTTACAGAAATCGATGAGAAGCTTTTTCCCTAAGAAAGATGATGCGTTTCATCGGTCTAGTTCGCTATTCTACTCTCCAATGGTTCCGCATTTTTGGGCAGAGCTTCGCAATCATTATGCAACGAGTGGTTTGAAAAGCGGGTACAATATTGGGAGTACCGATGGGTTTCTCCCTGTCATTGGGCCTGTTATATGGGAGTCGGAGGGTCTTTTCCGCGCTTATATTTCTTCGGTGACTGATGGGGATGGTAAGAGCCATAAAGTAGGATTTCTAAGAATTCCTACATATAGTTGGCAGGACATGGAAGATTTTGATCCTTCAGGACCGCCTCCTTGGGAAGAATTTGCTAAGATTATTCAAGTATTTTCTTCTAATACAGAAGCTTTGATTATCGACCAAACGAACAACCCAGGTGGTAGTGTCCTTTATCTTTATGCACTGCTTTCCATGTTGACAGACCGTCCTTTAGAACTTCCTAAACATAGAATGATTCTGACTCAGGATGAAGTGGTTGATGCTTTAGATTGGTTAACCCTGTTGGAAAACGTAGACACAAACGTGGAGTCTCGCCTTGCTCTGGGAGACAACATGGAAGGATATACTGTGGATCTACAGGTTGCCGAGTATTTAAAAAGCTTTGGACGTCAAGTATTGAATTGTTGGAGTAAAGGGGATATCGAGTTATCAACGCCTATTCCTCTTTTTGGTTTTGAGAAGATTCATCCACATCCTCGAGTTCAATACTCTAAACCGATTTGTGTTTTGATCAATGAGCAAGACTTTTCTTGTGCTGACTTCTTCCCTGTAGTTTTGAAAGACAATGATCGAGCTCTTATTGTTGGTACTCGAACAGCTGGAGCTGGAGGATTTGTCTTTAATGTGCAGTTCCCAAATAGAACTGGAATAAAAACTTGTTCTTTAACAGGATCATTAGCTGTTAGAGAGCATGGTGCCTTCATTGAGAACATCGGAGTCGAACCGCATATCGATCTGCCTTTTACAGCGAATGATATTCGCTATAAAGGCTATTCCGAGTATCTTGATAAGGTCAAAAAATTGGTTTGTCAGCTGATCAATAACGACGGTACCATTATTCTTGCGGAAGATGGTAGTTTTTAA>gi|6578109|gb|AAC68227.2| CHLPN 76kDa Homolog [Chlamydia trachomatis][SEQ ID NO:5]MKKYFYKGFVGALLLACGSTNLAFAQASSMDSQLWSVEDLDSYLSSKGFVETRKRDGVLRLAGDVRARWIYAKEDLETTQTPAKPMLPTNRYRSEFNLYVDYTAANSWMTSKMNWVTIAGGESSAAGLDINRAFLGYRFYKNPETQAEVFAEIGRSGLGDIFDSDVQFNSNFDGIHLYAARRISEKLPFTMIVHGGPFVVNMAEKEYAWVVEAILNKLPGNFVVKTSVVDWNTLTAKTNDPADASAAQPAKPNTKYDYLVWQWLVGKSTAMPWFNGQTKNLYTYGAYLFNPLAEIPENWKQSTTPTTKITNGKENHAWFIGCSLGGVRRAGDWSATVRYEYVEALAIPEIDVAGIGRGNQMKYWFAQAIKQGLDPKESNGFTNYKGVSYQFVMGLTDSVSFRAYAAYSKPANDNLGSDFTYRKYDLGLISSF>gi|3329068|gb|AE001333.1:c3495-2197[SEQ ID NO:6]ATGAAAAAATACTTTTATAAAGGGTTTGTAGGCGCGCTTTTATTAGCTTGTGGGTCTACAAACTTGGCTTTTGCGCAGGCTAGTTCGATGGATAGCCAGCTATGGTCTGTTGAAGATTTAGATTCTTATTTGAGTTCCAAAGGTTTTGTCGAGACTCGTAAGCGCGATGGAGTTCTACGTTTAGCTGGAGATGTCCGCGCTCGATGGATTTATGCAAAAGAGGATCTTGAGACAACTCAGACTCCTGCTAAACCTATGTTACCTACCAATCGGTATCGTAGTGAATTCAATTTGTATGTGGATTACACCGCTGCTAATAGTTGGATGACTTCGAAAATGAATTGGGTAACGATTGCTGGCGGAGAATCTTCTGCAGCAGGGTTAGATATTAATCGTGCCTTCTTAGGATACCGATTCTACAAAAACCCAGAAACGCAAGCAGAAGTATTTGCAGAGATTGGTCGCTCTGGATTGGGAGATATTTTTGATTCCGACGTTCAGTTTAATAGTAATTTCGACGGAATTCATTTATACGCTGCGCGACGTATTAGTGAGAAACTTCCTTTCACCATGATTGTTCATGGTGGTCCTTTTGTCGTGAATATGGCAGAGAAAGAGTATGCTTGGGTCGTGGAAGCTATTTTGAATAAACTCCCAGGAAATTTCGTTGTGAAAACGAGTGTTGTTGACTGGAATACGTTAACAGCAAAAACGAATGATCCAGCAGACGCAAGCGCTGCACAACCAGCTAAACCTAATACCAAGTACGATTATTTAGTATGGCAATGGTTGGTTGGGAAGAGCACAGCTATGCCATGGTTTAATGGACAAACAAAAAATCTTTACACTTACGGAGCCTATCTCTTTAATCCATTAGCGGAAATACCAGAGAACTGGAAACAATCAACAACTCCTACAACCAAAATTACAAATGGTAAGGAAAACCATGCTTGGTTCATCGGCTGCTCTCTAGGCGGTGTTCGACGAGCTGGAGACTGGTCTGCAACAGTTCGTTATGAGTATGTTGAAGCTTTAGCGATTCCAGAAATTGATGTCGCGGGTATTGGTCGCGGAAACCAAATGAAATATTGGTTTGCTCAAGCTATCAAACAAGGATTGGATCCTAAAGAATCTAACGGCTTTACTAACTATAAAGGAGTTTCCTATCAGTTTGTTATGGGTCTGACAGATTCGGTTTCTTTCCGAGCTTATGCTGCTTATTCTAAGCCTGCTAACGATAACCTTGGTAGCGACTTCACCTATCGTAAGTATGACCTAGGTTTAATTTCTTCATTCTAA>gi|3329350|gb|AAC68472.1| Putative Outer Membrane Protein I [Chlamydiatrachomatis][SEQ ID NO:7]MRPDHMNFCCLCAAILSSTAVLFGQDPLGETALLTKNPNHVVCTFFEDCTMESLFPALCAHASQDDPLYVLGNSYCWFVSKLHITDPKEALFKEKGDLSIQNFRFLSFTDCSSKESSPSIIHQKNGQLSLRNNGSMSFCRNHAEGSGGAISADAFSLQHNYLFTAFEENSSKGNGGAIQAQTFSLSRNVSPISFARNRADLNGGAICCSNLICSGNVNPLFFTGNSATNGGAICCISDLNTSEKGSLSLACNQETLFASNSAKEKGGAIYAKHMVLRYNGPVSFINNSAKIGGAIAIQSGGSLSILAGEGSVLFQNNSQRTSDQGLVRNAIYLEKDAILSSLEARNGDILFFDPIVQESSSKESPLPSSLQASVTSPTPATASPLVIQTSANRSVIFSSERLSEEEKTPDNLTSQLQQPIELKSGRLVLKDRAVLSAPSLSQDPQALLIMEAGTSLKTSSDLKLATLSIPLHSLDTEKSVTIHAPNLSIQKIFLSNSGDENFYENVELLSKEQNNIPLLTLSKEQSHLHLPDGNLSSHFGYQGDWTFSWKDSDEGHSLIANWTPKNYVPHPERQSTLVANTLWNTYSDMQAVQSMINTIAHGGAYLFGTWGSAVSNLFYAHDSSGKPIDNWHHRSLGYLFGISTHSLDDHSFCLAAGQLLGKSSDSFITSTETTSYIATVQAQLATPLMKISAQACYNESIHELKTKYRSFSKEGFGSWHSVAVSGEVCASIPIVSNGSGLFSSFSIFSKLQGFSGTQDGFEESSGEIRSFSASSFRNISLPMGITFEKKSQKTRNYYYFLGAYIQDLKRDVESGPVVLLKNAVSWDAPMANLDSRAYMFRLTNQRALHRLQTLLNVSYVLRGQSHSYSLDLGTTYRF>gi|3329348|gb|AE001361.1:c3451-815[SEQ ID NO:8]ATGCGACCTGATCATATGAACTTCTGTTGTCTATGTGCTGCTATTTTGTCATCCACAGCGGTCCTCTTTGGCCAGGATCCCTTAGGTGAAACCGCCCTCCTCACTAAAAATCCTAATCATGTCGTCTGTACATTTTTTGAGGACTGTACCATGGAGAGCCTCTTTCCTGCTCTTTGTGCTCATGCATCACAAGATGATCCTTTGTATGTACTTGGAAATTCCTACTGTTGGTTCGTATCTAAACTCCATATCACGGACCCCAAAGAGGCTCTTTTTAAAGAAAAAGGAGATCTTTCCATTCAAAATTTTCGCTTCCTTTCCTTCACAGATTGCTCTTCCAAGGAAAGCTCTCCTTCTATTATTCATCAAAAGAATGGTCAGTTATCCTTGCGCAATAATGGTAGCATGAGTTTCTGTCGAAATCATGCTGAAGGCTCTGGAGGAGCCATCTCTGCGGATGCCTTTTCTCTACAACACAACTATCTTTTCACAGCTTTTGAAGAGAATTCTTCTAAAGGAAATGGCGGAGCCATTCAGGCTCAAACCTTCTCTTTATCTAGAAATGTGTCGCCTATTTCTTTCGCCCGTAATCGTGCGGATTTAAATGGCGGCGCTATTTGCTGTAGTAATCTTATTTGTTCAGGGAATGTAAACCCTCTCTTTTTCACTGGAAACTCCGCCACGAATGGAGGCGCTATTTGTTGTATCAGCGATCTAAACACCTCAGAAAAAGGCTCTCTCTCTCTTGCTTGTAACCAAGAAACGCTATTTGCAAGCAATTCTGCTAAAGAAAAAGGCGGGGCTATTTATGCCAAGCACATGGTATTGCGTTATAACGGTCCTGTTTCCTTCATTAACAACAGCGCTAAAATAGGTGGAGCTATCGCCATCCAGTCCGGAGGGAGTCTCTCTATCCTTGCAGGTGAAGGATCTGTTCTGTTCCAGAATAACTCCCAACGCACCTCCGACCAAGGTCTAGTAAGAAACGCCATCTACTTAGAGAAAGATGCGATTCTTTCTTCCTTAGAAGCTCGCAACGGAGATATTCTTTTCTTTGATCCTATTGTACAAGAAAGTAGCAGCAAAGAATCGCCTCTTCCCTCCTCTTTGCAAGCCAGCGTGACTTCTCCCACCCCAGCCACCGCATCTCCTTTAGTTATTCAGACAAGTGCAAACCGTTCAGTGATTTTCTCGAGCGAACGTCTTTCTGAAGAAGAAAAAACTCCTGATAACCTCACTTCCCAACTACAGCAGCCTATCGAACTGAAATCCGGACGCTTAGTTTTAAAAGATCGCGCTGTCCTTTCCGCGCCTTCTCTCTCTCAGGATCCTCAAGCTCTCCTCATTATGGAAGCGGGAACTTCTTTAAAAACTTCCTCTGATTTGAAGTTAGCTACGCTAAGTATTCCCCTTCATTCCTTAGATACTGAAAAAAGCGTAACTATCCACGCCCCTAACCTTTCTATCCAAAAGATCTTCCTCTCTAATTCTGGAGATGAGAATTTTTATGAAAATGTAGAGCTTCTCAGTAAAGAGCAAAACAATATTCCTCTCCTTACTCTCTCTAAAGAGCAATCTCATTTACATCTTCCTGATGGGAACCTCTCTTCTCACTTTGGATATCAAGGAGATTGGACTTTTTCTTGGAAAGATTCTGATGAAGGGCATTCTCTGATTGCTAATTGGACGCCTAAAAACTATGTGCCTCATCCAGAACGTCAATCTACACTCGTTGCGAACACTCTTTGGAACACCTATTCCGATATGCAAGCTGTGCAGTCGATGATTAATACAATAGCGCACGGAGGAGCCTATCTATTTGGAACGTGGGGATCTGCTGTTTCTAATTTATTCTATGCTCACGACAGCTCTGGGAAACCTATCGATAATTGGCATCATAGAAGCCTTGGCTACCTATTCGGTATCAGTACTCACAGTTTAGATGACCATTCTTTCTGCTTGGCTGCAGGACAATTACTCGGGAAATCGTCCGATTCCTTTATTACGTCTACAGAAACGACCTCCTATATAGCTACTGTACAAGCGCAACTCGCTACCCCTCTAATGAAAATCTCTGCACAGGCATGCTATAATGAAAGTATCCATGAGCTAAAAACAAAATATCGCTCCTTCTCTAAAGAAGGATTCGGATCCTGGCATAGCGTTGCAGTATCCGGAGAAGTGTGCGCATCGATTCCTATTGTATCCAATGGTTCCGGACTGTTCAGCTCCTTCTCTATTTTCTCTAAACTGCAAGGATTTTCAGGAACACAGGACGGTTTTGAGGAGAGTTCGGGAGAGATTCGGTCCTTTTCTGCCAGCTCTTTCAGAAATATTTCACTTCCTATGGGAATAACATTTGAAAAAAAATCCCAAAAAACACGAAACTACTATTACTTTCTGGGAGCCTACATCCAAGACCTAAAACGTGATGTGGAATCGGGACCTGTAGTGTTACTCAAAAATGCCGTCTCCTGGGATGCTCCTATGGCGAACTTGGATTCGCGAGCCTACATGTTCAGGCTTACGAATCAAAGAGCTCTGCATAGACTTCAGACGCTGTTAAATGTGTCTTACGTACTGCGCGGGCAAAGCCATAGTTACTCCCTGGATCTGGGGACCACTTACAGGTTCTAG>gi|3329346|gb|AAC68469.1| Putative Outer Membrane Protein G [Chlamydiatrachomatis][SEQ ID NO:9]MQTSFHKFFLSMILAYSCCSLSGGGYAAEIMIPQGIYDGETLTVSFPYTVIGDPSGTTVFSAGELTLKNLDNSIAALPLSCFGNLLGSFTVLGRGHSLTFENIRTSTNGAALSDSANSGLFTIEGFKELSFSNCNSLLAVLPAATTNNGSQTPTTTSTPSNGTIYSKTDLLLLNNEKFSFYSNLVSGDGGAIDAKSLTVQGISKLCVFQENTAQADGGACQVVTSFSAMANEAPIAFIANVAGVRGGGIAAVQDGQQGVSSSTSTEDPVVSFSRNTAVEFDGNVARVGGGIYSYGNVAFLNNGKTLFLNNVASPVYIAAEQPTNGQASNTSDNYGDGGAIFCKNGAQAAGSNNSGSVSFDGEGVVFFSSNVAAGKGGAIYAKKLSVANCGPVQFLGNIANDGGAIYLGESGELSLSADYGDIIFDGNLKRTAKENAADVNGVTVSSQAISMGSGGKITTLRAKAGHQILFNDPIEMANGNNQPAQSSEPLKINDGEGYTGDIVFANGNSTLYQNVTIEQGRIVLREKAKLSVNSLSQTGGSLYMEAGSTLDFVTPQPPQQPPAANQLITLSNLHLSLSSLLANNAVTNPPTNPPAQDSHPAIIGSTTAGSVTISGPIFFEDLDDTAYDRYDWLGSNQKIDVLKLQLGTQPSANAPSDLTLGNEMPKYGYQGSWKLAWDPNTANNGPYTLKATWTKTGYNPGPERVASLVPNSLWGSILDIRSAHSAIQASVDGRSYCRGLWVSGVSNFFYHDRDALGQGYRYISGGYSLGANSYFGSSMFGLAFTEVFGRSKDYVVCRSNHHACIGSVYLSTKQALCGSYLFGDAFIRASYGFGNQHMKTSYTFAEESDVRWDNNCLVGEIGVGLPIVITPSKLYLNELRPFVQAEFSYADHESFTEEGDQARAFRSGHLMNLSVPVGVKFDRCSSTHPNKYSFMGAYICDAYRTISGTQTTLLSHQETWTTDAFHLARHGVIVRGSMYASLTSNIEVYGHGRYEYRDTSRGYGLSAGSKVRF>gi|3329342|gb|AE001360.1:7736-10777[SEQ ID NO:10]ATGCAAACGTCTTTCCATAAGTTCTTTCTTTCAATGATTCTAGCTTATTCTTGCTGCTCTTTAAGTGGGGGGGGGTATGCAGCAGAAATCATGATTCCTCAAGGAATTTACGATGGGGAGACGTTAACTGTATCATTTCCCTATACTGTTATAGGAGATCCGAGTGGGACTACTGTTTTTTCTGCAGGAGAGTTAACGTTAAAAAATCTTGACAATTCTATTGCAGCTTTGCCTTTAAGTTGTTTTGGGAACTTATTAGGGAGTTTTACTGTTTTAGGGAGAGGACACTCGTTGACTTTCGAGAACATACGGACTTCTACAAATGGAGCTGCACTAAGTGACAGCGCTAATAGCGGGTTATTTACTATTGAGGGTTTTAAAGAATTATCTTTTTCCAATTGCAACTCATTACTTGCCGTACTGCCTGCTGCAACGACTAATAATGGTAGCCAGACTCCGACGACAACATCTACACCGTCTAATGGTACTATTTATTCTAAAACAGATCTTTTGTTACTCAATAATGAGAAGTTCTCATTCTATAGTAATTTAGTCTCTGGAGATGGGGGAGCTATAGATGCTAAGAGCTTAACGGTTCAAGGAATTAGCAAGCTTTGTGTCTTCCAAGAAAATACTGCTCAAGCTGATGGGGGAGCTTGTCAAGTAGTCACCAGTTTCTCTGCTATGGCTAACGAGGCTCCTATTGCCTTTATAGCGAATGTTGCAGGAGTAAGAGGGGGAGGGATTGCTGCTGTTCAGGATGGGCAGCAGGGAGTGTCATCATCTACTTCAACAGAAGATCCAGTAGTAAGTTTTTCCAGAAATACTGCGGTAGAGTTTGATGGGAACGTAGCCCGAGTAGGAGGAGGGATTTACTCCTACGGGAACGTTGCTTTCCTGAATAATGGAAAAACCTTGTTTCTCAACAATGTTGCTTCTCCTGTTTACATTGCTGCTGAGCAACCAACAAATGGACAGGCTTCTAATACGAGTGATAATTACGGAGATGGAGGAGCTATCTTCTGTAAGAATGGTGCGCAAGCAGCAGGATCCAATAACTCTGGATCAGTTTCCTTTGATGGAGAGGGAGTAGTTTTCTTTAGTAGCAATGTAGCTGCTGGGAAAGGGGGAGCTATTTATGCCAAAAAGCTCTCGGTTGCTAACTGTGGCCCTGTACAATTCTTAGGGAATATCGCTAATGATGGTGGAGCGATTTATTTAGGAGAATCTGGAGAGCTCAGTTTATCTGCTGATTATGGAGATATTATTTTCGATGGGAATCTTAAAAGAACAGCCAAAGAGAATGCTGCCGATGTTAATGGCGTAACTGTGTCCTCACAAGCCATTTCGATGGGATCGGGAGGGAAAATAACGACATTAAGAGCTAAAGCAGGGCATCAGATTCTCTTTAATGATCCCATCGAGATGGCAAACGGAAATAACCAGCCAGCGCAGTCTTCCGAACCTCTAAAAATTAACGATGGTGAAGGATACACAGGGGATATTGTTTTTGCTAATGGAAACAGTACTTTGTACCAAAATGTTACGATAGAGCAAGGAAGGATTGTTCTTCGTGAAAAGGCAAAATTATCAGTGAATTCTCTAAGTCAGACAGGTGGGAGTCTGTATATGGAAGCTGGGAGTACATTGGATTTTGTAACTCCACAACCACCACAACAGCCTCCTGCCGCTAATCAGTTGATCACGCTTTCCAATCTGCATTTGTCTCTTTCTTCTTTGTTAGCAAACAATGCAGTTACGAATCCTCCTACCAATCCTCCAGCGCAAGATTCTCATCCTGCAATCATTGGTAGCACAACTGCTGGTTCTGTTACAATTAGTGGGCCTATCTTTTTTGAGGATTTGGATGATACAGCTTATGATAGGTATGATTGGCTAGGTTCTAATCAAAAAATCGATGTCCTGAAATTACAGTTAGGGACTCAGCCCTCAGCTAATGCCCCATCAGATTTGACTCTAGGGAATGAGATGCCTAAGTATGGCTATCAAGGAAGCTGGAAGCTTGCGTGGGATCCTAATACAGCAAATAATGGTCCTTATACTCTGAAAGCTACATGGACTAAAACTGGGTATAATCCTGGGCCTGAGCGAGTAGCTTCTTTGGTTCCAAATAGTTTATGGGGATCCATTTTAGATATACGATCTGCGCATTCAGCAATTCAAGCAAGTGTGGATGGGCGCTCTTATTGTCGAGGATTATGGGTTTCTGGAGTTTCGAATTTCTTCTATCATGACCGCGATGCTTTAGGTCAGGGATATCGGTATATTAGTGGGGGTTATTCCTTAGGAGCAAACTCCTACTTTGGATCATCGATGTTTGGTCTAGCATTTACCGAAGTATTTGGTAGATCTAAAGATTATGTAGTGTGTCGTTCCAATCATCATGCTTGCATAGGATCCGTTTATCTATCTACCAAACAAGCTTTATGTGGATCCTATTTGTTCGGAGATGCGTTTATCCGTGCTAGCTACGGGTTTGGGAACCAGCATATGAAAACCTCATACACATTTGCAGAGGAGAGCGATGTTCGTTGGGATAATAACTGTCTGGTTGGAGAGATTGGAGTGGGATTACCGATTGTGATTACTCCATCTAAGCTCTATTTGAATGAGTTGCGTCCTTTCGTGCAAGCTGAGTTTTCTTATGCCGATCATGAATCTTTTACAGAGGAAGGCGATCAAGCTCGGGCATTCAGGAGTGGACATCTCATGAATCTATCAGTTCCTGTTGGAGTAAAATTTGATCGATGTTCTAGTACACACCCTAATAAATATAGCTTTATGGGGGCTTATATCTGTGATGCTTATCGCACCATCTCTGGGACTCAGACAACACTCCTATCCCATCAAGAGACATGGACAACAGATGCCTTTCATTTGGCAAGACATGGAGTCATAGTTAGAGGGTCTATGTATGCTTCTCTAACAAGCAATATAGAAGTATATGGCCATGGAAGATATGAGTATCGAGATACTTCTCGAGGTTATGGTTTGAGTGCAGGAAGTAAAGTCCGGTTCTAA>gi|3329345|gb|AAC68468.1| Putative Outer Membrane Protein F [Chlamydiatrachomatis][SEQ ID NO:11]MIKRTSLSFACLSFFYLSTISILQANETDTLQFRRFTFSDREIQFVLDPASLITAQNIVLSNLQSNGTGACTISGNTQTQIFSNSVNTTADSGGAFDMVTTSFTASDNANLLFCNNYCTHNKGGGAIRSGGPIRFLNNQDVLFYNNISAGAKYVGTGDHNEKNRGGALYATTITLTGNRTLAFINNMSGDCGGAISADTQISITDTVKGILFENNHTLNHIPYTQAENMARGGAICSRRDLCSISNNSGPIVFNYNQGGKGGAISATRCVIDNNKERIIFSNNSSLGWSQSSSASNGGAIQTTQGFTLRNNKGSIYFDSNTATHAGGAINCGYIDIRDNGPVYFLNNSAAWGAAFNLSKPRSATNYIHTGTGDIVFNNNVVFTLDGNLLGKRKLFHINNNEITPYTLSLGAKKDTRIYFYDLFQWERVKENTSNNPPSPTSRNTITVNPETEFSGAVVFSYNQMSSDIRTLMGKEHNYIKEAPTTLKFGTLAIEDDAELEIFNIPFTQNPTSLLALGSGATLTVGKHGKLNITNLGVILPIILKEGKSPPCIRVNPQDMTQNTGTGQTPSSTSSISTPMIIFNGRLSIVDENYESVYDSMDLSRGKAEQLILSIETTNDGQLDSNWQSSLNTSLLSPPHYGYQGLWTPNWITTTYTITLNNNSSAPTSATSIAEQKKTSETFTPSNTTTASIPNIKASAGSGSGSASNSGEVTITKHTLVVNWAPVGYIVDPIRRGDLIANSLVHSGRNMTMGLRSLLPDNSWFALQGAATTLFTKQQKRLSYHGYSSASKGYTVSSQASGAHGHKFLLSFSQSSDKMKEKETNNRLSSRYYLSALCFEHPMFDRIALIGAAACNYGTHNMRSFYGTKKSSKGKFHSTTLGASLRCELRDSMPLRSIMLTPFAQALFSRTEPASIRESGDLARLFTLEQAHTAVVSPIGIKGAYSSDTWPTLSWEMELAYQPTLYWKRPLLNTLLIQNNGSWVTTNTPLAKHSFYGRGSHSLKFSHLKLFANYQAEVATSTVSHYINAGGALVF>gi|3329342|gb|AE001360.1:c7571-4467[SEQ ID NO:12]ATGATTAAAAGAACTTCTCTATCCTTTGCTTGCCTCAGTTTTTTTTATCTTTCAACTATATCCATTTTGCAAGCTAATGAAACGGATACGCTACAGTTCCGGCGATTTACTTTTTCGGATAGAGAGATTCAGTTCGTCCTAGATCCCGCCTCTTTAATTACCGCCCAAAACATCGTTTTATCTAATTTACAGTCAAACGGAACCGGAGCCTGTACCATTTCAGGCAATACGCAAACTCAAATCTTTTCTAATTCCGTTAACACCACCGCAGATTCTGGTGGAGCCTTTGATATGGTTACTACCTCATTCACGGCCTCTGATAATGCTAATCTACTCTTCTGCAACAACTACTGCACACATAATAAAGGCGGAGGAGCTATTCGTTCCGGAGGACCTATTCGATTCTTAAATAATCAAGACGTGCTTTTTTATAATAACATATCGGCAGGGGCTAAATATGTTGGAACAGGAGATCACAACGAAAAAAATAGGGGCGGTGCGCTTTATGCAACTACTATCACTTTGACAGGGAATCGAACTCTTGCCTTTATTAACAATATGTCTGGAGACTGCGGTGGAGCCATCTCTGCTGACACTCAAATATCAATAACTGATACCGTTAAAGGAATTTTATTTGAAAACAATCACACGCTCAATCATATACCGTACACGCAAGCTGAAAATATGGCACGAGGAGGAGCAATCTGTAGTAGAAGAGACTTGTGCTCAATCAGCAATAATTCTGGTCCCATAGTTTTTAACTATAACCAAGGCGGGAAAGGTGGAGCTATTAGCGCTACCCGATGTGTTATTGACAATAACAAAGAAAGAATCATCTTTTCAAACAATAGTTCCCTGGGATGGAGCCAATCTTCTTCTGCAAGTAACGGAGGAGCCATTCAAACGACACAAGGATTTACTTTACGAAATAATAAAGGCTCTATCTACTTCGACAGCAACACTGCTACACACGCCGGGGGAGCCATTAACTGTGGTTACATTGACATCCGAGATAACGGACCCGTCTATTTTCTAAATAACTCTGCTGCCTGGGGAGCGGCCTTTAATTTATCGAAACCACGTTCAGCGACAAATTATATCCATACAGGGACAGGCGATATTGTTTTTAATAATAACGTTGTCTTTACTCTTGACGGTAATTTATTAGGGAAACGGAAACTTTTTCATATTAATAATAATGAGATAACACCATATACATTGTCTCTCGGCGCTAAAAAAGATACTCGTATCTATTTTTATGATCTTTTCCAATGGGAGCGTGTTAAAGAAAATACTAGCAATAACCCACCATCTCCTACCAGTAGAAACACCATTACCGTTAACCCGGAAACAGAGTTTTCTGGAGCTGTTGTGTTCTCCTACAATCAAATGTCTAGTGACATACGAACTCTGATGGGTAAAGAACACAATTACATTAAAGAAGCCCCAACTACTTTAAAATTCGGAACGCTAGCCATAGAAGATGATGCAGAATTAGAAATCTTCAATATCCCGTTTACCCAAAATCCGACTAGCCTTCTTGCTTTAGGAAGCGGCGCTACGCTGACTGTTGGAAAGCACGGTAAGCTCAATATTACAAATCTTGGTGTTATTTTACCCATTATTCTCAAAGAGGGGAAGAGTCCGCCTTGTATTCGCGTCAACCCACAAGATATGACCCAAAATACTGGTACCGGCCAAACTCCATCAAGCACAAGTAGTATAAGCACTCCAATGATTATCTTTAATGGGCGCCTCTCAATTGTAGACGAAAATTATGAATCAGTCTACGACAGTATGGACCTCTCCAGAGGGAAAGCAGAACAACTAATTCTATCCATAGAAACCACTAATGATGGGCAATTAGACTCCAATTGGCAAAGTTCTCTGAATACTTCTCTACTCTCTCCTCCACACTATGGCTATCAAGGTCTATGGACTCCTAATTGGATAACAACAACCTATACCATCACGCTTAATAATAATTCTTCAGCTCCAACATCTGCTACCTCCATCGCTGAGCAGAAAAAAACTAGTGAAACTTTTACTCCTAGTAACACAACTACAGCTAGTATCCCTAATATTAAAGCTTCCGCAGGATCAGGCTCTGGATCGGCTTCCAATTCAGGAGAAGTTACGATTACCAAACATACCCTTGTTGTAAACTGGGCACCAGTCGGCTACATAGTAGATCCTATTCGTAGAGGAGATCTGATAGCCAATAGCTTAGTACATTCAGGAAGAAACATGACCATGGGCTTACGATCATTACTCCCGGATAACTCTTGGTTTGCTTTGCAAGGAGCTGCAACAACATTATTTACAAAACAACAAAAACGTTTGAGTTATCATGGCTACTCTTCTGCATCAAAGGGGTATACCGTCTCTTCTCAAGCATCAGGAGCTCATGGTCATAAGTTTCTTCTTTCCTTCTCCCAGTCATCTGATAAGATGAAAGAAAAAGAAACAAATAACCGCCTTTCTTCTCGTTACTATCTTTCTGCTTTATGTTTCGAACATCCTATGTTTGATCGCATTGCTCTTATCGGAGCAGCAGCTTGCAATTATGGAACACATAACATGCGGAGTTTCTATGGAACTAAAAAATCTTCTAAAGGGAAATTTCACTCTACAACCTTAGGAGCTTCTCTTCGCTGTGAACTACGCGATAGTATGCCTTTACGATCAATAATGCTCACCCCATTTGCTCAGGCTTTATTCTCTCGAACAGAACCAGCTTCTATCCGAGAAAGCGGTGATCTAGCTAGATTATTTACATTAGAGCAAGCCCATACTGCCGTTGTCTCTCCAATAGGAATCAAAGGAGCTTATTCTTCTGATACATGGCCAACACTCTCTTGGGAAATGGAACTAGCTTACCAACCCACCCTCTACTGGAAACGTCCTCTACTCAACACACTATTAATCCAAAATAACGGTTCTTGGGTCACCACAAATACCCCATTAGCTAAACATTCCTTTTATGGGAGAGGTTCTCACTCCCTCAAATTTTCTCATCTGAAACTATTTGCTAACTATCAAGCAGAAGTGGCTACTTCCACTGTCTCACACTACATCAATGCAGGAGGAGCTCTGGTCTTTTAA>gi|3329344|gb|AAC68467.1| Putative Outer Membrane Protein E [Chlamydiatrachomatis][SEQ ID NO:13]MKKAFFFFLIGNSLSGLAREVPSRIFLMPNSVPDPTKESLSNKISLTGDTHNLTNCYLDNLRYILAILQKTPNEGAAVTITDYLSFFDTQKEGIYFAKNLTPESGGAIGYASPNSPTVEIRDTIGPVIFENNTCCRLFTWRNPYAADKIREGGAIHAQNLYINHNHDVVGFMKNFSYVQGGAISTANTFVVSENQSCFLFMDNICIQTNTAGKGGAIYAGTSNSFESNNCDLFFINNACCAGGAIFSPICSLTGNRGNIVFYNNRCFKNVETASSEASDGGAIKVTTRLDVTGNRGRIFFSDNITKNYGGAIYAPVVTLVDNGPTYFINNIANNKGGAIYIDGTSNSKISADRHAIIFNENIVTNVTNANGTSTSANPPRRNAITVASSSGEILLGAGSSQNLIFYDPIEVSNAGVSVSFNKEADQTGSVVFSGATVNSADFHQRNLQTKTPAPLTLSNGFLCIEDHAQLTVNRFTQTGGVVSLGNGAVLSCYKNGTGDSASNASITLKHIGLNLSSILKSGAEIPLLWVEPTNNSNNYTADTAATFSLSDVKLSLIDDYGNSPYESTDLTHALSSQPMLSISEASDNQLQSENIDFSGLNVPHYGWQGLWTWGWAKTQDPEPASSATITDPQKANRFHRTLLLTWLPAGYVPSPKHRSPLIANTLWGNMLLATESLKNSAELTPSGHPFWGITGGGLGMMVYQDPRENHPGFHMRSSGYSAGMIAGQTHTFSLKFSQTYTKLNERYAKNNVSSKNYSCQGEMLFSLQEGFLLTKLVGLYSYGDHNCHHFYTQGENLTSQGTFRSQTMGGAVFFDLPMKPFGSTHILTAPFLGALGIYSSLSHFTEVGAYPRSFSTKTPLINVLVPIGVKGSFMNATHRPQAWTVELAYQPVLYRQEPGIAAQLLASKGIWFGSGSPSSRHAMSYKISQQTQPLSWLTLHFQYHGFYSSSTFCNYLNGEIALRF>gi|3329342|gb|AE001360.1:c4464-1570[SEQ ID NO:14]ATGAAAAAAGCGTTTTTCTTTTTCCTTATCGGAAACTCCCTATCAGGACTAGCTAGAGAGGTTCCTTCTAGAATCTTTCTTATGCCCAACTCAGTTCCAGATCCTACGAAAGAGTCGCTATCAAATAAAATTAGTTTGACAGGAGACACTCACAATCTCACTAACTGCTATCTCGATAACCTACGCTACATACTGGCTATTCTACAAAAAACTCCCAATGAAGGAGCTGCTGTCACAATAACAGATTACCTAAGCTTTTTTGATACACAAAAAGAAGGTATTTATTTTGCAAAAAATCTCACCCCTGAAAGTGGTGGTGCGATTGGTTATGCGAGTCCCAATTCTCCTACCGTGGAGATTCGTGATACAATAGGTCCTGTAATCTTTGAAAATAATACTTGTTGCAGACTATTTACATGGAGAAATCCTTATGCTGCTGATAAAATAAGAGAAGGCGGAGCCATTCATGCTCAAAATCTTTACATAAATCATAATCATGATGTGGTCGGATTTATGAAGAACTTTTCTTATGTCCAAGGAGGAGCCATTAGTACCGCTAATACCTTTGTTGTGAGCGAGAATCAGTCTTGTTTTCTCTTTATGGACAACATCTGTATTCAAACTAATACAGCAGGAAAAGGTGGCGCTATCTATGCTGGAACGAGCAATTCTTTTGAGAGTAATAACTGCGATCTCTTCTTCATCAATAACGCCTGTTGTGCAGGAGGAGCGATCTTCTCCCCTATCTGTTCTCTAACAGGAAATCGTGGTAACATCGTTTTCTATAACAATCGCTGCTTTAAAAATGTAGAAACAGCTTCTTCAGAAGCTTCTGATGGAGGAGCAATTAAAGTAACTACTCGCCTAGATGTTACAGGCAATCGTGGTAGGATCTTTTTTAGTGACAATATCACAAAAAATTATGGCGGAGCTATTTACGCTCCTGTAGTTACCCTAGTGGATAATGGCCCTACCTACTTTATAAACAATATCGCCAATAATAAGGGGGGCGCTATCTATATAGACGGAACCAGTAACTCCAAAATTTCTGCCGACCGCCATGCTATTATTTTTAATGAAAATATTGTGACTAATGTAACTAATGCAAATGGTACCAGTACGTCAGCTAATCCTCCTAGAAGAAATGCAATAACAGTAGCAAGCTCCTCTGGTGAAATTCTATTAGGAGCAGGGAGTAGCCAAAATTTAATTTTTTATGATCCTATTGAAGTTAGCAATGCAGGGGTCTCTGTGTCCTTCAATAAGGAAGCTGATCAAACAGGCTCTGTAGTATTTTCAGGAGCTACTGTTAATTCTGCAGATTTTCATCAACGCAATTTACAAACAAAAACACCTGCACCCCTTACTCTCAGTAATGGTTTTCTATGTATCGAAGATCATGCTCAGCTTACAGTGAATCGATTCACACAAACTGGGGGTGTTGTTTCTCTTGGGAATGGAGCAGTTCTGAGTTGCTATAAAAATGGTACAGGAGATTCTGCTAGCAATGCCTCTATAACACTGAAGCATATTGGATTGAATCTTTCTTCCATTCTGAAAAGTGGTGCTGAGATTCCTTTATTGTGGGTAGAGCCTACAAATAACAGCAATAACTATACAGCAGATACTGCAGCTACCTTTTCATTAAGTGATGTAAAACTCTCACTCATTGATGACTACGGGAACTCTCCTTATGAATCCACAGATCTGACCCATGCTCTGTCATCACAGCCTATGCTATCTATTTCTGAAGCTAGCGATAACCAGCTACAATCAGAAAATATAGATTTTTCGGGACTAAATGTCCCTCATTATGGATGGCAAGGACTTTGGACTTGGGGCTGGGCAAAAACTCAAGATCCAGAACCAGCATCTTCAGCAACAATCACTGATCCACAAAAAGCCAATAGATTTCATAGAACCTTACTACTAACATGGCTTCCTGCCGGGTATGTTCCTAGCCCAAAACACAGAAGTCCCCTCATAGCTAACACCTTATGGGGGAATATGCTGCTTGCAACAGAAAGCTTAAAAAATAGTGCAGAGCTGACACCTAGTGGTCATCCTTTCTGGGGAATTACAGGAGGAGGACTAGGCATGATGGTTTACCAAGATCCTCGAGAAAATCATCCTGGATTCCATATGCGCTCTTCCGGATACTCTGCGGGGATGATAGCAGGGCAGACACACACCTTCTCATTGAAATTCAGTCAGACCTACACCAAACTCAATGAGCGTTACGCAAAAAACAACGTATCTTCTAAAAATTACTCATGCCAAGGAGAAATGCTCTTCTCATTGCAAGAAGGTTTCTTGCTGACTAAATTAGTTGGGCTTTACAGCTATGGAGACCATAACTGTCACCATTTCTATACTCAAGGAGAAAATCTAACATCTCAAGGGACGTTCCGCAGTCAAACGATGGGAGGTGCTGTCTTTTTTGATCTCCCTATGAAACCCTTTGGATCAACGCATATACTGACAGCTCCCTTTTTAGGTGCTCTTGGTATTTATTCTAGCCTGTCTCACTTTACTGAGGTGGGAGCCTATCCGCGAAGCTTTTCTACAAAGACTCCTTTGATCAATGTCCTAGTCCCTATTGGAGTTAAAGGTAGCTTTATGAATGCTACCCACAGACCTCAAGCCTGGACTGTAGAATTGGCATACCAACCCGTTCTGTATAGACAAGAACCAGGGATCGCAGCCCAGCTCCTAGCCAGTAAGGGTATTTGGTTCGGTAGTGGAAGCCCCTCATCGCGTCATGCCATGTCCTATAAAATCTCACAGCAAACACAACCTTTGAGTTGGTTAACTCTCCATTTCCAGTATCATGGATTCTACTCCTCTTCAACCTTCTGTAATTATCTCAATGGGGAAATTGCTCTGCGATTCTAG>gi|3329279|gb|AAC68408.1| Putative Outer Membrane Protein D [Chlamydiatrachomatis][SEQ ID NO:15]MSSEKDIKSTCSKFSLSVVAAILASVSGLASCVDLHAGGQSVNELVYVGPQAVLLLDQIRDLFVGSKDSQAEGQYRLIVGDPSSFQEKDADTLPGKVEQSTLFSVTNPVVFQGVDQQDQVSSQGLICSFTSSNLDSPRDGESFLGIAFVGDSSKAGITLTDVKASLSGAALYSTEDLIFEKIKGGLEFASCSSLEQGGACAAQSILIHDCQGLQVKHCTTAVNAEGSSANDHLGFGGGAFFVTGSLSGEKSLYMPAGDMVVANCDGAISFEGNSANFANGGAIAASGKVLFVANDKKTSFIENRALSGGAIAASSDIAFQNCAELVFKGNCAIGTEDKGSLGGGAISSLGTVLLQGNHGITCDKNESASQGGAIFGKNCQISDNEGPVVFRDSTACLGGGAIAAQEIVSIQNNQAGISFEGGKASFGGGIACGSFSSAGGASVLGTIDISKNLGAISFSRTLCTTSDLGQMEYQGGGALFGENISLSENAGVLTFKDNIVKTFASNGKILGGGAILATGKVEITNNSEGISFTGNARAPQALPTQEEFPLFSKKEGRPLSSGYSGGGAILGREVAILHNAAVVFEQNRLQCSEEEATLLGCCGGGAVHGMDSTSIVGNSSVRFGNNYAMGQGVSGGALLSKTVQLAGNGSVDFSRNIASLGGGALQASEGNCELVDNGYVLFRDNRGRVYGGAISCLRGDVVISGNKGRVEFKDNIATRLYVEETVEKVEEVEPAPEQKDNNELSFLGRAEQSFITAANQALFASEDGDLSPESSISSEELAKRRECAGGAIFAKRVRIVDNQEAVVFSNNFSDIYGGAIFTGSLREEDKLDGQIPEVLISGNAGDVVFSGNSSKRDEHLPHTGGGAICTQNLTISQNTGNVLFYNNVACSGGAVRIEDHGNVLLEAFGGDIVFKGNSSFRAQGSDAIYFAGKESHITALNATEGHAIVFHDALVFENLEERKSAEVLLINSRENPGYTGSIRFLEAESKVPQCIHVQQGSLELLNGATLCSYGFKQDAGAKLVLAAGAKLKILDSGTPVQQGHAISKPEAEIESSSEPEGAHSLWIAKNAQTTVPMVDIHTISVDLASFSSSQQEGTVEAPQVIVPGGSYVRSGELNLELVNTTGTGYENHALLKNEAKVPLMSFVASGDEASAEISNLSVSDLQIHVVTPEIEEDTYGHMGDWSEAKIQDGTLVISWNPTGYRLDPQKAGALVFNALWEEGAVLSALKNARFAHNLTAQRMEFDYSTNVWGFAFGGFRTLSAENLVAIDGYKGAYGGASAGVDIQLMEDFVLGVSGAAFLGKMDSQKFDAEVSRKGVVGSVYTGFLAGSWFFKGQYSLGETQNDMKTRYGVLGESSASWTSRGVLADALVEYRSLVGPVRPTFYALHFNPYVEVSYASMKFPGFTEQGREARSFEDASLTNITIPLGMKFELAFIKGQFSEVNSLGISYAWEAYRKVEGGAVQLLEAGFDWEGAPMDLPRQELRVALENNTEWSSYFSTVLGLTAFCGGFTSTDSKLGYEANTGLRLIF>gi|3329271|gb|AE001353.1:9710-14305[SEQ ID NO:16]ATGAGTTCCGAGAAAGATATAAAAAGCACCTGTTCTAAGTTTTCTTTGTCTGTAGTAGCAGCTATCCTTGCCTCTGTTAGCGGGTTAGCTAGTTGCGTAGATCTTCATGCTGGAGGACAGTCTGTAAATGAGCTGGTATATGTAGGCCCTCAAGCGGTTTTATTGTTAGACCAAATTCGAGATCTATTCGTTGGGTCTAAAGATAGTCAGGCTGAAGGACAGTATAGGTTAATTGTAGGAGATCCAAGTTCTTTCCAAGAGAAAGATGCGGATACTCTTCCCGGGAAGGTAGAGCAAAGTACTTTGTTCTCAGTAACCAATCCCGTGGTTTTCCAAGGTGTGGACCAACAGGATCAAGTCTCTTCCCAAGGGTTAATTTGTAGTTTTACGAGCAGCAACCTTGATTCTCCTCGTGACGGAGAATCTTTTTTAGGTATTGCTTTTGTTGGGGATAGTAGTAAGGCTGGAATCACATTAACTGACGTGAAAGCTTCTTTGTCTGGAGCGGCTTTATATTCTACAGAAGATCTTATCTTTGAAAAGATTAAGGGTGGATTGGAATTTGCATCATGTTCTTCTCTAGAACAGGGGGGAGCTTGTGCAGCTCAAAGTATTTTGATTCATGATTGTCAAGGATTGCAGGTTAAACACTGTACTACAGCCGTGAATGCTGAGGGGTCTAGTGCGAATGATCATCTTGGATTTGGAGGAGGCGCTTTCTTTGTTACGGGTTCTCTTTCTGGAGAGAAAAGTCTCTATATGCCTGCAGGAGATATGGTAGTTGCGAATTGTGATGGGGCTATATCTTTTGAAGGAAACAGCGCGAACTTTGCTAATGGAGGAGCGATTGCTGCCTCTGGGAAAGTGCTTTTTGTCGCTAATGATAAAAAGACTTCTTTTATAGAGAACCGAGCTTTGTCTGGAGGAGCGATTGCAGCCTCTTCTGATATTGCCTTTCAAAACTGCGCAGAACTAGTTTTCAAAGGCAATTGTGCAATTGGAACAGAGGATAAAGGTTCTTTAGGTGGAGGGGCTATATCTTCTCTAGGCACCGTTCTTTTGCAAGGGAATCACGGGATAACTTGTGATAAGAATGAGTCTGCTTCGCAAGGAGGCGCCATTTTTGGCAAAAATTGTCAGATTTCTGACAACGAGGGGCCAGTGGTTTTCAGAGATAGTACAGCTTGCTTAGGAGGAGGCGCTATTGCAGCTCAAGAAATTGTTTCTATTCAGAACAATCAGGCTGGGATTTCCTTCGAGGGAGGTAAGGCTAGTTTCGGAGGAGGTATTGCGTGTGGATCTTTTTCTTCCGCAGGTGGTGCTTCTGTTTTAGGGACCATTGATATTTCGAAGAATTTAGGCGCGATTTCGTTCTCTCGTACTTTATGTACGACCTCAGATTTAGGACAAATGGAGTACCAGGGAGGAGGAGCTCTATTTGGTGAAAATATTTCTCTTTCTGAGAATGCTGGTGTGCTCACCTTTAAAGACAACATTGTGAAGACTTTTGCTTCGAATGGGAAAATTCTGGGAGGAGGAGCGATTTTAGCTACTGGTAAGGTGGAAATTACTAATAATTCCGAAGGAATTTCTTTTACAGGAAATGCGAGAGCTCCACAAGCTCTTCCAACTCAAGAGGAGTTTCCTTTATTCAGCAAAAAAGAAGGGCGACCACTCTCTTCAGGATATTCTGGGGGAGGAGCGATTTTAGGAAGAGAAGTAGCTATTCTCCACAACGCTGCAGTAGTATTTGAGCAAAATCGTTTGCAGTGCAGCGAAGAAGAAGCGACATTATTAGGTTGTTGTGGAGGAGGCGCTGTTCATGGGATGGATAGCACTTCGATTGTTGGCAACTCTTCAGTAAGATTTGGTAATAATTACGCAATGGGACAAGGAGTCTCAGGAGGAGCTCTTTTATCTAAAACAGTGCAGTTAGCTGGGAATGGAAGCGTCGATTTTTCTCGAAATATTGCTAGTTTGGGAGGAGGAGCTCTTCAAGCTTCTGAAGGAAATTGTGAGCTAGTTGATAACGGCTATGTGCTATTCAGAGATAATCGAGGGAGGGTTTATGGGGGTGCTATTTCTTGCTTACGTGGAGATGTAGTCATTTCTGGAAACAAGGGTAGAGTTGAATTTAAAGACAACATAGCAACACGTCTTTATGTGGAAGAAACTGTAGAAAAGGTTGAAGAGGTAGAGCCAGCTCCTGAGCAAAAAGACAATAATGAGCTTTCTTTCTTAGGGAGAGCAGAACAGAGTTTTATTACTGCAGCTAATCAAGCTCTTTTCGCATCTGAAGATGGGGATTTATCACCTGAGTCATCCATTTCTTCTGAAGAACTTGCGAAAAGAAGAGAGTGTGCTGGAGGAGCTATTTTTGCAAAACGGGTTCGTATTGTAGATAACCAAGAGGCCGTTGTATTCTCGAATAACTTCTCTGATATTTATGGCGGCGCCATTTTTACAGGTTCTCTTCGAGAAGAGGATAAGTTAGATGGGCAAATCCCTGAAGTCTTGATCTCAGGCAATGCAGGGGATGTTGTTTTTTCCGGAAATTCCTCGAAGCGTGATGAGCATCTTCCTCATACAGGTGGGGGAGCCATTTGTACTCAAAATTTGACGATTTCTCAGAATACAGGGAATGTTCTGTTTTATAACAACGTGGCCTGTTCGGGAGGAGCTGTTCGTATAGAGGATCATGGTAATGTTCTTTTAGAAGCTTTTGGAGGAGATATTGTTTTTAAAGGAAATTCTTCTTTCAGAGCACAAGGATCCGATGCTATCTATTTTGCAGGTAAAGAATCGCATATTACAGCCCTGAATGCTACGGAAGGACATGCTATTGTTTTCCACGACGCATTAGTTTTTGAAAATCTAGAAGAAAGGAAATCTGCTGAAGTATTGTTAATCAATAGTCGAGAAAATCCAGGTTACACTGGATCTATTCGATTTTTAGAAGCAGAAAGTAAAGTTCCTCAATGTATTCATGTACAACAAGGAAGCCTTGAGTTGCTAAATGGAGCCACATTATGTAGTTATGGTTTTAAACAAGATGCTGGAGCTAAGTTGGTATTGGCTGCTGGAGCTAAACTGAAGATTTTAGATTCAGGAACTCCTGTACAACAAGGGCATGCTATCAGTAAACCTGAAGCAGAAATCGAGTCATCTTCTGAACCAGAGGGTGCACATTCTCTTTGGATTGCGAAGAATGCTCAAACAACAGTTCCTATGGTTGATATCCATACTATTTCTGTAGATTTAGCCTCCTTCTCTTCTAGTCAACAGGAGGGGACAGTAGAAGCTCCTCAGGTTATTGTTCCTGGAGGAAGTTATGTTCGATCTGGAGAGCTTAATTTGGAGTTAGTTAACACAACAGGTACTGGTTATGAAAATCATGCTTTATTGAAGAATGAGGCTAAAGTTCCATTGATGTCTTTCGTTGCTTCTGGTGATGAAGCTTCAGCCGAAATCAGTAACTTGTCGGTTTCTGATTTACAGATTCATGTAGTAACTCCAGAGATTGAAGAAGACACATACGGCCATATGGGAGATTGGTCTGAGGCTAAAATTCAAGATGGAACTCTTGTCATTAGTTGGAATCCTACTGGATATCGATTAGATCCTCAAAAAGCAGGGGCTTTAGTATTTAATGCATTATGGGAAGAAGGGGCTGTCTTGTCTGCTCTGAAAAATGCACGCTTTGCTCATAATCTCACTGCTCAGCGTATGGAATTCGATTATTCTACAAATGTGTGGGGATTCGCCTTTGGTGGTTTCCGAACTCTATCTGCAGAGAATCTGGTTGCTATTGATGGATACAAAGGAGCTTATGGTGGTGCTTCTGCTGGAGTCGATATTCAATTGATGGAAGATTTTGTTCTAGGAGTTAGTGGAGCTGCTTTCCTAGGTAAAATGGATAGTCAGAAGTTTGATGCGGAGGTTTCTCGGAAGGGAGTTGTTGGTTCTGTATATACAGGATTTTTAGCTGGATCCTGGTTCTTCAAAGGACAATATAGCCTTGGAGAAACACAGAACGATATGAAAACGCGTTATGGAGTACTAGGAGAGTCGAGTGCTTCTTGGACATCTCGAGGAGTACTGGCAGATGCTTTAGTTGAATACCGAAGTTTAGTTGGTCCTGTGAGACCTACTTTTTATGCTTTGCATTTCAATCCTTATGTCGAAGTATCTTATGCTTCTATGAAATTCCCTGGCTTTACAGAACAAGGAAGAGAAGCGCGTTCTTTTGAAGACGCTTCCCTTACCAATATCACCATTCCTTTAGGGATGAAGTTTGAATTGGCGTTCATAAAAGGACAGTTTTCAGAGGTGAACTCTTTGGGAATAAGTTATGCATGGGAAGCTTATCGAAAAGTAGAAGGAGGCGCGGTGCAGCTTTTAGAAGCTGGGTTTGATTGGGAGGGAGCTCCAATGGATCTTCCTAGACAGGAGCTGCGTGTCGCTCTGGAAAATAATACGGAATGGAGTTCTTACTTCAGCACAGTCTTAGGATTAACAGCTTTTTGTGGAGGATTTACTTCTACAGATAGTAAACTAGGATATGAGGCGAATACTGGATTGCGATTGATCTTTTAA>gi|3329169|gb|AAC68308.1| Outer Membrane Protein Analog [Chlamydiatrachomatis][SEQ ID NO:17]MSSKLVNYLRLTFLSFLGIASTSLDAMPAGNPAFPVIPGINIEQKNACSFDLCNSYDVLSALSGNLKLCFCGDYIFSEEAQVKDVPVVTSVTTAGVGPSPDITSTTKTRNFDLVNCNLNTNCVAVAFSLPDRSLSAIPLFDVSFEVKVGGLKQYYRLPMNAYRDFTSEPLNSESEVTDGMIEVQSNYGFVWDVSLKKVIWKDGVSFVGVGADYRHASCPIDYIIANSQANPEVFIADSDGKLNFKEWSVCVGLTTYVNDYVLPYLAFSIGSVSRQAPDDSFKKLEDRFTNLKFKVRKITSSHRGNICIGATNYVADNFFYNVEGRWGSQRAVNVSGGFQF>gi|3329166|gb|AE001342.1:c4638-3616[SEQ ID NO:18]ATGAGTAGCAAGCTAGTGAACTATCTCCGTTTGACTTTCCTATCTTTTTTAGGGATCGCATCTACTTCATTAGACGCTATGCCTGCGGGGAATCCGGCGTTTCCAGTCATCCCGGGGATTAATATTGAACAGAAAAATGCCTGTTCTTTCGATTTATGTAATTCTTATGATGTACTATCCGCACTGTCCGGTAACCTGAAGCTCTGCTTCTGCGGAGATTATATCTTTTCAGAAGAAGCTCAGGTAAAAGATGTCCCTGTCGTTACCTCTGTGACAACAGCTGGGGTTGGTCCTTCTCCTGATATTACTTCGACAACCAAAACGCGAAATTTCGATCTCGTGAACTGTAATCTCAATACAAACTGTGTAGCTGTAGCTTTTTCCCTTCCTGATCGTTCGCTGAGCGCGATTCCTCTGTTTGATGTGAGTTTCGAAGTGAAAGTAGGAGGACTGAAACAATACTACCGCCTTCCCATGAATGCCTATCGAGACTTCACCTCGGAACCTCTCAATTCTGAATCAGAAGTTACGGACGGGATGATTGAAGTACAGTCCAATTACGGATTTGTTTGGGATGTTAGCTTGAAAAAAGTCATATGGAAAGATGGCGTTTCCTTTGTAGGCGTCGGTGCAGACTATCGCCATGCTTCTTGCCCTATTGACTACATCATTGCAAACAGTCAAGCTAATCCAGAAGTATTCATCGCTGACTCGGATGGGAAACTGAACTTCAAGGAGTGGAGTGTCTGCGTAGGTCTTACTACCTATGTGAATGACTACGTTCTTCCTTACTTAGCGTTTTCTATAGGGAGTGTTTCTCGCCAAGCTCCGGACGACAGCTTCAAAAAATTAGAAGATCGCTTCACTAACCTCAAATTTAAAGTTCGTAAAATTACCAGCTCTCATCGTGGAAACATCTGCATCGGAGCGACAAACTATGTCGCCGATAACTTCTTCTACAACGTAGAAGGAAGATGGGGAAGCCAGCGCGCTGTGAACGTCTCCGGAGGATTCCAATTCTAA>gi|3328866|gb|AAC68034.1| Sulfite Reductase [Chlamydia trachomatis][SEQ ID NO:19]MSLFSKFKAQWMFLHSRELCSSTSDIGNTCSDPVFQVLCNPVRSEISYKVGDSLGVFPTNPSILVDSVLDALQYGPRSPVVSRHADSVLPLHEFLTSYVDLDKIPKSLRPFFPGDLDDTWSLAEAILVYQPRIPFEEFIRSAMPLLPRFYSIASSPTCSHGKLELLVRCVSFQGKTQLRYGLCSAFLCKDLQEGESFRGFIQPTRHFTLEQKNFGKPLIMIGAGTGIAPYKGFLQHRIYHQDVGSNILFFGERFEKSNFYYRDFLQELIVSGKLQLFTAFSRDSESKLYVQNVIEQQKELIQEVYEQEAFFFVCGKKILGTEVKRALEQILGPKAVRELIAQKRLVSDVY>gi|3328863|gb|AE001317:c2573-1521[SEQ ID NO:20]ATGTCTTTATTTTCTAAATTCAAAGCTCAGTGGATGTTTTTACATTCACGTGAGCTTTGTTCTTCCACATCGGATATTGGGAATACTTGTTCGGATCCTGTTTTTCAGGTTTTATGTAATCCGGTTCGTTCTGAGATTTCCTATAAAGTTGGGGATTCTTTGGGGGTATTCCCAACAAATCCTTCCATATTAGTCGATTCAGTTCTAGATGCTTTACAGTATGGCCCCAGGTCTCCTGTCGTATCTCGGCATGCAGATTCTGTTCTCCCTCTTCACGAATTTCTTACTAGTTACGTAGACTTAGATAAAATTCCAAAATCGTTAAGACCTTTTTTCCCAGGGGATTTAGACGATACCTGGTCTTTAGCTGAAGCTATTTTGGTTTACCAGCCGCGTATTCCTTTTGAAGAGTTTATTCGGAGTGCGATGCCTTTATTGCCTCGATTTTATTCTATAGCTTCTTCTCCAACATGTTCTCATGGGAAGCTAGAGTTGCTCGTGCGCTGTGTTAGTTTCCAAGGTAAAACGCAGCTGCGCTATGGATTATGTTCGGCTTTTTTATGTAAGGACTTACAAGAGGGAGAGTCTTTTCGTGGGTTTATACAACCGACGCGGCATTTTACTTTGGAGCAGAAAAATTTTGGGAAACCTTTAATTATGATCGGAGCAGGGACAGGTATCGCTCCGTACAAAGGGTTCTTACAACATCGAATATACCATCAGGACGTAGGCTCCAATATTCTATTCTTTGGAGAGCGTTTTGAGAAAAGTAACTTCTATTACCGGGATTTTCTCCAGGAGCTGATCGTTTCAGGAAAACTCCAGTTATTCACAGCCTTTTCCAGAGATTCCGAGTCTAAATTGTATGTTCAGAATGTTATAGAGCAACAAAAAGAACTTATACAAGAAGTCTACGAACAAGAAGCTTTCTTTTTTGTTTGTGGGAAAAAAATCCTTGGTACGGAAGTTAAACGTGCTTTAGAGCAGATATTAGGTCCTAAGGCGGTACGAGAGCTGATTGCACAGAAGAGACTAGTTTCAGACGTATACTAA>gi|3328843|gb|AAC68011.1| Putative outer membrane protein C [Chlamydiatrachomatis][SEQ ID NO:21]MKFMSATAVFAAALSSVTEASSIQDQIKNTDCNVSKLGYSTSQAFTDMMLADNTEYRAADSVSFYDFSTSSRLPRKHLSSSSEASPTTEGVSSSSSGETDEKTEEELDNGGIIYAREKLTISESQDSLSNQSIELHDNSIFFGEGEVIFDHRVALKNGGAIYGEKEVVFENIKSLLVEVNIAVEKGGSVYAKERVSLENVTEATFSSNGGEQGGGGIYSEQDMLISDCNNVHFQGNAAGATAVKQCLDEEMIVLLAECVDSLSEDTLDSTPETEQTESNGNQDGSSETEDTQVSESPESTPSPDDVLGKGGGIYTEKSLTITGITGTIDFVSNIATDSGAGVFTKENLSCTNTNSLQFLKNSAGQHGGGAYVTQTMSVTNTTSESITTPPLIGEVIFSENTAKGHGGGICTNKLSLSNLKTVTLTKNSAKESGGAIFTDLASIPITDTPESSTPSSSSPASTPEVVASAKINRFFASTAKPAAPSLTEAESDQTDQTETSDTNSDIDVSIENILNVAINQNTSAKKGGAIYGKKAKLSRINNLELSGNSSQDVGGGLCLTESVEFDAIGSLLSHYNSAAKEGGAIHSKTVTLSNLKSTFTFADNTVKAIVESTPEAPEEIPPVEGEESTATEDPNSNTEGSSANTNLEGSQGDTADTGTGDVNNESQDTSDTGNAESEEQLQDSTQSNEENTLPNSNIDQSNENTDESSDSHTEEITDESVSSSSESGSSTPQDGGAASSGAPSGDQSISANACLAKSYAASTDSSPVSNSSGSEEPVTSSSDSDVTASSDNPDSSSSGDSAGDSEEPTEPEAGSTTETLTLIGGGAIYGETVKIENFSGQGIFSGNKAIDNTTEGSSSKSDVLGGAVYAKTLFNLDSGSSRRTVTFSGNTVSSQSTTGQVAGGAIYSPTVTIATPVVFSKNSATNNANNTTDTQRKDTFGGAIGATSAVSLSGGAHFLENVADLGSAIGLVPGTQNTETVKLESGSYYFEKNKALKRATIYAPVVSIKAYTATFNQNRSLEEGSAIYFTKEASIESLGSVLFTGNLVTLTLSTTTEGTPATTSGDVTKYGAAIFGQIASSNGSQTDNLPLKLIASGGNICFRNNEYRPTSSDTGTSTFCSIAGDVKLTMQAAKGKTISFFDAIRTSTKKTGTQATAYDTLDINKSEDSETVNSAFTGTILFSSELHENKSYIPQNVVLHSGSLVLKPNTELHVISFEQKEGSSLVMTPGSVLSNQTVADGALVINNMTIDLSSVEKNGIAEGNIFTPPELRIIDTTTGGSGGTPSTDSESNQNSDDTEEQNNNDASNQGESANGSSSPAVAAAHTSRTRNFAAAATATPTTTPTATTTTSNQVILGGEIKLIDPNGTFFQNPALRSDQQISLLVLPTDSSKMQAQKIVLTGDIAPQKGYTGTLTLDPDQLQNGTISVLWKFDSYRQWAYVPRDNHFYANSILGSQMLMVTVKQGLLNDKMNLARFEEVSYNNLWISGLGTMLSQVGTPTSEEFTYYSRGASVALDAKPAHDVIVGAAFSKMIGKTKSLKRENNYTHKGSEYSYQASVYGGKPFHFVINKKTEKSLPLLLQGVISYGYIKHDTVTHYPTIRERNKGEWEDLGWLTALRVSSVLRTPAQGDTKRITVYGELEYSSIRQKQFTETEYDPRYFDNCTYRNLAIPMGLAFEGELSGNDILMYNRFSVAYMLSIYRNSPTCKYQVLSSGEGGEIICGVPTRNSARGEYSTQLYLGPLWTLYGSYTIEADAHTLAHMMNCGARMTF>gi|3328842|gb|AE001315.1:120-5432[SEQ ID NO:22]ATGAAATTTATGTCAGCTACTGCTGTATTTGCTGCAGCACTCTCCTCCGTTACTGAGGCGAGCTCGATCCAAGATCAAATAAAGAATACCGACTGCAATGTTAGCAAATTAGGATATTCAACTTCTCAAGCATTTACTGATATGATGCTAGCAGACAACACAGAGTATCGAGCTGCTGATAGTGTTTCATTCTATGACTTTTCGACATCTTCCAGATTACCTAGAAAACATCTTAGTAGTAGTAGTGAAGCTTCTCCAACGACAGAAGGAGTGTCTTCATCTTCATCTGGAGAAACTGATGAGAAAACAGAAGAAGAACTAGACAATGGCGGAATCATTTATGCTAGAGAGAAACTAACTATCTCAGAATCTCAGGACTCTCTCTCTAATCAAAGCATAGAACTCCATGACAATAGTATTTTCTTCGGAGAAGGTGAAGTTATCTTTGATCACAGAGTTGCCCTCAAAAACGGAGGAGCTATTTATGGAGAGAAAGAGGTAGTCTTTGAAAACATAAAATCTCTACTAGTAGAAGTAAATATCGCGGTCGAGAAAGGGGGTAGCGTCTATGCAAAAGAACGAGTATCTTTAGAAAATGTTACCGAAGCAACCTTCTCCTCCAATGGTGGGGAACAAGGTGGTGGTGGAATCTATTCAGAACAGGATATGTTAATCAGTGATTGCAACAATGTACATTTCCAAGGGAATGCTGCAGGAGCAACAGCAGTAAAACAATGTCTGGATGAAGAAATGATCGTATTGCTCGCAGAATGCGTTGATAGCTTATCCGAAGATACACTGGATAGCACTCCAGAAACGGAACAGACTGAGTCAAATGGAAATCAAGACGGTTCGTCTGAAACAGAAGATACACAAGTATCAGAATCACCAGAATCAACTCCTAGCCCCGACGATGTTTTAGGTAAAGGTGGTGGTATCTATACAGAAAAATCTTTGACCATCACTGGAATTACACGGACTATAGATTTTGTCAGTAACATAGCTACCGATTCTGGAGCAGGTGTATTCACTAAAGAAAACTTGTCTTGCACCAACACGAATAGCCTACAGTTTTTGAAAAACTCGGCAGGTCAACATGGAGGAGGAGCCTACGTTACTCAAACCATGTCTGTTACTAATACAACTAGTGAAAGTATAACTACTCCCCCTCTCATAGGACAAGTGATTTTCTCTGAAAATACAGCTAAAGGGCACGGTGGTGGTATCTGCACTAACAAACTTTCTTTATCTAATTTAAAAACGGTGACTCTCACTAAAAACTCTGCAAAGGAGTCTGGAGGAGCTATTTTTACAGATCTGGCGTCTATACCAATAACAGATACCCCAGAATCTTCTACCCCCTCTTCCTCCTCGCCTGCAAGCACTCCTGAAGTAGTTGCTTCTGCTAAAATAAATCGATTCTTTGCCTCTACGGCAAAACCGGCAGCCCCTTCTCTAACAGAGGCTGAGTCTGATCAAACGGATCAAACAGAAACTTCTGATACTAATAGCGATATAGACGTGTCGATTGAGAACATTTTGAATGTCGCTATCAATCAAAACACTTCTGCGAAAAAAGGAGGGGCTATTTACGGGAAAAAAGCTAAACTTTCCCGTATTAACAATCTTGAACTTTCAGGGAATTCATCCCAGGATGTAGGAGGAGGTCTCTGTTTAACTGAAAGCGTAGAATTTGATGCAATTGGATCGCTCTTATCCCACTATAACTCTGCTGCTAAAGAAGGTGGGGCTATTCATTCTAAAACGGTTACTCTATCTAACCTCAAGTCTACCTTCACTTTTGCAGATAACACTGTTAAAGCAATAGTAGAAAGCACTCCTGAAGCTCCAGAAGAGATTCCTCCAGTAGAAGGAGAAGAGTCTACAGCAACAGAAGATCCAAATTCTAATACAGAAGGAAGTTCGGCTAACACTAACCTTGAAGGATCTCAAGGGGATACTGCTGATACAGGGACTGGTGATGTTAACAATGAGTCTCAAGACACATCAGATACTGGAAACGCTGAATCTGAAGAACAACTACAAGATTCTACACAATCTAATGAAGAAAATACCCTTCCCAATAGTAATATTGATCAATCTAACGAAAACACAGACGAATCATCTGATAGCCACACTGAGGAAATAACTGACGAGAGTGTCTCATCGTCCTCTGAAAGTGGATCATCTACTCCTCAAGATGGAGGAGCAGCTTCTTCAGGGGCTCCCTCAGGAGATCAATCTATCTCTGCAAACGCTTGTTTAGCTAAAAGCTATGCTGCGAGTACTGATAGCTCCCCCGTATCTAATTCTTCAGGTTCAGAAGAGCCTGTCACTTCTTCTTCAGATTCAGACGTTACTGCATCTTCTGATAATCCAGACTCTTCCTCATCTGGAGATAGCGCTGGAGACTCTGAAGAACCGACTGAGCCAGAAGCTGGTTCTACAACAGAAACTCTTACTTTAATAGGAGGAGGTGCTATCTATGGAGAAACTGTTAAGATTGAGAACTTCTCTGGCCAAGGAATATTTTCTGGAAACAAAGCTATCGATAACACCACAGAAGGCTCCTCTTCCAAATCTGACGTCCTCGGAGGTGCGGTCTATGCTAAAACATTGTTTAATCTCGATAGCGGGAGCTCTAGACGAACTGTCACCTTCTCCGGGAATACTGTCTCTTCTCAATCTACAACAGGTCAGGTTGCTGGAGGAGCTATCTACTCTCCTACTGTAACCATTGCTACTCCTGTAGTATTTTCTAAAAACTCTGCAACAAACAATGCTAATAACACTACAGATACTCAGAGAAAAGACACCTTTGGAGGAGCTATCGGAGCTACTTCTGCTGTTTCTCTATCAGGAGGGGCTCATTTCTTAGAAAACGTTGCTGACCTCGGATCTGCTATTGGGTTGGTGCCAGGCACACAAAATACAGAAACAGTGAAATTAGAGTCTGGCTCCTACTACTTTGAAAAAAATAAAGCTTTAAAACGAGCTACTATTTACGCACCTGTCGTTTCCATTAAAGCCTATACTGCGACATTTAACCAAAACAGATCTCTAGAAGAAGGAAGCGCGATTTACTTTACAAAAGAAGCATCTATTGAGTCTTTAGGCTCTGTTCTCTTCACAGGAAACTTAGTAACCCTAACGCTAAGCACAACTACAGAAGGCACACCAGCCACAACCTCAGGAGATGTAACAAAATATGGTGCTGCTATCTTTGGACAAATAGCAAGCTCAAACGGATCTCAGACGGATAACCTTCCCCTGAAACTCATTGCTTCAGGAGGAAATATTTGTTTCCGAAACAATGAATACCGTCCTACTTCTTCTGATACCGGAACCTCTACTTTCTGTAGTATTGCGGGAGATGTTAAATTAACCATGCAAGCTGCAAAAGGGAAAACGATCAGTTTCTTTGATGCAATCCGGACCTCTACTAAGAAAACAGGTACACAGGCAACTGCCTACGATACTCTCGATATTAATAAATCTGAGGATTCAGAAACTGTAAACTCTGCGTTTACAGGAACGATTCTGTTCTCCTCTGAATTACATGAAAATAAATCCTATATTCCACAAAACGTAGTTCTACACAGTGGATCTCTTGTATTGAAGCCAAATACCGAGCTTCATGTTATTTCTTTTGAGCAGAAAGAAGGCTCTTCTCTCGTTATGACACCTGGATCTGTTCTTTCGAACCAGACTGTTGCTGATGGAGCTTTGGTCATAAATAACATGACCATTGATTTATCCAGCGTAGAGAAAAATGGTATTGCTGAAGGAAATATCTTTACTCCTCCAGAATTGAGAATCATAGACACTACTACAGGTGGAAGCGGTGGAACCCCATCTACAGATAGTGAAAGTAACCAGAATAGTGATGATACCGAGGAGCAAAATAATAATGACGCCTCGAATCAAGGAGAAAGCGCGAATGGATCGTCTTCTCCTGCAGTAGCTGCTGCACACACATCTCGTACAAGAAACTTTGCCGCTGCAGCTACAGCCACACCTACGACAACACCAACGGCTACAACTACAACAAGCAACCAAGTAATCCTAGGAGGAGAAATTAAACTCATCGATCCTAATGGGACCTTCTTCCAGAACCCTGCATTAAGATCCGACCAACAAATCTCCTTGTTAGTGCTCCCTACAGACTCATCAAAAATGCAAGCTCAGAAAATAGTACTGACGGGTGATATTGCTCCTCAGAAAGGATATACAGGAACACTCACTCTGGATCCTGATCAACTACAAAATGGAACGATCTCAGTGCTCTGGAAATTTGACTCTTATAGACAATGGGCTTATGTACCTAGAGACAATCATTTCTATGCGAACTCGATTCTGGGATCTCAAATGTTAATGGTCACAGTCAAACAAGGCTTGCTCAACGATAAAATGAATCTAGCTCGCTTTGAGGAAGTTAGCTATAACAACCTGTGGATATCAGGACTAGGAACGATGCTATCGCAAGTAGGAACACCTACTTCTGAAGAATTCACTTATTACAGCAGAGGAGCTTCTGTTGCCTTAGATGCTAAACCAGCCCATGATGTGATTGTTGGAGCTGCATTTAGTAAGATGATCGGGAAAACAAAATCCTTGAAAAGAGAGAATAACTACACTCACAAAGGATCCGAATATTCTTACCAAGCATCGGTATACGGAGGCAAACCATTCCACTTTGTAATCAATAAAAAAACGGAAAAATCGCTACCGCTATTGTTACAAGGAGTCATCTCTTACGGATATATCAAACATGATACAGTGACTCACTATCCAACGATCCGTGAACGAAACAAAGGAGAATGGGAAGACTTAGGATGGCTGACAGCTCTCCGTGTCTCCTCTGTCTTAAGAACTCCTGCACAAGGGGATACTAAACGTATCACTGTTTACGGAGAATTGGAATACTCCAGTATCCGTCAGAAACAATTCACAGAAACAGAATACGATCCTCGTTACTTCGACAACTGCACCTATAGAAACTTAGCAATTCCTATGGGGTTAGCATTCGAAGGAGAGCTCTCTGGTAACGATATTTTGATGTACAACAGATTCTCTGTAGCATACATGCTATCAATCTATCGAAATTCTCCAACATGCAAATACCAAGTGCTCTCTTCAGGAGAAGGCGGAGAAATTATTTGTGGAGTACCGACAAGAAACTCAGCTCGCGGAGAATACAGCACGCAGCTGTACCTGGGACCTTTGTGGACTCTGTATGGATCCTACACGATAGAAGCAGACGCACATACACTAGCTCATATGATGAACTGCGGTGCTCGTATGACATTCTAA>gi|3328815|gb|AAC67986.1| hypothetical protein [Chlamydia trachomatis][SEQ ID NO:23]MMKPLRFGYFFCAIYFTLLQAAFAKEPNSCPDCQNNWKEVTHTDQLPENIIHADDACYHSGYVQALIDMHFLDSCCQVIVENQTAYLFSLPTDDVTRNAIINLIKDLPFIHSVEICQASYQTCHHQGPHGKTSLPEQRSFCTKVCGKEAIWLPQNTILFSPLVADPRQATNSAGIRFNDEVLGKRVGSATFGGDFIFLRLFDISRFHGDMDIGLQGAVFSVFDLDHPEACMVNSDFFVAALCNFAVNKWSYRFRLWHLSSHLGDEFILANQLPPKKRYNRSDEAVDFFASFRYTPQIRVYGGIGYIISRDLTFPEDPLYFEGGIELRPFGLREDNLHAQPVFAMHFRFWEEHDFSIDQTYIVGMEWSKFQDVGRKVRAVLEYHQGFSHEGQFVREECDYYGFRLSYGF>gi|3328812|gb|AE001312.1:2790-4016[SEQ ID NO:24]ATGATGAAACCTCTACGTTTCGGTTATTTCTTTTGCGCAATCTATTTTACTTTGTTACAGGCAGCGTTTGCTAAAGAACCGAATTCTTGTCCCGACTGCCAGAATAATTGGAAAGAAGTCACCCACACGGATCAACTCCCAGAAAACATCATTCATGCTGATGATGCTTGTTATCACTCTGGTTATGTACAGGCTCTCATTGATATGCATTTCTTAGATAGCTGCTGCCAGGTCATCGTTGAAAACCAAACTGCTTACTTATTTTCTCTTCCTACAGATGATGTTACGCGCAACGCCATTATCAACCTAATTAAAGACCTTCCATTCATTCACTCCGTAGAAATCTGCCAAGCATCCTATCAAACCTGTCATCATCAAGGCCCTCATGGAAAGACTTCTCTTCCAGAACAACGTTCTTTCTGTACAAAGGTCTGTGGAAAAGAAGCTATTTGGTTACCACAGAATACCATCCTATTCTCGCCTCTTGTAGCAGATCCTAGACAAGCAACTAATAGTGCAGGTATCCGTTTTAACGACGAAGTCTTAGGAAAACGTGTTGGCTCTGCTACCTTCGGTGGAGATTTCATCTTCTTACGATTATTTGATATCTCCCGATTCCATGGAGACATGGATATTGGTCTCCAAGGAGCTGTATTCTCTGTTTTCGACCTGGATCATCCAGAAGCTTGCATGGTCAACTCTGACTTTTTTGTCGCCGCTTTGTGCAACTTTGCAGTGAACAAATGGAGCTACCGCTTCAGACTATGGCATCTTTCTTCTCATCTTGGCGACGAATTTATTCTTGCCAACCAGTTACCTCCTAAAAAACGTTATAATCGAAGCGATGAAGCCGTCGATTTCTTTGCTTCTTTTCGTTACACTCCACAGATCCGTGTTTATGGAGGTATTGGGTATATCATTAGTCGAGATTTAACATTCCCTGAAGATCCTCTTTACTTTGAAGGAGGTATCGAACTACGTCCTTTCGGATTACGGGAAGACAACCTTCATGCCCAACCCGTCTTTGCTATGCATTTTCGCTTTTGGGAAGAGCATGACTTTTCTATAGACCAAACTTATATAGTAGGCATGGAGTGGTCCAAATTCCAGGATGTAGGGAGAAAAGTGCGCGCTGTATTGGAATACCACCAAGGTTTCTCCCACGAAGGACAATTTGTCCGAGAAGAATGCGATTATTATGGCTTTCGATTAAGTTATGGCTTCTAG>gi|3328651|gb|AAC67834.1| Omp85 Analog [Chlamydia trachomatis][SEQ ID NO:25]MLGIRKKTILQLAVLLLLTFSRSSFCSTSEGRMVVESITITTQGENTQNKRAIPKIKTKQGTLFSQADFDEDLRTLSKDFDRVEPIVEFRNGQAVISLILTAKPVIREINISGNEAIPTHKILKTLELYKNDLFDRELFFKNFDALRTLYLKRGYYDSQLSYSHNHNEKEGFIDISIEIKEGRHGRIKKLTISGITRTEASDLGDIVLTKQYSTTTSWFTGAGVYHPDMVEQDLFAITNYFQNKGYADAKVSKEVSTDAKGNITLLIVVDKGPLYTLGHVHIEGFTALSKRLLDKQLLVGPNSLYCPDKIWTGAQKIRSAYARYGYVNTNVDVSFSAHPTLPVYDVTYRVSEGSPYKIGLIKIKGNTHTKHDVILHETSLFPGDTFDRLKLEGTETRLRNTGYFKSVSVYTVRSQLDPLDSNDLYRDVFIEVKETETGNLGLFLGFSSIDHLFGGAEIAESNFDLFGARNFLKKGFKSLRGGGEYLFLKANLGDKVTDYTVKWTKPHFLNTPWILGVELDKSINKALSKDYSVDTYGGNISTTYILNDKLKYGMYYRGSQTSLSLRKKTSSSNRPGPDLDSNKGFVSAAGLNVLYDSIDNPRKPTMGIRSSLNFELSGLGGTYQFTKLTASGSIYRLLTKKGVLKVRAEAKFIKPFGTTTAQGIPVSERFFLGGETTVRGYKPFIIGPKFSPTEPQGGLSSLLLTEEFQYPLISQPCINAFVFLDSGFIGIEEYTIRLKDLCSSAGFGLRFDMMNNVPIMLGWGWPFRPTEILNNEKIDVSQRFFFALGGVF>gi|3328646|gb|AE001297.1:4000-6378[SEQ ID NO:26]ATGCTTGGAATACGCAAAAAAACGATTCTGCAACTCGCTGTTTTACTGTTGCTCACCTTTTCACGAAGTTCTTTCTGTTCAACTTCAGAAGGACGTATGGTCGTAGAGTCTATCACCATTACGACTCAAGGAGAGAATACTCAAAATAAACGAGCTATTCCTAAAATAAAAACAAAGCAGGGGACGTTGTTCTCTCAAGCAGATTTTGATGAAGATCTAAGAACACTTTCGAAAGATTTTGATCGAGTAGAGCCTATCGTAGAGTTTCGTAATGGACAAGCTGTGATCTCTCTGATTCTGACGGCAAAACCTGTTATCAGAGAGATCAATATTTCAGGAAATGAAGCTATCCCCACTCATAAAATTCTGAAAACTTTAGAGCTTTATAAAAATGATCTTTTTGATCGGGAATTATTCTTTAAAAATTTTGATGCGCTAAGAACTCTTTATTTGAAACGAGGGTACTACGATTCTCAACTCTCCTATTCTCATAATCATAATGAGAAAGAGGGCTTTATCGATATTTCCATCGAGATTAAAGAAGGACGTCACGGTCGCATAAAAAAATTAACGATTTCGGGAATTACGCGAACAGAAGCATCAGACTTAGGTGACATTGTTTTAACTAAACAATACTCCACAACAACGAGCTGGTTCACTGGTGCCGGAGTGTATCATCCGGACATGGTAGAGCAAGACTTATTTGCTATCACAAATTACTTCCAAAATAAAGGATATGCTGATGCTAAAGTAAGCAAAGAGGTCTCTACAGATGCTAAAGGAAACATTACTTTGCTTATCGTTGTAGACAAAGGACCTTTATACACATTAGGTCACGTACATATAGAAGGATTCACAGCGTTATCCAAAAGACTGCTCGATAAACAACTATTGGTTGGACCTAACTCCTTATATTGCCCAGATAAAATTTGGACTGGAGCACAAAAGATTCGTAGCGCATACGCTAGATATGGCTACGTGAACACTAACGTTGATGTCTCCTTCTCAGCGCACCCCACTCTACCTGTTTACGATGTTACCTATCGAGTGAGTGAAGGATCTCCCTACAAAATCGGGTTAATTAAAATCAAAGGGAACACTCATACTAAGCATGATGTGATTTTGCATGAGACTAGTCTTTTCCCTGGAGACACTTTTGATAGATTAAAACTGGAAGGTACAGAGACTCGTTTACGCAACACCGGCTACTTTAAAAGTGTAAGTGTCTATACGGTTCGTTCCCAATTAGATCCTCTTGATTCTAACGACCTTTATCGAGATGTTTTTATTGAAGTCAAAGAGACTGAAACAGGAAATCTTGGGCTATTCTTAGGATTCAGCTCCATTGACCATTTATTTGGAGGGGCAGAAATTGCAGAAAGCAACTTTGATTTATTTGGAGCCCGAAACTTTCTCAAAAAAGGATTCAAATCTTTAAGAGGTGGTGGAGAATACCTCTTCCTAAAAGCTAATTTAGGAGATAAGGTCACCGATTACACTGTTAAATGGACGAAACCACACTTCTTAAATACCCCTTGGATTCTTGGAGTAGAATTAGATAAATCAATTAATAAAGCTTTATCAAAAGACTACTCTGTGGATACCTATGGAGGGAATATCAGTACCACCTACATTCTTAACGATAAGTTAAAATATGGGATGTATTACCGTGGTAGCCAAACAAGCTTAAGTTTGCGCAAAAAAACGTCCAGCTCTAATAGACCTGGACCAGATTTAGATAGTAATAAAGGATTTGTTTCCGCAGCGGGACTCAATGTTCTCTATGATTCTATTGATAATCCTAGAAAACCTACTATGGGAATCCGCAGCTCCTTAAACTTTGAATTATCTGGTTTAGGCGGAACTTACCAATTTACTAAACTAACAGCTAGTGGTTCTATCTATCGCTTATTAACTAAAAAAGGTGTTTTGAAAGTCCGTGCAGAAGCTAAGTTTATCAAACCTTTCGGAACAACAACTGCACAAGGCATTCCTGTCAGCGAACGGTTCTTCTTAGGAGGTGAAACCACTGTTCGCGGTTACAAACCTTTTATTATTGGACCGAAATTTTCTCCTACTGAACCACAAGGAGGCTTGTCTTCCCTACTATTAACAGAAGAATTTCAATATCCTTTGATTTCTCAACCTTGCATTAATGCCTTTGTATTTCTAGATTCCGGATTCATTGGGATAGAAGAGTACACTATTCGCCTGAAAGACCTTTGCAGTAGCGCCGGATTTGGTCTACGCTTTGATATGATGAATAATGTGCCAATTATGCTAGGCTGGGGTTGGCCGTTCCGCCCAACAGAAATCCTCAATAATGAAAAAATTGATGTATCTCAAAGATTCTTTTTTGCCTTGGGAGGAGTATTCTAG>gi|3328587|gb|AAC67774.1| CMP-2-keto-3-deoxyoctulosonic acid synthetase [Chlamydiatrachomatis][SEQ ID NO:27]MFAFLTSKKVGILPSRWGSSRFPGKPLAKILGKILVQRSYENALSSQSLDCVVVATDDQRIFDHVVEFGGLCVMTSTSCANGTERVEEVVSRHFPQAEIVVNIQGDEPCLSPTVIDGLVSTLENNPAADMVTSVTETTDPEAILTDHKVKCVFDKNGKALYFSRSAIPHNFKHPTPIYLHIGVYAFRKAFLSEYVKIPPSSLSLAEDLEQLRVLEIGRSIYVHVVQNATGPSVDYPEDITKVEQYLLCLSKASF>gi|3328586|gb|AE001292.1:216-980[SEQ ID NO:28]GTGTTTGCGTTTTTAACCAGCAAAAAAGTCGGCATTCTCCCCTCTAGATGGGGAAGCTCCCGCTTCCCCGGAAAACCTCTAGCAAAAATTCTAGGGAAAACCCTTGTTCAAAGATCCTATGAAAATGCCTTAAGCAGTCAATCTCTAGATTGCGTTGTTGTGGCAACAGATGATCAACGAATTTTTGACCATGTCGTTGAATTTGGGGGGCTCTGTGTCATGACTAGCACATCTTGCGCTAACGGAACTGAGCGAGTAGAAGAGGTTGTGTCTCGACATTTTCCTCAAGCAGAGATTGTTGTGAACATCCAAGGAGACGAGCCCTGTTTATCTCCTACCGTCATAGATGGGCTTGTGAGCACGCTAGAGAACAATCCTGCTGCAGATATGGTCACATCTGTTACAGAAACAACAGACCCCGAAGCGATATTGACAGATCACAAAGTGAAGTGTGTTTTCGATAAGAATGGCAAAGCTCTTTACTTTAGCAGAAGCGCTATTCCTCACAACTTTAAACACCCAACGCCTATTTATCTGCATATTGGTGTTTATGCTTTTAGAAAAGCTTTTCTAAGTGAATATGTTAAAATTCCTCCTTCCTCGTTAAGCCTAGCCGAAGATCTTGAACAATTACGAGTATTAGAAATAGGTCGTTCTATCTACGTTCATGTCGTTCAGAATGCAACGGGCCCTTCTGTTGATTATCCCGAAGATATAACCAAAGTGGAGCAGTATTTATTATGTCTTTCAAAAGCATCTTTTTGA>gi|3329039|gb|AAC68197.1| Thio:disulfide Interchange Protein [Chlamydiatrachomatis][SEQ ID NO:29]MIRQWYGFFLCLLFSYTSCFGVEENSGRATPTVELVSESEQAVEGEVLRIGVLIAIPEGEHIYWKNPGKLGMPLRISWDLPSGCRLLEEHWPTPEIFEEDGVVYFGYKHSTMVVADIRVSKEIETRPLEIKAQVEWLSCGASCLPGSSSRVLVIPIDQGPLIPNSKETFTFSRALAAQPRPLDAAIKISYQPDGLDVFVPAGKADRATQAWFIAENTRDFAYAQEVPLEQATTYIWKLKHPEGNMPKGIGLSGILIFKDDAGKVVASYQVEENQVEQLSALSWRFLSILLMAFIGGILLNIMPCVLPLITLKVFSLIKSAADHHSSSVIGGIGFTLGAIVSFWGLAFCAFLLKVLGQNIGWGFQLQEPMFVAVLIIVFFLFALSSLGVFEMGIICLSLGKKLQEEGGASVRKNQIWGAFFNGMLTTLVTTPCTGPFLGSVFGLVMAVSFVKQLAIFTAIGLGMASPYLLFASFPKMLAILPKPGPWMSTFKQLTGFMLLATATWLIWIFGVETSATAVTILLVGLWLAAVGAWILGRWGTLVSPRNQRLLASVVFIFCILSSLVITSIGVRYFDENVPPAHSSDWQSFSPEKLADLREKGIPVFVNFTAKWCLTCQLNKPLLHANMQAFAAKGVVTLEADWTKKDPKITEELARLGRASVPSYVYYPAGNKAPLILPERLSQSALEEMVFSQ>gi|3329034|gb|AE001330.1:c6695-4617[SEQ ID NO:30]ATGATTCGGCAATGGTATGGATTTTTTCTTTGCTTGCTGTTCAGCTATACGTCTTGTTTTGGTGTAGAAGAAAATAGTGGAAGAGCTACGCCTACAGTAGAACTTGTTAGTGAAAGCGAACAAGCTGTTGAAGGAGAAGTGCTTCGTATCGGAGTATTGATTGCTATTCCAGAAGGAGAGCATATCTACTGGAAAAATCCAGGGAAGCTTGGAATGCCTTTGCGCATTTCTTGGGATTTGCCATCAGGATGTAGGTTGCTGGAGGAACATTGGCCGACTCCAGAGATTTTCGAAGAGGATGGGGTTGTTTATTTTGGTTATAAACATTCTACAATGGTGGTTGCGGATATTCGCGTTTCTAAAGAGATAGAAACGCGTCCATTGGAGATAAAAGCGCAAGTTGAATGGTTGTCTTGCGGTGCATCTTGTCTCCCAGGTTCTTCGTCAAGGGTTCTTGTGATTCCTATAGATCAGGGGCCGTTAATTCCTAATAGTAAAGAGACATTCACTTTTTCCCGTGCGTTAGCGGCTCAACCTCGACCTTTGGATGCTGCCATAAAGATTTCTTATCAGCCTGATGGCTTAGATGTTTTTGTGCCAGCAGGGAAAGCGGATCGGGCAACCCAGGCATGGTTCATTGCTGAAAACACGCGAGATTTTGCTTATGCTCAAGAGGTTCCTCTTGAGCAAGCGACTACGTACATATGGAAGTTGAAACATCCTGAAGGAAATATGCCTAAGGGTATTGGGTTGTCGGGGATTCTTATATTCAAGGATGATGCAGGGAAAGTAGTCGCTTCGTATCAAGTAGAAGAGAATCAAGTCGAACAGCTTTCGGCATTGAGCTGGAGGTTTCTCTCTATTCTTCTTATGGCTTTCATTGGTGGAATCTTATTAAACATCATGCCCTGTGTATTGCCTCTGATTACTTTGAAAGTATTTAGTTTAATTAAATCGGCGGCAGATCACCATTCTTCCTCTGTGATTGGAGGGATTGGGTTTACTTTAGGGGCTATTGTAAGCTTTTGGGGACTCGCTTTTTGTGCGTTTTTGTTAAAGGTTTTAGGGCAAAATATTGGATGGGGATTCCAGCTTCAAGAACCCATGTTTGTTGCCGTTTTAATTATTGTCTTCTTCTTATTTGCTCTGAGTTCGTTAGGCGTTTTTGAGATGGGAATAATTTGTCTGAGCCTAGGGAAAAAATTGCAAGAAGAGGGAGGGGCATCGGTAAGGAAGAATCAGATCTGGGGAGCTTTTTTCAATGGGATGTTGACTACCCTGGTTACAACTCCTTGCACTGGGCCTTTTCTTGGCTCTGTATTTGGATTAGTTATGGCAGTGTCTTTTGTTAAGCAGCTGGCAATTTTTACTGCTATAGGATTAGGAATGGCAAGTCCCTATCTATTATTTGCTTCTTTTCCGAAGATGCTAGCCATTTTACCTAAACCTGGTCCTTGGATGAGTACGTTTAAACAGTTGACTGGGTTTATGTTGCTTGCTACTGCAACTTGGCTTATCTGGATTTTTGGGGTAGAGACGAGTGCAACCGCTGTAACTATTCTTCTTGTAGGATTGTGGTTGGCTGCTGTAGGTGCATGGATTCTAGGGAGATGGGGAACCCTTGTATCTCCGCGTAATCAGCGGCTTCTTGCTTCCGTTGTATTCATTTTCTGTATTTTAAGTTCCTTAGTGATTACCTCTATAGGTGTCCGTTATTTTGATGAGAACGTCCCTCCTGCACATAGCTCTGATTGGCAATCTTTTTCTCCCGAAAAGCTAGCTGATTTACGCGAAAAAGGGATTCCAGTTTTTGTAAATTTCACTGCAAAGTGGTGTTTAACGTGTCAACTCAATAAGCCTCTTCTTCATGCCAATATGCAAGCTTTTGCTGCTAAGGGCGTAGTTACTTTAGAAGCAGATTGGACGAAAAAAGATCCAAAAATTACAGAAGAACTCGCTCGTTTAGGCCGAGCCAGTGTACCTTCTTATGTGTATTACCCTGCGGGGAACAAAGCTCCGCTTATTCTTCCAGAAAGATTATCGCAATCTGCTTTGGAAGAGATGGTTTTTTCTCAGTAG>gi|3329000|gb|AAC68161.1| Yop proteins translocation lipoprotein J [Chlamydiatrachomatis][SEQ ID NO:31]MFRYTLSRSLFFILALFFCSACDSRSMITHGLSGRDANEIVVLLVSKGVAAQKVPQAASSTGGSGEQLWDISVPAAQITEALAILNQAGLPRMKGTSLLDLFAKQGLVPSEMQEKIRYQEGLSEQMATTIRKMDGIVDASVQISFSPEEEDQRPLTASVYIKHRGVLDNPNSIMVSKIKRLVASAVPGLCPENVSVVSDRASYSDITINGPWGLSDEMNYVSVWGIILAKHSLTKFRLVFYFLILLLFILSCGLLWVIWKTHTLISALGGTKGFFDPAPYSQLSFTQNKPAPKETPGAAEGAEAQTASEQPSKENAEKQEENNEDA>gi|3328999|gb|AE001327.1:84-1064[SEQ ID NO:32]ATGTTTCGTTATACTCTTTCTCGATCCTTATTTTTCATTTTGGCTCTTTTCTTCTGCTCGGCTTGTGATAGTCGTTCCATGATTACACACGGCTTGTCAGGACGTGATGCTAATGAAATCGTAGTGCTTCTAGTCAGTAAAGGGGTCGCTGCACAGAAAGTTCCCCAAGCAGCGTCCTCAACAGGAGGATCTGGAGAACAACTCTGGGATATTTCGGTTCCTGCAGCACAAATTACAGAGGCTCTAGCTATTCTGAACCAAGCTGGGCTTCCAAGAATGAAAGGAACCAGCCTTCTTGATCTATTCGCTAAACAAGGGCTGGTCCCTTCTGAAATGCAAGAAAAAATCCGCTACCAAGAAGGTCTTTCAGAACAAATGGCTACGACCATTAGAAAGATGGACGGTATCGTCGATGCGAGCGTACAGATTTCCTTTTCTCCTGAAGAAGAAGATCAACGGCCGCTAACAGCCTCTGTATATATCAAACACAGAGGGGTATTAGACAACCCTAACAGTATTATGGTGTCTAAGATTAAACGTTTAGTTGCGAGTGCTGTCCCAGGACTATGTCCCGAGAACGTTTCCGTAGTCAGTGACCGAGCTTCTTATAGTGACATTACTATTAATGGCCCTTGGGGACTCTCCGATGAAATGAATTATGTTTCTGTATGGGGGATCATTCTAGCTAAGCATTCCCTTACTAAATTCCGCCTTGTTTTCTATTTCTTAATTCTCCTTCTCTTCATTCTTTCCTGTGGGCTACTCTGGGTCATTTGGAAAACACACACACTGATTTCTGCTCTGGGTGGAACAAAAGGATTCTTTGATCCTGCTCCTTACTCACAGCTCTCTTTCACTCAGAATAAGCCAGCTCCAAAAGAAACTCCTGGAGCAGCAGAAGGTGCAGAAGCGCAAACCGCTTCGGAACAACCCTCTAAAGAAAACGCAGAAAAACAAGAAGAGAATAACGAGGACGCTTAA>gi|3328905|gb|AAC68071.1| hypothetical protein [Chlamydia trachomatis][SEQ ID NO:33]MEKRGVIVHILVCLLTIFGTFSLPAFGAHFLAEEEQFYMDRFVFSGQYPDMETMEIHAERKKRVQFDVTGSFPKLESVVYKGSFGLLRSKIKGECPELSSVNLSCTSCRMDLDFRGEWKKNASIYIRNEQEPITIMLPKDIGVVVYTQVDMNSKVVAEGSLIKRGRGFWKKTFRNSLVGESPVTLTFHVETRNGGVIFLR>gi|3328891|gb|AE001320.1:c11104-10502[SEQ ID NO:34]ATGGAGAAGAGAGGCGTTATTGTGCATATACTAGTTTGTTTGTTGACAATCTTCGGAACGTTCAGTTTACCCGCTTTCGGCGCGCATTTTCTCGCGGAAGAAGAGCAGTTTTATATGGATCGGTTTGTTTTCTCTGGGCAGTATCCAGATATGGAAACTATGGAAATCCATGCAGAAAGAAAAAAACGTGTACAATTTGATGTGACGGGAAGCTTCCCTAAGTTGGAGAGCGTGGTTTATAAGGGATCTTTTGGATTGCTGCGTTCGAAAATAAAGGGAGAGTGTCCAGAACTGTCTTCTGTAAATCTTTCTTGTACCTCCTGCAGAATGGATTTAGATTTTCGAGGGGAGTGGAAAAAGAATGCGTCTATTTATATTCGTAATGAGCAAGAGCCAATTACAATTATGTTGCCTAAAGACATTGGTGTAGTTGTCTATACGCAGGTTGATATGAATAGTAAAGTAGTTGCAGAGGGATCACTAATCAAGAGAGGAAGAGGTTTTTGGAAGAAAACTTTTCGGAATTCTTTGGTAGGAGAATCCCCTGTGACGCTAACTTTTCATGTAGAGACTCGTAATGGAGGAGTTATTTTTCTCCGTTAG>gi|3328884|gb|AAC68051.1| Phosphatidate Cytidylytransferase [Chlamydiatrachomatis][SEQ ID NO:35]MFDSDHNSIFQSDLCQRLVVHSILLTFLVILLCTSLYPSSAFIVGLLSSACAALGTYEMGAMVRIKFPFSFTRYSALGSAIFIALTCLTARCKMCFPEHIDLLPWFFLFFWTIRLVFKSRHYKLGPIGSTGLALFCMLYVSVPIRLFLHILYGFVHTDTPFVGIWWAIFLIATTKSSDIFGYFFGKAFGKKRIAPVISPNKTVVGFIAGCCGSILVSLLFYSHLPKAFADQIAVPWILIALGTVLGVSGFFGDIIESTFKRDAQIKNSSDLESIGGMLDVLDSLLLSTPIVYAILLITQNRTFLG>gi|3328881|gb|AE001319.1:1804-2721[SEQ ID NO:36]ATGTTCGATTCGGATCATAATTCCATTTTTCAAAGCGATTTGTGTCAGCGTCTGGTCGTCCACTCGATTCTTCTTACTTTCCTTGTCATTCTTCTCTGTACATCTTTATATCCCAGCTCAGCCTTTATTGTAGGGCTTCTTTCCTCCGCTTGCGCAGCTCTAGGAACATATGAGATGGGGGCTATGGTTAGAATCAAGTTTCCATTTTCTTTCACACGCTATAGTGCATTAGGATCCGCTATTTTCATTGCTCTGACCTGTCTTACAGCTCGTTGTAAAATGTGTTTTCCAGAGCATATAGACCTACTTCCTTGGTTCTTTCTCTTCTTTTGGACGATTCGCTTAGTATTTAAAAGTCGCCATTATAAACTTGGTCCCATAGGCTCAACTGGGCTCGCGTTGTTTTGTATGCTTTATGTATCAGTCCCTATCCGCTTGTTCCTCCACATTTTGTATGGGTTTGTGCATACCGATACTCCATTTGTAGGAATTTGGTGGGCGATTTTTCTTATCGCTACAACAAAAAGCTCTGATATTTTTGGTTACTTCTTTGGAAAAGCTTTTGGGAAAAAACGCATTGCACCAGTCATTAGCCCGAACAAAACAGTAGTAGGCTTCATTGCTGGTTGCTGTGGATCTATCTTGGTTAGCCTTCTTTTCTACTCCCATCTTCCTAAAGCCTTTGCTGATCAGATTGCGGTGCCTTGGATCCTCATTGCTTTAGGTACTGTGTTGGGCGTTAGTGGATTCTTTGGAGACATTATCGAATCTACGTTCAAACGGGATGCACAGATCAAGAACAGCAGTGATCTGGAGTCTATCGGAGGAATGCTAGATGTGCTAGACTCCTTGCTTCTTTCGACTCCTATCGTTTACGCTATCCTCCTTATCACTCAAAATAGGACATTTTTAGGATGA>gi|3328855|gb|AAC68022.1| hypothetical protein [Chlamydia trachomatis][SEQ ID NO:37]MRRSVCYVTPSVARAGQISTWRFEYSSANFLPEGTLLKFDLGIDGRPIDWEIPSTDLSQPCNTIYLETPSEDIVAAKAVYAPGGYIPTFEFTLPCDVEAGDTFSIILGSSPNFPQEDSSGNGAQLFTQRRKPFSLYVDPSGKGSFEDPDIFTMDIRGNVLKNIRIFAPSYVIKNKRFDITVRFEDEFGNLTNFSPEETHIELSYEHLRENLNWQLFIPETGFVILPNLYFNEPGIYRIQLRNQATKEVFTSAPIKCFAETSSHLLWGLLHGESERVDSEGNIESCLRYFRDDCALNFFATSSFEIQDGLTPETIKTINQTVADFNEEDRFIALSGAQYLSEEPGEGIREVLLMKEPKSPGKHKECKLFPLSKLYKQSTSHELISIPSFTASKKFGYNFNNFHPEFERVVEIYNAWGCSERTEAEGNPFPIKGSIDSENPEGTVLSALKRNLRFGFVAGGLDDRNLYNHFFDSDQQQYSPGLTAVICNKYSRDSLLEALYQRQCYATTGQRIIVNFQITSAPMGSELSTAIKPGLVINRHISGYVAGTAKIASIEIIRNEDILHTFHPDGNNFEYEYDDLSPFAQVTLKDPQNGAPFAFYYLRVTQENGAMAWSSPIWIDLN>gi|3328850|gb|AE001316.1:4105-5970[SEQ ID NO:38]ATGCGCAGATCTGTTTGTTACGTTACTCCTTCAGTTGCTAGGGCTGGTCAAATTTCTACCTGGCGTTTCGAATATTCTTCAGCTAATTTCCTTCCCGAAGGCACATTGCTAAAATTTGACCTGGGAATAGACGGACGCCCTATAGACTGGGAGATTCCTTCTACAGATCTTTCTCAACCATGTAATACAATTTATTTAGAAACGCCTTCCGAGGATATTGTGGCTGCAAAAGCTGTGTATGCTCCCGGAGGCTATATCCCTACTTTCGAATTTACTCTCCCTTGTGATGTGGAAGCTGGGGACACTTTCTCTATTATTCTTGGCTCCTCTCCCAACTTCCCTCAAGAGGACTCTTCAGGTAATGGTGCTCAATTATTTACTCAACGCCGTAAACCTTTCTCTCTTTATGTTGACCCATCAGGGAAAGGATCTTTTGAAGATCCCGATATCTTCACAATGGATATCAGAGGAAATGTATTAAAAAATATCCGGATTTTTGCTCCTTCTTATGTGATCAAAAACAAACGCTTTGATATTACAGTGCGCTTCGAAGATGAATTTGGGAACTTAACCAATTTCTCCCCAGAAGAGACCCATATCGAGCTTTCGTACGAACATCTTCGCGAAAACCTCAATTGGCAATTGTTCATCCCTGAAACAGGCTTTGTGATCCTTCCAAACCTGTATTTCAATGAACCAGGTATTTATCGTATTCAACTACGCAATCAAGCAACAAAAGAGGTCTTTACATCAGCGCCTATCAAATGTTTTGCAGAAACCTCCTCTCATCTTTTGTGGGGGCTTCTACATGGAGAATCTGAACGTGTCGACTCTGAAGGTAATATCGAGTCTTGCTTGCGTTATTTTCGTGATGACTGCGCGTTAAACTTTTTTGCAACATCCTCTTTCGAAATTCAAGATGGCCTGACCCCAGAAACCATTAAAACCATTAACCAAACCGTTGCTGATTTTAATGAAGAAGATCGTTTCATTGCCTTATCCGGAGCACAGTACCTTTCTGAAGAGCCTGGCGAGGGAATTCGTGAAGTATTGCTGATGAAGGAACCCAAATCCCCAGGGAAACATAAAGAATGCAAACTATTTCCTTTATCTAAGCTATATAAGCAATCAACTAGTCATGAGTTAATCTCAATCCCCAGCTTCACTGCTTCAAAGAAATTTGGATACAATTTTAATAATTTCCATCCTGAATTTGAAAGAGTTGTTGAAATTTATAATGCCTGGGGATGCTCTGAAAGAACTGAAGCTGAAGGAAACCCTTTCCCTATTAAAGGTTCTATCGACTCAGAAAATCCAGAGGGAACTGTTCTATCTGCTTTAAAGAGAAACCTGCGTTTTGGATTCGTAGCCGGTGGTCTTGATGATAGAAATCTATACAATCACTTTTTTGATTCCGATCAACAGCAATACTCCCCTGGATTAACAGCTGTGATCTGCAATAAATATTCTCGGGATTCCTTACTCGAGGCATTATACCAACGACAATGCTATGCTACAACCGGCCAAAGAATTATCGTGAATTTCCAGATTACATCTGCTCCTATGGGCTCCGAACTCTCCACAGCCATTAAACCAGGGCTCGTGATCAATAGACATATTTCGGGATATGTAGCAGGAACTGCCAAGATTGCGTCGATCGAAATCATCCGCAATGAGGATATTCTCCATACCTTCCACCCAGATGGAAATAACTTTGAGTATGAGTACGACGATCTCTCTCCTTTTGCACAAGTCACTCTAAAAGATCCTCAAAATGGAGCTCCTTTTGCTTTTTACTACTTACGAGTCACTCAAGAGAATGGAGCTATGGCTTGGAGCTCTCCTATTTGGATAGATCTTAACTAA>gi|3328772|gb|AAC67946.1| hypothetical protein [Chlamydia trachomatis][SEQ ID NO:39]MKRFFPLFIGVLLAHTLPSEGLSHQQAVQKKISYLSHFKGITGIMDVEDGVLHIHDDLRLQANKAYVENRTDCGIKIVAHGNVMVNYRGKILICDYLEYYEDTDSCLLTNGRCSLYPWFIGGSTITISPSSIIIHKGYISTSEGPQKHICLSGDYLKYSSDSVLSMGPSRLSICNTPVLLLPQISIMPMEIPKPPITFRGGSGGFLGSYLGVSYSPISKKHCSTTLFLDGFFKHGIGLGYNMRFSSQENPSNAINIKSYYAHRLAIDSSGAKDRYRLHGDFTFSKERAHLAGEFHLSDSWETVVDIFPNNFSLKNTGPTEVSLSWRDNNLFGKMTSSVKVNSFQNVKQELPQAILHHRPVRIRRSRIFLENRLEAGFLDFHFSSNIPGSNFSSWRFSSAHKVYRGLVLPIGTLTPSLSGTAIYYTRMLSPNAAHCQLSGSLSFDYRVALQKEYRHARHIVEPFCSFLKTTRPVLSSDEPHIFSIKDAFHSINLLHVGLESKVLNKHSTPSHLKLWTTYIFDEPHAKDTFPKTACWFSLPLTLQNTLSLDAEWIWKKSRWDHLNVIWEWILNDNLGLTLEFLHRSKYGFIKCAKDNYTLDVSRSLDTLLASPLSDRRNLITGKLFVRPHPHWNYNLNLRYGWHRPDSPSYLEYQMILGHKIFEHWQLFSVYEKREADKRCFFYLKLDKRKQKHRHPFG>gi|3328766|gb|AE001308.1:6085-8178[SEQ ID NO:40]GTGAAACGATTTTTCCCACTTTTTATTGGAGTGCTGCTCGCGCACACTTTGCCGTCAGAAGGTCTTTCTCATCAACAAGCTGTCCAAAAAAAAATTTCTTATCTGAGCCATTTTAAAGGCATTACAGGAATTATGGATGTTGAGGATGGGGTATTACATATCCATGATGATCTACGTCTTCAAGCCAATAAAGCCTATGTTGAAAATCGCACGGATTGTGGGATCAAAATCGTTGCTCATGGCAACGTTATGGTCAATTATCGCGGGAAAATTTTAATCTGTGATTATCTTGAGTACTATGAAGATACAGATTCTTGTTTACTCACCAATGGCCGCTGTTCGTTATACCCATGGTTCATTGGAGGATCCACTATAACGATCTCACCATCTTCTATTATCATTCATAAAGGGTATATCTCGACTTCTGAAGGTCCTCAGAAACATATTTGTTTATCCGGAGATTATTTAAAATACTCTTCAGACAGCGTATTATCTATGGGACCCTCACGTCTTTCTATCTGTAATACGCCTGTGTTATTGCTTCCTCAAATCTCCATTATGCCTATGGAGATTCCTAAGCCTCCGATTACTTTTCGAGGTGGGAGTGGAGGATTTCTGGGATCCTACTTAGGTGTTAGTTATTCCCCTATATCTAAAAAGCATTGTTCTACGACTTTGTTCTTGGATGGTTTTTTTAAACATGGAATAGGTCTCGGCTATAACATGCGCTTTTCCTCTCAGGAAAATCCAAGCAATGCCATAAATATTAAAAGCTATTACGCACATCGATTAGCTATTGATTCATCAGGAGCAAAAGATCGCTATCGATTACATGGAGACTTCACTTTTTCCAAAGAACGAGCCCATCTTGCTGGTGAATTCCATTTAAGTGATAGCTGGGAAACAGTTGTGGATATCTTCCCAAATAACTTCTCTTTAAAAAATACAGGCCCTACAGAAGTTAGCCTATCATGGCGCGATAACAATTTATTTGGGAAAATGACTTCCTCTGTCAAAGTCAACTCCTTTCAAAATGTTAAACAAGAATTGCCTCAAGCAATTCTTCATCACCGACCAGTACGTATCAGGCGCTCTCGCATTTTCCTAGAGAATCGCTTAGAAGCTGGTTTTTTAGATTTTCATTTCAGTAGTAATATTCCAGGCTCTAACTTCTCATCATGGAGGTTCTCATCCGCTCACAAAGTCTACCGTGGGCTTGTTCTTCCTATAGGAACGTTAACCCCTTCGCTATCTGGAACTGCTATCTACTATACCCGCATGCTCTCCCCAAATGCAGCCCATTGTCAATTATCTGGATCGCTATCTTTTGATTATCGCGTTGCTTTACAAAAAGAATATCGGCATGCAAGACATATTGTAGAGCCTTTTTGCTCCTTTTTAAAAACCACTCGTCCTGTATTATCCTCTGATGAGCCTCATATTTTCTCGATTAAAGATGCTTTTCACTCTATCAACCTTCTACATGTAGGATTGGAGTCAAAAGTCTTAAACAAACATTCCACTCCTTCGCATCTGAAACTATGGACGACCTATATCTTTGATGAACCTCACGCTAAGGACACTTTCCCTAAAACTGCTTGCTGGTTCTCTCTTCCTCTTACACTCCAAAATACTTTATCCTTAGATGCGGAATGGATTTGGAAAAAAAGCCGATGGGATCATCTCAATGTAATCTGGGAATGGATTTTGAATGATAATCTCGGTCTTACTTTAGAATTTTTACATAGAAGTAAGTATGGCTTTATTAAGTGCGCTAAAGATAACTACACACTCGATGTAAGCCGATCTTTAGACACATTACTAGCCTCTCCTCTTTCCGATCGAAGAAATTTGATTACTGGCAAACTTTTTGTTCGTCCACATCCTCATTGGAATTATAATCTTAATCTTCGTTATGGATGGCATCGTCCAGACTCTCCATCCTATTTAGAATACCAGATGATTCTGGGTCATAAAATCTTTGAGCACTGGCAGCTATTCTCTGTCTACGAAAAACGTGAAGCTGATAAGCGCTGCTTCTTTTATCTAAAATTAGATAAACGAAAACAGAAACACCGCCATCCTTTTGGATAA>gi|3329347|gb|AAC68470.| Putative Outer Membrane Protein H [Chlamydiatrachomatis][SEQ ID NO:41]MPFSLRSTSFCFLACLCSYSYGFASSPQVLTPNVTTPFKGDDVYLNGDCAFVNVYAGAENGSIISANGDNLTITGQNHTLSFTDSQGPVLQNYAFISAGETLTLKDFSSLMFSKNVSCGEKGMISGKTVSISGAGEVIFWDNSVGYSPLSIVPASTPTPPAPAPAPAASSSLSPTVSDARKGSIFSVETSLEISGVKKGVMFDNNAGNFGTVFRGNSNNNAGSGGSGSATTPSFTVKNCKGKVSFTDNVASCGGGVVYKGTVLFKDNEGGIFFRGNTAYDDLGILAATSRDQNTETGGGGGVICSPDDSVKFEGNKGSIVFDYNFAKGRGGSILTKEFSLVADDSVVFSNNTAEKGGGAIYAPTIDISTNGGSILFERNRAAEGGAICVSEASSGSTGNLTLSASDGDIVFSGNMTSDRPGERSAARILSDGTTVSLNASGLSKLIFYDPVVQNNSAAGASTPSPSSSSMPGAVTINQSGNGSVIFTAESLTPSEKLQVLNSTSNFPGALTVSGGELVVTEGATLTTGTITATSGRVTLGSGASLSAVAGAANNNYTCTVSKLGIDLESFLTPNYKTAILGADGTVTVNSGSTLDLVMESEAEVYDNPLFVGSLTIPFVTLSSSSASNGVTKNSVTINDADAAHYGYQGSWSADWTKPPLAPDAKGMVPPNTNNTLYLTWRPASNYGEYRLDPQRKGELVPNSLWVAGSALRTFTNGLKEHYVSRDVGFVASLHALGDYILNYTQDDRDGFLARYGGFQATAASHYENGSIFGVAFGQLYGQTKSRMYYSKDAGNMTMLSCFGRSYVDIKGTETVMYWETAYGYSVHRMHTQYFNDKTQKFDHSKCHWHNNNYYAFVGAEHNFLEYCIPTRQFARDYELTGFMRFEMAGGWSSSTRETGSLTRYFARGSGHNMSLPIGIVAHAVSHVRRSPPSKLTLNMGYRPDIWRVTPHCNMEIIANGVKTPIQGSPLARHAFFLEVHDTLYIHHFGRAYMNYSLDARRRQTAHFVSMGLNRIF>gi|3329342|gb|AE001360.1:10808-13858[SEQ ID NO:42]ATGCCTTTTTCTTTGAGATCTACATCATTTTGTTTTTTAGCTTGTTTGTGTTCCTATTCGTATGGATTCGCGAGCTCTCCTCAAGTGTTAACACCTAATGTAACCACTCCTTTTAAGGGGGACGATGTTTACTTGAATGGAGACTGCGCTTTTGTCAATGTCTATGCAGGGGCAGAGAACGGCTCAATTATCTCAGCTAATGGCGACAATTTAACGATTACCGGACAAAACCATACATTATCATTTACAGATTCTCAAGGGCCAGTTCTTCAAAATTATGCCTTCATTTCAGCAGGAGAGACACTTACTCTGAAAGATTTTTCGAGTTTGATGTTCTCGAAAAATGTTTCTTGCGGAGAAAAGGGAATGATCTCAGGGAAAACCGTGAGTATTTCCGGAGCAGGCGAAGTGATTTTTTGGGATAACTCTGTGGGGTATTCTCCTTTGTCTATTGTGCCAGCATCGACTCCAACTCCTCCAGCACCAGCACCAGCTCCTGCTGCTTCAAGCTCTTTATCTCCAACAGTTAGTGATGCTCGGAAAGGGTCTATTTTTTCTGTAGAGACTAGTTTGGAGATCTCAGGCGTCAAAAAAGGGGTCATGTTCGATAATAATGCCGGGAATTTTGGAACAGTTTTTCGAGGTAATAGTAATAATAATGCTGGTAGTGGGGGTAGTGGGTCTGCTACAACACCAAGTTTTACAGTTAAAAACTGTAAAGGGAAAGTTTCTTTCACAGATAACGTAGCCTCCTGTGGAGGCGGAGTAGTCTACAAAGGAACTGTGCTTTTCAAAGACAATGAAGGAGGCATATTCTTCCGAGGGAACACAGCATACGATGATTTAGGGATTCTTGCTGCTACTAGTCGGGATCAGAATACGGAGACAGGAGGCGGTGGAGGAGTTATTTGCTCTCCAGATGATTCTGTAAAGTTTGAAGGCAATAAAGGTTCTATTGTTTTTGATTACAACTTTGCAAAAGGCAGAGGCGGAAGCATCCTAACGAAAGAATTCTCTCTTGTAGCAGATGATTCGGTTGTCTTTAGTAACAATACAGCAGAAAAAGGCGGTGGAGCTATTTATGCTCCTACTATCGATATAAGCACGAATGGAGGATCGATTCTATTTGAAAGAAACCGAGCTGCAGAAGGAGGCGCCATCTGCGTGAGTGAAGCAAGCTCTGGTTCAACTGGAAATCTTACTTTAAGCGCTTCTGATGGGGATATTGTTTTTTCTGGGAATATGACGAGTGATCGTCCTGGAGAGCGCAGCGCAGCAAGAATCTTAAGTGATGGAACGACTGTTTCTTTAAATGCTTCCGGACTATCGAAGCTGATCTTTTATGATCCTGTAGTACAAAATAATTCAGCAGCGGGTGCATCGACACCATCACCATCTTCTTCTTCTATGCCTGGTGCTGTCACGATTAATCAGTCCGGTAATGGATCTGTGATTTTTACCGCCGAGTCATTGACTCCTTCAGAAAAACTTCAAGTTCTTAACTCTACTTCTAACTTCCCAGGAGCTCTGACTGTGTCAGGAGGGGAGTTGGTTGTGACGGAAGGAGCTACCTTAACTACTGGGACCATTACAGCCACCTCTGGACGAGTGACTTTAGGATCCGGAGCTTCGTTGTCTGCCGTTGCAGGTGCTGCAAATAATAATTATACTTGTACAGTATCTAAGTTGGGGATTGATTTAGAATCCTTTTTAACTCCTAACTATAAGACGGCCATACTGGGTGCGGATGGAACAGTTACTGTTAACAGCGGCTCTACTTTAGACCTAGTGATGGAGAGTGAGGCAGAGGTATATGATAATCCGCTTTTTGTGGGATCGCTGACAATTCCTTTTGTTACTCTATCTTCTAGTAGTGCTAGTAACGGAGTTACAAAAAATTCTGTCACTATTAATGATGCAGACGCTGCGCACTATGGGTATCAAGGCTCTTGGTCTGCAGATTGGACGAAACCGCCTCTGGCTCCTGATGCTAAGGGGATGGTACCTCCTAATACCAATAACACTCTGTATCTGACATGGAGACCTGCTTCGAATTACGGTGAATATCGACTGGATCCTCAGAGAAAGGGAGAACTAGTACCCAACTCTCTTTGGGTAGCGGGATCTGCATTAAGAACCTTTACTAATGGTTTGAAAGAACACTATGTTTCTAGAGATGTTGGATTTGTAGCATCTCTGCATGCTCTCGGGGATTATATTTTGAATTATACGCAAGATGATCGGGATGGCTTTTTAGCTAGATATGGGGGATTCCAGGCGACCGCAGCCTCCCATTATGAAAATGGGTCAATATTTGGAGTGGCTTTTGGACAACTCTATGGTCAGACAAAGAGCAGAATGTATTACTCTAAAGATGCTGGGAACATGACGATGTTGTCCTGTTTCGGAAGAAGTTACGTAGATATTAAAGGAACAGAAACTGTTATGTATTGGGAGACGGCTTATGGCTATTCTGTGCACAGAATGCATACGCAGTATTTTAATGACAAAACGCAGAAGTTCGATCATTCGAAATGTCATTGGCACAACAATAACTATTATGCGTTTGTGGGTGCCGAGCATAATTTCTTAGAGTACTGCATTCCTACTCGTCAGTTCGCTAGAGATTATGAGCTTACAGGGTTTATGCGTTTTGAAATGGCCGGAGGATGGTCCAGTTCTACACGAGAAACTGGCTCCCTAACTAGATATTTCGCTCGCGGGTCAGGGCATAATATGTCGCTTCCAATAGGAATTGTAGCTCATGCAGTTTCTCATGTGCGAAGATCTCCTCCTTCTAAACTGACACTAAATATGGGATATAGACCAGACATTTGGCGTGTCACTCCACATTGCAATATGGAAATTATTGCTAACGGAGTGAAGACACCTATACAAGGATCTCCGCTGGCACGGCATGCCTTCTTCTTAGAAGTGCATGATACTTTGTATATTCATCATTTTGGAAGAGCCTATATGAACTATTCGCTGGATGCTCGTCGTCGACAAACGGCACATTTTGTATCCATGGGCTTGAATAGAATCTTTTAA>gi|3328874|gb|AAC68042.1|60kDa Cysteine-Rich OMP [Chlamydia trachomatis][SEQ ID NO:43]MRIGDPMNKLIRRAVTIFAVTSVASLFASGVLETSMAESLSTNVISLADTKAKDNTSHKSKKARKNHSKETPVDRKEVAPVHESKATGPKQDSCFGRMYTVKVNDDRNVEITQAVPEYATVGSPYPIEITATGKRDCVDVIITQQLPCEAEFVRSDPATTPTADGKLVWKIDRLGQGEKSKITVWVKPLKEGCCFTAATVCACPEIRSVTKCGQPAICVKQEGPENACLRCPVVYKINIVNQGTATARNVVVENPVPDGYAHSSGQRVLTFTLGDMQPGEHRTITVEFCPLKRGRATNIATVSYCGGHKNTASVTTVINEPCVQVSIAGADWSYVCKPVEYVISVSNPGDLVLRDVVVEDTLSPGVTVLEAAGAQISCNKVVWTVKELNPGESLQYKVLVRAQTPGQFTNNVVVKSCSDCGTCTSCAEATTYWKGVAATHMCVVDTCDPVCVGENTVYRICVTNRGSAEDTNVSLMLKFSKELQPVSFSGPTKGTITGNTVVFDSLPRLGSKETVEFSVTLKAVSAGDARGEAILSSDTLTVPVSDTENTHIY>gi|3328863|gb|AE001317.1:c11039-9378[SEQ ID NO:44]ATGCGAATAGGAGATCCTATGAACAAACTCATCAGACGAGCAGTGACGATCTTCGCGGTGACTAGTGTGGCGAGTTTATTTGCTAGCGGGGTGTTAGAGACCTCTATGGCAGAGTCTCTCTCTACAAACGTTATTAGCTTAGCTGACACCAAAGCGAAAGACAACACTTCTCATAAAAGCAAAAAAGCAAGAAAAAACCACAGCAAAGAGACTCCCGTAGACCGTAAAGAGGTTGCTCCGGTTCATGAGTCTAAAGCTACAGGACCTAAACAGGATTCTTGCTTTGGCAGAATGTATACAGTCAAAGTTAATGATGATCGCAATGTTGAAATCACACAAGCTGTTCCTGAATATGCTACGGTAGGATCTCCCTATCCTATTGAAATTACTGCTACAGGTAAAAGGGATTGTGTTGATGTTATCATTACTCAGCAATTACCATGTGAAGCAGAGTTCGTACGCAGTGATCCAGCGACAACTCCTACTGCTGATGGTAAGCTAGTTTGGAAAATTGACCGCTTAGGACAAGGCGAAAAGAGTAAAATTACTGTATGGGTAAAACCTCTTAAAGAAGGTTGCTGCTTTACAGCTGCAACAGTATGCGCTTGTCCAGAGATCCGTTCGGTTACAAAATGTGGACAACCTGCTATCTGTGTTAAACAAGAAGGCCCAGAGAATGCTTGTTTGCGTTGCCCAGTAGTTTACAAAATTAATATAGTGAACCAAGGAACAGCAACAGCTCGTAACGTTGTTGTTGAAAATCCTGTTCCAGATGGTTACGCTCATTCTTCTGGACAGCGTGTACTGACGTTTACTCTTGGAGATATGCAACCTGGAGAGCACAGAACAATTACTGTAGAGTTTTGTCCGCTTAAACGTGGTCGTGCTACCAATATAGCAACGGTTTCTTACTGTGGAGGACATAAAAATACAGCAAGCGTAACAACTGTGATCAACGAGCCTTGCGTACAAGTAAGTATTGCAGGAGCAGATTGGTCTTATGTTTGTAAGCCTGTAGAATATGTGATCTCCGTTTCCAATCCTGGAGATCTTGTGTTGCGAGATGTCGTCGTTGAAGACACTCTTTCTCCCGGAGTCACAGTTCTTGAAGCTGCAGGAGCTCAAATTTCTTGTAATAAAGTAGTTTGGACTGTGAAAGAACTGAATCCTGGAGAGTCTCTACAGTATAAAGTTCTAGTAAGAGCACAAACTCCTGGACAATTCACAAATAATGTTGTTGTGAAGAGCTGCTCTGACTGTGGTACTTGTACTTCTTGCGCAGAAGCGACAACTTACTGGAAAGGAGTTGCTGCTACTCATATGTGCGTAGTAGATACTTGTGACCCTGTTTGTGTAGGAGAAAATACTGTTTACCGTATTTGTGTCACCAACAGAGGTTCTGCAGAAGATACAAATGTTTCTTTAATGCTTAAATTCTCTAAAGAACTGCAACCTGTATCCTTCTCTGGACCAACTAAAGGAACGATTACAGGCAATACAGTAGTATTCGATTCGTTACCTAGATTAGGTTCTAAAGAAACTGTAGAGTTTTCTGTAACATTGAAAGCAGTATCAGCTGGAGATGCTCGTGGGGAAGCGATTCTTTCTTCCGATACATTGACTGTTCCAGTTTCTGATACAGAGAATACACACATCTATTAA>gi|3328841|gb|AAC68010.1| Putative outer membrane protein B [Chlamydiatrachomatis][SEQ ID NO:45]MKWLSATAVFAAVLPSVSGFCFPEPKELNFSRVGTSSSTTFTETVGEAGAEYIVSGNASFTKFTNIPTTDTTTPTNSNSSSSNGETASVSEDSDSTTTTPDPKGGGAFYNAHSGVLSFMTRSGTEGSLTLSEIKITGEGGAIFSQGELLFTDLTGLTIQNNLSQLSGGAIFGESTISLSGITKATFSSNSAEVPAPVKKPTEPKAQTASETSGSSSSSGNDSVSSPSSSRAEPAAANLQSHFICATATPAAQTDTETSTPSHKPGSGGAIYAKGDLTIADSQEVLFSINKATKDGGAIFAEKDVSFENITSLKVQTNGAEEKGGAIYAKGDLSIQSSKQSLFNSNYSKQGGGALYVEGDINFQDLEEIRIKYNKAGTFETKKITLPKAQASAGNADAWASSSPQSGSGATTVSNSGDSSSGSDSDTSETVPATAKGGGLYTDKNLSITNITGIIEIANNKATDVGGGAYVKGTLTCENSHRLQFLKNSSDKQGGGIYGEDNITLSNLTGKTLFQENTAKEEGGGLFIKGTDKALTMTGLDSFCLINNTSEKHGGGAFVTKEISQTYTSDVETIPGITPVHGETVITGNKSTGGNGGGVCTKRLALSNLQSISISGNSAAENGGGAHTCPDSFPTADTAEQPAAASAATSTPESAPVVSTALSTPSSSTVSSLTLLAASSQASPATSNKETQDPNADTDLLIDYVVDTTISKNTAKKGGGIYAKKAKMSRIDQLNISENSATEIGGGICCKESLELDALVSLSVTENLVGKEGGGLHAKTVNISNLKSGFSFSNNKANSSSTGVATTASAPAAAAASLQAAAAAVPSSPATPTYSGVVGGAIYGEKVTFSQCSGTCQFSGNQAIDNNPSQSSLNVQGGAIYAKTSLSIGSSDAGTSYIFSGNSVSTGKSQTTGQIAGGAIYSPTVTLNCPATFSNNTASMATPKTSSEDGSSGNSIKDTIGGAIAGTAITLSGVSRFSGNTADLGAAIGTLANANTPSATSGSQNSITEKITLENGSFIFERNQANKRGAIYSPSVSIKGNNITFNQNTSTHDGSAIYFTKDATIESLGSVLFTGNNVTATQASSATSGQNTNTANYGAAIFGDPGTTQSSQTDAILTLLASSGNITFSNNSLQNNQGDTPASKFCSIAGYVKLSLQAAKGKTISFFDCVHTSTKKIGSTQNVYETLDINKEENSNPYTGTIVFSSELHENKSYIPQNAILHNGTLVLKEKTELHVVSFEQKEGSKLIMKPGAVLSNQNIANGALVINGLTIDLSSMGTPQAGEIFSPPELRIVATTSSASGGSGVSSSIPTNPKRISAAAPSGSAATTPTMSENKVFLTGDLTLIDPNGNFYQNPMLGSDLDVPLIKLPTNTSDVQVYDLTLSGDLFPQKGYMGTWTLDSNPQTGKLQARWTFDTYRRWVYIPRDNHFYANSILGSQNSMIVVKQGLINNMLNNARFDDIAYNNFWVSGVGTFLAQQGTPLSEEFSYYSRGTSVAIDAKPRQDFILGAAFSKMVGKTKAIKKMHNYFHKGSEYSYQASVYGGKFLYFLLNKQHGWALPFLIQGVVSYGHIKHDTTTLYPSIHERNKGDWEDLGWLADLRISMDLKEPSKDSSKRITVYGELEYSSIRQKQFTEIDYDPRHFDDCAYRNLSLPVGCAVEGAIMNCNILMYNKLALAYMPSIYRNNPVCKYRVLSSNEAGQVICGVPTRTSARAEYSTQLYLGPFWTLYGNYTIDVGMYTLSQMTSCGARMIF>gi|3328833|gb|AE001314.1:9601-14856[SEQ ID NO:46]ATGAAATGGCTGTCAGCTACTGCGGTGTTTGCTGCTGTTCTCCCCTCAGTTTCAGGGTTTTGCTTCCCAGAACCTAAAGAATTAAATTTCTCTCGCGTAGGAACTTCTTCCTCTACCACTTTTACTGAAACAGTTGGAGAAGCTGGGGCAGAATATATCGTCTCTGGTAACGCATCTTTCACAAAATTTACCAACATTCCTACTACCGATACAACAACTCCCACGAACTCAAACTCCTCTAGCTCTAACGGAGAGACTGCTTCCGTTTCTGAGGATAGTGACTCTACAACAACGACTCCTGATCCTAAAGGTGGCGGCGCCTTTTATAACGCGCACTCCGGAGTTTTATCCTTTATGACACGATCAGGAACAGAAGGTTCCTTAACTCTGTCTGAGATAAAAATAACTGGTGAAGGCGGTGCTATCTTCTCTCAAGGAGAGCTGCTATTTACAGATCTGACAGGTCTAACCATCCAAAATAACTTATCCCAGCTATCCGGAGGAGCGATTTTTGGAGAATCTACAATCTCCCTATCAGGGATTACTAAAGCGACTTTCTCCTCCAACTCTGCAGAAGTTCCTGCTCCTGTTAAGAAACCTACAGAACCTAAAGCTCAAACAGCAAGCGAAACGTCGGGTTCTAGTAGTTCTAGCGGAAATGATTCGGTGTCTTCCCCCAGTTCCAGTAGAGCTGAACCCGCAGCAGCTAATCTTCAAAGTCACTTTATTTGTGCTACAGCTACTCCTGCTGCTCAAACCGATACAGAAACATCAACTCCCTCTCATAAGCCAGGATCTGGGGGAGCTATCTATGCTAAAGGCGACCTTACTATCGCAGACTCTCAAGAGGTACTATTCTCAATAAATAAAGCTACTAAAGATGGAGGAGCGATCTTTGCTGAGAAAGATGTTTCTTTCGAGAATATTACATCATTAAAAGTACAAACTAACGGTGCTGAAGAAAAGGGAGGAGCTATCTATGCTAAAGGTGACCTCTCAATTCAATCTTCTAAACAGAGTCTTTTTAATTCTAACTACAGTAAACAAGGTGGTGGGGCTCTATATGTTGAAGGAGATATAAACTTCCAAGATCTTGAAGAAATTCGCATTAAGTACAATAAAGCTGGAACGTTCGAAACAAAAAAAATCACTTTACCAAAAGCTCAAGCATCTGCAGGAAATGCAGATGCTTGGGCCTCTTCCTCTCCTCAATCTGGTTCTGGAGCAACTACAGTCTCCAACTCAGGAGACTCTAGCTCTGGCTCAGACTCGGATACCTCAGAAACAGTTCCAGCCACAGCTAAAGGCGGTGGGCTTTATACTGATAAGAATCTTTCGATTACTAACATCACAGGAATTATCGAAATTGCAAATAACAAAGCGACAGATGTTGGAGGTGGTGCTTACGTAAAAGGAACCCTTACTTGTGAAAACTCTCACCGTCTACAATTTTTGAAAAACTCTTCCGATAAACAAGGTGGAGGAATCTACGGAGAAGACAACATCACCCTATCTAATTTGACAGGGAAGACTCTATTCCAAGAGAATACTGCCAAAGAAGAGGGCGGTGGACTCTTCATAAAAGGTACAGATAAAGCTCTTACAATGACAGGACTGGATAGTTTCTGTTTAATTAATAACACATCAGAAAAACATGGTGGTGGAGCCTTTGTTACCAAAGAAATCTCTCAGACTTACACCTCTGATGTGGAAACAATTCCAGGAATCACGCCTGTACATGGTGAAACAGTCATTACTGGCAATAAATCTACAGGAGGTAATGGTGGAGGCGTGTGTACAAAACGTCTTGCCTTATCTAACCTTCAAAGCATTTCTATATCCGGGAATTCTGCAGCTGAAAATGGTGGTGGAGCCCACACATGCCCAGATAGCTTCCCAACGGCGGATACTGCAGAACAGCCCGCAGCAGCTTCTGCCGCGACGTCTACTCCCGAGTCTGCCCCAGTGGTCTCAACTGCTCTAAGCACACCTTCATCTTCTACCGTCTCTTCATTAACCTTACTACCAGCCTCTTCACAAGCCTCTCCTGCAACCTCTAATAAGGAAACTCAAGATCCTAATGCTGATACAGACTTATTGATCGATTATGTAGTTGATACGACTATCAGCAAAAACACTGCTAAGAAAGGCGGTGGAATCTATGCTAAAAAAGCCAAGATGTCCCGCATAGACCAACTGAATATCTCTGAGAACTCCGCTACAGAGATAGGTGGAGGTATCTGCTGTAAAGAATCTTTAGAACTAGATGCCCTAGTCTCCTTATCTGTAACAGAGAACCTTGTTGGGAAAGAAGGTGGAGGCTTACATGCTAAAACTGTAAATATTTCTAATCTGAAATCAGGCTTCTCTTTCTCGAACAACAAAGCAAACTCCTCATCCACAGGAGTCGCAACAACAGCTTCAGCACCTGCTGCAGCTGCTGCTTCCCTACAAGCAGCCGCAGCAGCCGTACCATCATCTCCAGCAACACCAACTTATTCAGGTGTAGTAGGAGGAGCTATCTATGGAGAAAAGGTTACATTCTCTCAATGTAGCGGGACTTGTCAGTTCTCTGGGAACCAAGCTATCGATAACAATCCCTCCCAATCATCGTTGAACGTACAAGGAGGAGCCATCTATGCCAAAACCTCTTTGTCTATTGGATCTTCCGATGCTGGAACCTCCTATATTTTCTCGGGGAACAGTGTCTCCACTGGGAAATCTCAAACAACAGGGCAAATAGCGGGAGGAGCGATCTACTCCCCTACTGTTACATTGAATTGTCCTGCGACATTCTCTAACAATACAGCCTCTATGGCTACACCAAAGACTTCTTCTGAAGATGGATCCTCAGGAAATTCTATTAAAGATACCATTGGAGGAGCCATTGCAGGGACAGCCATTACCCTATCTGGAGTCTCTCGATTTTCAGGGAATACGGCTGATTTAGGAGCTGCAATAGGAACTCTAGCTAATGCAAATACACCCAGTGCAACTAGCGGATCTCAAAATAGCATTACAGAAAAAATTACTTTAGAAAACGGTTCTTTTATTTTTGAAAGAAACCAAGCTAATAAACGTGGAGCGATTTACTCTCCTAGCGTTTCCATTAAAGGGAATAATATTACCTTCAATCAAAATACATCCACTCATGATGGAAGTGCTATCTACTTTACAAAAGATGCTACGATTGAGTCTTTAGGATCTGTTCTTTTTACAGGAAATAACGTTACAGCTACACAAGCTAGTTCTGCAACATCTGGACAAAATACAAATACTGCCAACTATGGGGCAGCCATCTTTGGAGATCCAGGAACCACTCAATCGTCTCAAACAGATGCCATTTTAACCCTTCTTGCTTCTTCTGGAAACATTACTTTTAGCAACAACAGTTTACAGAATAACCAAGGTGATACTCCCGCTAGCAAGTTTTGTAGTATTGCAGGATACGTCAAACTCTCTCTACAAGCCGCTAAAGGGAAGACTATTAGCTTTTTCGATTGTGTGCACACCTCTACCAAAAAAATAGGTTCAACACAAAACGTTTATGAAACTTTAGATATTAATAAAGAAGAGAACAGTAATCCATATACAGGAACTATTGTGTTCTCTTCTGAATTACATGAAAACAAATCTTACATCCCACAGAATGCAATCCTTCACAACGGAACTTTAGTTCTTAAAGAGAAAACAGAACTCCACGTAGTCTCTTTTGAGCAGAAAGAAGGGTCTAAATTAATTATGAAACCCGGAGCTGTGTTATCTAACCAAAACATAGCTAACGGAGCTCTAGTTATCAATGGGTTAACGATTGATCTTTCCAGTATGGGGACTCCTCAAGCAGGGGAAATCTTCTCTCCTCCAGAATTACGTATCGTTGCCACGACCTCTAGTGCATCCGGAGGAAGCGGGGTCAGCAGTAGTATACCAACAAATCCTAAAAGGATTTCTGCAGCAGCGCCTTCAGGTTCTGCCGCAACTACTCCAACTATGAGCGAGAACAAAGTTTTCCTAACAGGAGACCTTACTTTAATAGATCCTAATGGAAACTTTTACCAAAACCCTATGTTAGGAAGCGATCTAGATGTACCACTAATTAAGCTTCCGACTAACACAAGTGACGTCCAAGTCTATGATTTAACTTTATCTGGGGATCTTTTCCCTCAGAAAGGGTACATGGGAACCTGGACATTAGATTCTAATCCACAAACAGGGAAACTTCAAGCCAGATGGACATTCGATACCTATCGTCGCTGGGTATACATACCTAGGGATAAATCATTTTTATGCGAACTCTATCTTAGGCTCCCAAACTCAATGATTGTTGTGAAGCAAGGGCTTATCAACAACATGTTGAATAATGCCCGCTTCGATGATATCGCTTACAATAACTTCTGGGTTTCAGGAGTAGGAACTTTCTTAGCTCAACAAGGAACTCCTCTTTCCGAAGAATTCAGTTACTACAGCCGCGGAACTTCAGTTGCCATCGATGCCAAACCTAGACAAGATTTTATCCTAGGAGCTGCATTTAGTAAGATGGTGGGGAAAACCAAAGCCATCAAAAAAATGCATAATTACTTCCATAAGGGCTCTGAGTACTCTTACCAAGCTTCTGTCTATGGAGGTAAATTCCTGTATTTCTTGCTCAATAAGCAACATGGTTGGGCACTTCCTTTCCTAATACAAGGAGTCGTGTCCTATGGACATATTAAACATGATACAACAACACTTTACCCTTCTATCCATGAAAGAAATAAAGGAGATTGGGAAGATTTAGGATGGTTAGCGGATCTTCGTATCTCTATGGATCTTAAAGAACCTTCTAAAGATTCTTCTAAACGGATCACTGTCTATGGGGAACTTGAGTATTCCAGCATTCGCCAGAAACAGTTCACAGAAATCGATTACGATCCAAGACACTTCGATGATTGTGCTTACAGAAATCTGTCGCTTCCTGTGGGATGCGCTGTCGAAGGAGCTATCATGAACTGTAATATTCTTATGTATAATAAGCTTGCATTAGCCTACATGCCTTCTATCTACAGAAATAATCCTGTCTGTAAATATCGGGTATTGTCTTCGAATGAAGCTGGTCAAGTTATCTGCGGAGTGCCAACTAGAACCTCTGCTAGAGCAGAATACAGTACTCAACTATATCTTGGTCCCTTCTGGACTCTCTACGGAAACTATACTATCGATGTAGGCATGTATACGCTATCGCAAATGACTAGCTGCGGTGCTCGCATGATCTTCTAA>gi|3328840|gb|AAC68009.1| Putative outer membrane protein A [Chlamydiatrachomatis][SEQ ID NO:47]MNRVIEIHAHYDQRQLSQSPNTNFLVHHPYLTLIPKFLLGALIVYAPYSFAEMELAISGHKQGKDRDTFTMISSCPEGTNYIINRKLILSDFSLLNKVSSGGAFRNLAGKISFLGKNSSASIHFKHININGFGAGVFSESSIEFTDLRKLVAFGSESTGGIFTAKEDISFKNNHHIAFRNNITKGNGGVIQLQGDMKGSVSFVDQRGAIIFTNNQAVTSSSMKHSGRGGAISGDFAGSRILFLNNQQITFEGNSAVHGGAIYNKNGLVEFLGNAGPLAFKENTTIANGGAIYTSNFKANQQTSPILFSQNHANKKGGAIYAQYVNLEQNQDTIRFEKNTAKEGGGAITSSQCSITAHNTIIFSDNAAGDLGGGAILLEGKKPSLTLIAHSGNIAFSGNTMLHITKKASLDRHNSILIKEAPYKIQLAANKNHSIHFFDPVMALSASSSPIQINAPEYETPFFSPKGMIVFSGANLLDDAREDVANRTSIFNQPVHLYNGTLSIENGAHLIVQSFKQTGGRISLSPGSSLALYTMNSFFHGNISSKEPLEINGLSFGVDISPSNLQAEIRAGNAPLRLSGSPSIHDPEGLFYENRDTAASPYQMEILLTSDKIVDISKFTTDSLVTNKQSGFQGAWHFSWQPNTINNTKQKILRASWLPTGEYVLESNRVGRAVPNSLWSTFLLLQTASHNLGDHLCNNRSLIPTSYFGVLIGGTGAEMSTHSSEEESFISRLGATGTSIIRLTPSLTLSGGGSHMFGDSFVADLPEHITSEGIVQNVGLTHVWGPLTVNSTLCAALDHNAMVRICSKKDHTYGKWDTFGMRGTLGASYTFLEYDQTMRVFSFANIEATNILQRAFTETGYNPRSFSKTKLLNIAIPIGIGYEFCLGNSSFALLGKGSIGYSRDIKRENPSTLAHLAMNDFAWTTNGCSVPTSAHTLANQLILRYKACSLYITAYTINREGKNLSNSLSCGGYVGF>gi|3328833|gb|AE001314.1:6535-9462[SEQ ID NO:48]ATGAATCGAGTTATAGAAATCCATGCTCACTACGATCAAAGACAACTTTCTCAATCTCCAAATACAAACTTCTTAGTACATCATCCTTATCTTACTCTTATTCCCAAGTTTCTACTAGGAGCTCTAATCGTCTATGCTCCTTATTCGTTTGCAGAAATGGAATTAGCTATTTCTGGACATAAACAAGGTAAAGATCGAGATACCTTTACCATGATCTCTTCCTGTCCTGAAGGCACTAATTACATCATCAATCGCAAACTCATACTCAGTGATTTCTCGTTACTAAATAAAGTTTCATCAGGGGGAGCCTTTCGGAATCTAGCAGGGAAAATTTCCTTCTTAGGAAAAAATTCTTCTGCGTCCATTCATTTTAAACACATTAATATCAATGGTTTTGGAGCCGGAGTCTTTTCTGAATCCTCTATTGAATTTACTGATTTACGAAAACTTGTTGCTTTTGGATCTGAAAGCACAGGAGGAATTTTTACTGCGAAAGAGGACATCTCTTTTAAAAACAACCACCACATTGCCTTCCGCAATAATATCACCAAAGGGAATGGTGGCGTTATCCAGCTCCAAGGAGATATGAAAGGAAGCGTATCCTTTGTAGATCAACGTGGAGCTATCATCTTTACCAATAACCAAGCTGTAACTTCTTCATCAATGAAACATAGTGGTCGTGGAGGAGCAATTAGCGGTGACTTCGCAGGATCCAGAATTCTTTTTCTTAATAACCAACAAATTACTTTCGAAGGCAATAGCGCTGTGCATGGAGGTGCTATCTACAATAAGAATGGCCTTGTCGAGTTCTTAGGAAATGCAGGACCTCTTGCCTTTAAAGAGAACACAACAATAGCTAACGGGGGAGCTATATACACAAGTAATTTCAAAGCGAATCAACAAACATCCCCCATTCTATTCTCTCAAAATCATGCGAATAAGAAAGGCGGAGCGATTTACGCGCAATATGTGAACTTAGAACAGAATCAAGATACTATTCGCTTTGAAAAAAATACCGCTAAAGAAGGCGGTGGAGCCATCACCTCTTCTCAATGCTCAATTACTGCTCATAATACCATCATTTTTTCCGATAATGCTGCCGGAGATCTTGGAGGAGGAGCAATTCTTCTAGAAGGGAAAAAACCTTCTCTAACCTTGATTGCTCATAGTGGTAATATTGCATTTAGCGGCAATACCATGCTTCATATCACCAAAAAAGCTTCCCTAGATCGACACAATTCTATCTTAATCAAAGAAGCTCCCTATAAAATCCAACTTGCAGCGAACAAAAACCATTCTATTCATTTCTTTGATCCTGTCATGGCATTGTCAGCATCATCTTCCCCTATACAAATCAATGCTCCTGAGTATGAAACTCCCTTCTTCTCACCTAAGGGTATGATCGTTTTCTCGGGTGCGAATCTTTTAGATGATGCTAGGGAAGATGTTGCAAATAGAACATCGATTTTTAACCAACCCGTTCATCTATATAATGGCACCCTATCTATCGAAAATGGAGCCCATCTGATTGTCCAAAGCTTCAAACAGACCGGAGGACGTATCAGTTTATCTCCAGGATCCTCCTTGGCTCTATACACGATGAACTCGTTCTTCCATGGCAACATATCCAGCAAAGAACCCCTAGAAATTAATGGTTTAAGCTTTGGAGTAGATATCTCTCCTTCTAATCTTCAAGCAGAGATCCGTGCCGGCAACGCTCCTTTACGATTATCCGGATCCCCATCTATCCATGATCCTGAAGGATTATTCTACGAAAATCGCGATACTGCAGCATCACCATACCAAATGGAAATCTTGCTCACCTCTGATAAAATTGTAGATATCTCCAAATTTACTACTGATTCTCTAGTTACGAACAAACAATCAGGATTCCAAGGAGCCTGGCATTTTAGCTGGCAGCCAAATACTATAAACAATACTAAACAAAAAATATTAAGAGCTTCTTGGCTCCCAACAGGAGAATATGTCCTTGAATCCAATCGAGTGGGGCGTGCCGTTCCTAATTCCTTATGGAGCACATTTTTACTTTTACAGACAGCCTCTCATAACTTAGGCGATCATCTATGTAATAATCGATCTCTTATTCCTACTTCATACTTCGGAGTTTTAATTGGAGGAACTGGAGCAGAAATGTCTACCCACTCCTCAGAAGAAGAAAGCTTTATATCTCGTTTAGGAGCTACAGGAACCTCTATCATACGCTTAACTCCCTCCCTGACACTCTCTGGAGGAGGCTCACATATGTTCGGAGATTCGTTCGTTGCAGACTTACCAGAACACATCACTTCAGAAGGAATTGTTCAGAATGTCGGTTTAACCCATGTCTGGGGACCCCTTACTGTCAATTCTACATTATGTGCAGCCTTAGATCACAACGCGATGGTCCGCATATGCTCCAAAAAAGATCACACCTATGGGAAATGGGATACATTCGGTATGCGAGGAACATTAGGAGCCTCTTATACATTCCTAGAATATGATCAAACTATGCGCGTATTCTCATTCGCCAACATCGAAGCCACAAATATCTTGCAAAGAGCTTTTACTGAAACAGGCTATAACCCAAGAAGTTTTTCCAAGACAAAACTTCTAAACATCGCCATCCCCATAGGGATTGGTTATGAATTCTGCTTAGGGAATAGCTCTTTTGCTCTACTAGGTAAGGGATCCATCGGTTACTCTCGAGATATTAAACGAGAAAACCCATCCACTCTTGCTCACCTGGCTATGAATGATTTTGCTTGGACTACCAATGGCTGTTCAGTTCCAACCTCTGCACACACATTGGCAAATCAATTGATTCTTCGCTATAAAGCATGTTCCTTATACATCACGGCATATACTATCAACCGTGAAGGGAAGAACCTCTCCAATAGCTTATCCTGCGGAGGCTATGTTGGCTTCTAA>gi|3328763|gb|AAC67938.1| O-Sialoglycoprotein Endopeptidase family [Chlamydiatrachomatis][SEQ ID NO:49]MYKYFIVDTSGSQPFLAYVDCRDVLEVWSLPTGPDQGVVLNFIFNSLDLPFQGIGVSVGPGGFSATRVGVAFAQGLSLAKNVPLVGYSSLEGYLSLGQEEEALLLPLGKKGGIVALNSELSLDGFLLTDTTSTPGILLSYSEALEYCLDKGCCHVISPDPTYFVELFSSRISVRKVVPCIDRIRKYVVSQFVLSQNLPLCLDYRSISSFF>gi|3328757|gb|AE001307.1:c6730-6098[SEQ ID NO:50]GTGTACAAATATTTTATTGTAGACACTTCCGGTTCTCAGCCGTTTTTGGCCTATGTCGATTGTCGAGATGTTTTAGAAGTATGGTCTTTGCCTACAGGGCCAGATCAAGGAGTTGTGTTAAATTTCATTTTCAACAGCCTGGATTTGCCTTTCCAAGGTATTGGAGTCTCTGTTGGTCCTGGGGGATTTTCTGCAACTAGAGTGGGAGTTGCTTTTGCTCAAGGGCTCTCTCTGGCTAAAAATGTCCCTTTAGTTGGCTATAGCTCTTTAGAAGGATATCTTTCTTTGGGTCAAGAAGAGGAGGCTTTGCTTTTGCCTCTAGGGAAAAAGGGTGGGATTGTAGCTTTAAACTCAGAGCTTTCTCTTGATGGTTTTCTGCTTACAGATACTACTTCTACTCCGGGAATTTTATTGTCTTATTCTGAAGCTCTAGAGTATTGTTTAGATAAGGGATGTTGTCATGTGATCTCTCCGGATCCAACGTATTTCGTAGAACTATTTTCTTCGCGTATTTCGGTAAGGAAGGTGGTTCCTTGTATCGATCGAATCCGTAAGTACGTTGTTTCGCAGTTTGTTCTGTCTCAAAATCTTCCGTTGTGTTTAGATTACCGGAGCATCTCTTCCTTTTTTTAG>gi|6578102|gb|AAC67897.2| ATP Synthase Subunit K [Chlamydia trachomatis][SEQ ID NO:51]MIDVSVVGPVLAMALAMIGSAVGCGMAGVASHAVMSRIDEGHGKIIGLSAMPSSQSIYGLIFMLLLNDAIKDGKVSAVSGIVMGIAVGSALLLSAFMQGKCCVSAIQAYARSSAIYGKSFASIGIVESFALFAFVFALLLF>gi|3328718|gb|AE001303.1:c956-531[SEQ ID NO:52]ATGATAGATGTATCAGTAGTGGGGCCTGTATTGGCTATGGCTTTGGCAATGATTGGTAGCGCTGTTGGATGTGGAATGGCTGGAGTCGCTTCTCACGCAGTGATGTCTCGAATCGATGAAGGACACGGGAAGATTATTGGTCTGTCTGCTATGCCCTCATCACAATCCATTTACGGGTTGATTTTCATGTTACTGCTGAATGATGCAATTAAGGATGGAAAAGTCTCTGCAGTCAGTGGTATCGTAATGGGTATAGCTGTAGGATCTGCGTTATTGCTTTCTGCTTTTATGCAAGGGAAGTGCTGTGTGAGTGCTATTCAAGCCTATGCGCGTTCCTCTGCAATATATGGTAAATCATTTGCTTCGATTGGGATTGTTGAGTCTTTTGCGTTATTTGCTTTCGTTTTTGCGCTATTGTTATTCTAA>gi|3329252|gb|AAC68382.1| S14 Ribosomal Protein [Chlamydia trachomatis][SEQ ID NO:53]MAKKSAVAREVKRRKLVEANFQKRAELRKLAKSLSVSEEERERAREALNKMRRDTSPSRLHNRCLLTGRPRGYLRKFAISRICFRQMASMGDIPGVVKASW>gi|3522908|gb|AE001351.1:2436-2741[SEQ ID NO:54]ATGGCGAAGAAGTCAGCAGTAGCTAGAGAAGTTAAACGTCGAAAGTTAGTAGAAGCTAATTTTCAGAAGAGAGCAGAGCTTCGAAAACTTGCGAAGAGTTTATCTGTTAGCGAGGAAGAAAGAGAAAGAGCTCGGGAAGCTCTCAATAAAATGAGAAGAGATACTTCTCCTTCTCGTTTACATAATAGATGCCTATTAACAGGCCGTCCTCGTGGATACCTTAGAAAGTTTGCTATCTCAAGAATTTGTTTTAGACAAATGGCTTCTATGGGAGATATCCCAGGCGTTGTGAAAGCAAGTTGGTAG>gi|3329133|gb|AAC68276.1| Major Outer Membrane Protein [Chlamydiatrachomatis][SEQ ID NO:55]MKKLLKSVLVFAALSSASSLQALPVGNPAEPSLMIDGILWEGFGGDPCDPCATWCDAISMRVGYYGDFVFDRVLKTDVNKEFQMGAKPTTDTGNSAAPSTLTARENPAYGRHMQDAEMFTNAACMALNIWDRFDVFCTLGATSGYLKGNSASFNLVGLFGDNENQKTVKAESVPNMSFDQSVVELYTDTTFAWSVGARAALWECGCATLGASFQYAQSKPKVEELNVLCNAAEFTINKPKGYVGKEFPLDLTAGTDAATGTKDASIDYHEWQASLALSYRLNMFTPYIGVKWSRASFDADTIRIAQPKSATAIFDTTTLNPTIAGAGDVKTGAEGQLGDTMQIVSLQLNKMKSRKSCGIAVGTTIVDADKYAVTVETRLIDERAAHVNAQFRF>gi|3329126|gb|AE001338.1:c6759-5578[SEQ ID NO:56]ATGAAAAAACTCTTGAAATCGGTATTAGTATTTGCCGCTTTGAGTTCTGCTTCCTCCTTGCAAGCTCTGCCTGTGGGGAATCCTGCTGAACCAAGCCTTATGATCGACGGAATTCTGTGGGAAGGTTTCGGCGGAGATCCTTGCGATCCTTGCGCCACTTGGTGTGACGCTATCAGCATGCGTGTTGGTTACTACGGAGACTTTGTTTTCGACCGTGTTTTGAAAACTGATGTGAATAAAGAATTTCAGATGGGTGCCAAGCCTACAACTGATACAGGCAATAGTGCAGCTCCATCCACTCTTACAGCAAGAGAGAATCCTGCTTACGGCCGACATATGCAGGATGCTGAGATGTTTACAAATGCCGCTTGCATGGCATTGAATATTTGGGATCGTTTTGATGTATTCTGTACATTAGGAGCCACCAGTGGATATCTTAAAGGAAACTCTGCTTCTTTCAATTTAGTTGGATTGTTTGGAGATAATGAAAATCAAAAAACGGTCAAAGCGGAGTCTGTACCAAATATGAGCTTTGATCAATCTGTTGTTGAGTTGTATACAGATACTACTTTTGCGTGGAGCGTCGGCGCTCGCGCAGCTTTGTGGGAATGTGGATGTGCAACTTTAGGAGCTTCATTCCAATATGCTCAATCTAAACCTAAAGTAGAAGAATTAAACGTTCTCTGCAATGCAGCAGAGTTTACTATTAATAAACCTAAAGGGTATGTAGGTAAGGAGTTTCCTCTTGATCTTACAGCAGGAACAGATGCTGCGACAGGAACTAAGGATGCCTCTATTGATTACCATGAATGGCAAGCAAGTTTAGCTCTCTCTTACAGACTGAATATGTTCACTCCCTACATTGGAGTTAAATGGTCTCGAGCAAGCTTTGATGCCGATACGATTCGTATAGCCCAGCCAAAATCAGCTACAGCTATTTTTGATACTACCACGCTTAACCCAACTATTGCTGGAGCTGGCGATGTGAAAACTGGCGCAGAGGGTCAGCTCGGAGACACAATGCAAATCGTTTCCTTGCAATTGAACAAGATGAAATCTAGAAAATCTTGCGGTATTGCAGTAGGAACAACTATTGTGGATGCAGACAAATACGCAGTTACAGTTGAGACTCGCTTGATCGATGAGAGAGCAGCTCACGTAAATGCACAATTCCGCTTCTAA>gi|3328987|gb|AAC68150.1| hypothetical protein [Chlamydia trachomatis][SEQ ID NO:57]MLKMFWLNSLVFFSLLLSACGYTVLSPHYVEKKFSLSEGIYVCPIEGDSLGDLVSSLSYELEKRGLHTRSQGTSSGYVLKVSLFNETDENIGFAYTPQKPDEKPVKHFIVSNEGRLALSAKVQLIKNRTQEILVEKCLRKSVTFDFQPDLGTANAHQLALGQFEMHNEAIKSASRILYSQLAETIVQQVYYDLF>gi|3328980|gb|AE001325.1:10880-11464[SEQ ID NO:58]ATGCTGAAAATGTTTTGGTTGAATAGCCTCGTTTTCTTCTCGTTACTACTATCAGCCTGCGGCTATACAGTGCTCTCCCCCCACTATGTAGAAAAGAAATTCTCGCTTTCCGAAGGCATCTATGTCTGCCCTATCGAAGGAGATTCATTAGGAGATCTCGTATCCTCTCTTTCTTACGAATTAGAAAAGCGAGGACTCCACACACGATCTCAAGGAACCTCTTCTGGTTATGTACTCAAAGTCTCTCTTTTCAATGAGACTGATGAAAATATTGGATTCGCATACACTCCCCAAAAACCTGATGAAAAACCTGTAAAACACTTCATTGTCTCTAATGAAGGGCGCTTAGCGTTATCAGCAAAAGTCCAACTAATCAAAAACCGCACACAAGAAATATTAGTGGAGAAATGCCTGAGAAAATCGGTTACTTTTGATTTTCAACCTGACCTCGGAACCGCGAATGCTCATCAGCTAGCTCTCGGACAATTTGAAATGCATAATGAAGCAATAAAAAGCGCTTCTCGTATATTGTATTCGCAATTAGCAGAGACTATTGTACAACAGGTATACTATGACCTTTTCTGA>gi|3328972|gb|AAC68136.1| Apolipoprotein N-Acetyltransferase [Chlamydiatrachomatis][SEQ ID NO:59]MFKLVSYIILSWVLVCLAQPDVSVVASVVSCICGYSLLWAGLFALVEQLSWKKVWCIAFIWTWTVEGAHFSWMLEDLYVGTSIYFVWGILLSYLATLFASFSCLVVWCCRKQYRGALVWLPGVWVAIEAIRYYGLLSGVSFDFIGWPLTATAYGRQFGSFFGWAGQSFLVIAANICCFAVCLLKHSFSKGLWLTLCAFPYLLGGAHYEYLKKHFSDSEVLRVAIVQPGYSPHMHAGRTASAIWRGLVSLCQTIQTPVDVIVFPEVSVPFGLHRQAYTLHENQPVLESLLPNKSWGEFFTNLDWIQAIAERYQCTVIMGMERWENKGGILHLYNAAECVSREGEITSYDKRILVPGGEYIPGGKIGFSLCQTFFPEFALPFQRLPGEFSGVVNITERIKAGISICYEETFGYAIRPYKRQQADILVNLTNDGWYPRSRLPLVHFYHGMLRNQELGIPCIRACRTGVSAAVDSLGRIVGILPWESRTCPVSTGVLQVSVPLYSYHTVYARLGDAPLLLIAVCSVIGAIAYFYRKKKETPPQTFF>gi|3328966|gb|AE001324.1:c6152-4524[SEQ ID NO:60]GTGTTTAAACTTGTGTCATACATCATCCTTTCTTGGGTGCTGGTCTGTTTGGCTCAGCCGGATGTAAGTGTTGTAGCTTCTGTTGTTAGTTGTATTTGCGGTTACAGCTTACTTTGGGCTGGGCTTTTTGCTTTAGTAGAGCAATTATCTTGGAAGAAAGTTTGGTGCATCGCTTTTATTTGGACTTGGACTGTCGAAGGCGCTCATTTCTCTTGGATGCTTGAAGATCTTTATGTAGGGACAAGCATCTATTTTGTTTGGGGTATACTGCTTTCTTATCTCGCCACCCTATTTGCTAGTTTTTCTTGTTTGGTTGTGTGGTGTTGTCGCAAGCAATATAGGGGAGCTCTTGTTTGGCTTCCAGGGGTTTGGGTGGCGATAGAAGCAATACGCTATTATGGGTTGCTTTCAGGAGTTTCTTTTGATTTTATTGGCTGGCCTCTTACAGCGACAGCCTATGGCCGGCAATTCGGCAGCTTTTTTGGATGGGCTGGACAAAGCTTTCTAGTTATTGCTGCCAATATATGCTGTTTTGCAGTATGTTTATTAAAACACTCTTTTTCCAAAGGTTTGTGGTTGACGTTGTGCGCGTTCCCTTATCTGTTAGGCGGAGCGCATTACGAATACCTAAAGAAGCATTTTTCCGACTCTGAAGTGCTTCGAGTTGCCATCGTGCAGCCTGGATATAGTCCTCATATGCATGCAGGGAGGACGGCTAGTGCTATTTGGAGAGGTTTGGTTTCTTTGTGCCAGACTATTCAAACTCCTGTAGATGTGATCGTTTTCCCAGAAGTAAGTGTTCCTTTTGGCTTACATAGACAAGCCTATACTCTTCATGAAAATCAGCCTGTATTAGAAAGTTTGCTTCCTAACAAATCTTGGGGCGAGTTTTTCACAAATTTGGATTGGATCCAAGCGATAGCTGAACGTTATCAATGCACCGTTATCATGGGAATGGAACGATGGGAAAATAAAGGGGGAATACTGCATTTGTATAATGCTGCTGAATGCGTATCGCGAGAAGGGGAAATAACTAGCTATGATAAGCGGATTCTTGTTCCTGGAGGTGAGTACATCCCTGGAGGGAAAATAGGTTTTTCCTTGTGTCAAACCTTTTTCCCAGAATTTGCTCTTCCCTTTCAACGTTTGCCAGGAGAGTTTTCTGGAGTTGTGAATATAACAGAGCGAATAAAAGCTGGGATCTCTATTTGTTATGAGGAGACATTTGGGTATGCAATTCGCCCTTACAAAAGGCAACAAGCCGATATTTTAGTAAATCTTACTAATGACGGTTGGTATCCGCGTTCAAGGCTGCCTCTAGTACATTTTTATCATGGCATGTTACGTAATCAAGAGTTGGGTATACCTTGTATTCGCGCCTGTCGCACAGGAGTTTCTGCTGCAGTGGATTCTTTGGGTAGAATTGTCGGCATACTTCCCTGGGAATCGAGAACTTGCCCAGTTTCTACAGGAGTACTCCAAGTTTCCGTCCCTCTTTACAGTTATCATACTGTATATGCAAGGCTGGGTGATGCTCCTCTGTTACTGATTGCAGTTTGTTCGGTTATCGGAGCGATTGCCTATTTTTATAGGAAAAAGAAAGAGACCCCACCACAAACATTTTTTTGA>gi|3328612|gb|AAC67797.1| Fructose-6-P Phosphotransferase [Chlamydiatrachomatis][SEQ ID NO:61]MSSNKHASLCQKTPSLCRELQKAPALLLTEDIRFKALLNERIDSVAELFPCTYNSPYYKFISKSDLSAETSPLKVGVMLSGGPAPGGHNVILGLLHSIKKLHPNSQLLGFIRNGEGLLNNNTVEITDEFIEEFRNSGGFNCIGTGRTNIITEENKARCLQTANELDLDGLVIIGGDGSNTATAILAEYFAKHQAKTVLVGVPKTIDGDLQHLFLDLTFGFDTATKFYSSIISNISRDALSCKGHYHFIKLMGRSSSHITLECALQTHPNIALIGEEIAEKSISLETLIHDICETIADRAAMGKYHGVILIPEGVIEFIPEIQSLVKEIESIPEQENLYQALSLSSQQLLCQFPEDICHQLLYNRDAHGNVYVSKISVDKLLIHLVRQHLETHFRQVPFNAISHFLGYEGRSGTPTHFDNVYSYNLGYGAGVLVFNRCNGYLSTIEGLTSPIEKWRLRALPIVRMLTTKQGKDSKHYPLIKKRLVDIASPVFNKFSLYRKIWALEDSYRFVGPLQIHSPEDAHSDDFPPLILFLNHNEWQKRCSICLEIPDQDY>gi|3328609|gb|AE001294.1:2452-4113[SEQ ID NO:62]ATGTCGTCGAATAAACATGCTTCTCTTTGTCAAAAGACGCCTTCTTTGTGTCGGGAGCTTCAAAAAGCTCCTGCTCTTCTATTAACAGAAGACATAAGGTTTAAAGCTCTTCTTAATGAACGCATTGACTCTGTTGCAGAACTATTTCCATGCACTTATAACTCTCCCTACTACAAATTTATTTCGAAGTCCGATCTTTCCGCTGAGACCTCTCCCCTTAAAGTGGGCGTTATGCTTTCTGGAGGCCCAGCTCCTGGTGGGCACAATGTCATCTTAGGATTGCTACACAGTATTAAAAAGCTCCATCCGAATAGTCAGCTTTTAGGATTTATTCGCAATGGAGAAGGACTTCTCAATAATAATACTGTAGAAATCACAGATGAATTCATTGAAGAGTTTCGTAACTCTGGAGGCTTTAATTGCATAGGAACAGGTCGCACTAATATCATAACCGAAGAAAATAAAGCGCGCTGTTTACAAACAGCAAATGAACTCGATTTAGATGGATTAGTGATTATTGGAGGCGATGGTTCGAATACAGCCACGGCGATTCTTGCTGAATATTTTGCTAAGCATCAAGCAAAAACGGTATTAGTTGGTGTTCCCAAAACTATTGATGGAGATTTGCAGCACCTATTTTTAGACCTCACATTTGGGTTTGATACTGCTACTAAATTTTATTCATCCATCATCAGCAACATTTCTAGAGACGCATTATCGTGTAAAGGCCACTATCATTTTATTAAACTAATGGGCCGGTCTTCTTCTCATATCACGCTAGAATGCGCACTACAGACTCACCCAAATATTGCTCTTATAGGCGAAGAGATTGCAGAAAAAAGCATCTCCTTAGAAACATTAATCCATGATATTTGTGAAACAATAGCAGATCGAGCTGCTATGGGGAAATACCATGGCGTTATTCTCATCCCTGAAGGAGTCATTGAGTTTATTCCTGAAATACAGTCTCTGGTTAAAGAAATTGAATCCATTCCAGAGCAGGAGAATCTTTACCAAGCTTTATCCTTATCTTCTCAGCAACTTTTATGCCAATTTCCGGAAGATATTTGCCATCAGCTCTTGTATAATAGAGATGCTCATGGCAACGTCTATGTATCAAAAATTAGTGTTGATAAACTTCTGATTCATCTAGTTCGTCAACATTTAGAAACACATTTTAGACAAGTTCCCTTCAATGCAATCTCCCATTTTTTAGGTTATGAAGGGCGTTCAGGAACTCCTACACATTTTGATAATGTGTATAGCTATAACTTAGGATATGGTGCTGGGGTTCTCGTTTTTAACCGCTGTAATGGGTATTTATCCACGATCGAAGGTCTAACTAGCCCTATTGAAAAATGGCGATTGCGCGCTTTACCCATTGTTCGAATGTTGACGACCAAGCAGGGGAAAGACAGTAAACATTATCCTCTGATAAAAAAAAGATTGGTAGATATTGCTAGTCCTGTTTTTAATAAGTTCTCACTGTATCGGAAAATCTGGGCTTTAGAAGACTCCTATCGCTTTGTAGGGCCATTACAAATACATTCTCCGGAGGATGCTCATTCTGATGATTTTCCTCCTTTAATTTTGTTTTTGAATCATAATGAATGGCAAAAACGCTGTTCTATTTGTTTAGAAATCCCCGATCAGGATTATTAA>gi|3328517|gb|AAC67709.1| hypothetical protein [Chlamydia trachomatis][SEQ ID NO:63]MICCDKVLSSVQSMPVIDKCSVTKCLQTAKQAAVLALSLFAVFASGSLSILSAAVLFSGTAAVLPYLLILTTALLGFVCAVIVLLRNLSAVVQSCKKRSPEEIEGAARPSDQQESGGRLSEESASPQASPTSSTFGLESALRSIGDSVSGAFDDINKDNSRSRSHSF>gi|3328516|gb|AE001286.1:75-578[SEQ ID NO:64]ATGATCTGCTGTGACAAAGTCTTGTCGAGCGTACAATCAATGCCTGTTATAGATAAATGCTCTGTAACGAAATGCTTACAAACGGCTAAGCAAGCAGCTGTTCTTGCGTTGTCTTTGTTTGCGGTGTTTGCTTCAGGAAGTTTATCCATATTATCAGCGGCGGTACTGTTTAGTGGCACTGCTGCTGTTCTTCCATATCTGCTGATATTAACAACAGCTCTTCTAGGATTTGTTTGTGCTGTTATTGTGCTTTTAAGAAATTTATCAGCAGTTGTTCAGAGTTGTAAAAAGAGATCACCTGAAGAAATTGAAGGGGCTGCTCGTCCCTCTGATCAGCAGGAATCAGGAGGACGTTTGTCCGAGGAGAGCGCTTCACCACAAGCATCTCCTACTTCGTCTACTTTTGGTCTTGAATCCGCTTTGCGCTCAATAGGAGATA>gi|3328482|gb|AAC67677.1| L28 Ribosomal Protein [Chlamydia trachomatis][SEQ ID NO:65]MSKKCALTGRKPRRGYSYAIRGISKKKKGIGLKVTGRTKRRFFPNMMTKRLWSTEENRFLKLKISAAALRLVDKLGLDQVVARAKSKGF>gi|3328480|gb|AE001283.1:c2251-1982[SEQ ID NO:66]ATGTCGAAAAAATGTGCGCTTACAGGAAGAAAGCCTCGTCGCGGTTATAGCTATGCTATCCGAGGGATTTCTAAAAAGAAAAAAGGGATCGGTTTGAAAGTTACAGGAAGAACAAAACGTCGATTCTTCCCTAATATGATGACTAAGAGACTATGGTCTACTGAGGAAAATCGCTTCCTCAAACTCAAAATTTCTGCAGCAGCTTTACGCCTTGTTGATAAACTAGGGTTAGATCAGGTTGTTGCTAGAGCTAAAAGCAAGGGTTTTTAG>gi|3328436|gb|AAC67635.1| SS DNA Binding Protein [Chlamydia trachomatis][SEQ ID NO:67]MLFGYLVGFLAADPEERMTSGGKRVVVLRLGVKSRVGSKDETVWCRCNIWNNRYDKMLPYLKKGSSVIVAGELSLESYVGRDGSPQASISVSVDTLKFNSGSSRPDARGSDEGRQRANDNVSIGFDGESLDTDSALDKEVYAGFGEDQQYASEDVPF>gi|3328434|gb|AE001279.1:1060-1533[SEQ ID NO:68]ATGTTGTTCGGATATTTGGTAGGATTTCTAGCTGCCGATCCTGAAGAAAGAATGACATCCGGAGGTAAACGGGTTGTTGTTTTACGTTTGGGTGTAAAATCTCGTGTAGGATCTAAAGATGAAACAGTGTGGTGCAGATGCAATATCTGGAACAACCGTTATGATAAGATGCTTCCTTATTTGAAGAAAGGTTCTTCAGTCATTGTTGCTGGAGAGCTTTCTTTAGAAAGCTATGTAGGTAGAGACGGTTCTCCACAAGCTTCTATTTCTGTAAGCGTAGATACATTAAAATTTAATTCCGGATCTTCTCGTCCTGATGCTAGAGGTTCAGATGAAGGTCGTCAGAGAGCTAATGATAATGTCTCTATTGGATTTGATGGAGAAAGTTTAGATACAGACTCTGCGCTTGATAAGGAAGTCTATGCAGGGTTTGGAGAAGACCAACAGTATGCTAGTGAGGATGTTCCTTTTTAG>gi|3328411|gb|AAC67611.1| hypothetical protein [Chlamydia trachomatis][SEQ ID NO:69]MKKQEKMHPQNLLKVFIFFLAFFISYPSAEAHSPLQSSIQEKILTARPGDYAVLSRGSQKFFFLIRQSSSEATWVEMSEFASLTQQEKKLVEQSSWKNAFHQLQSSKKVYLLRISKNPLMIFVLKNAQWMPLSEKDPLPFFVKILRLPLSPAPSHLIKYKGKERTPWSPRTSLNGELITLPSSAWISVWPKDSSPLSEKNILIYFSNNERLAFPLWTSIDTPTGTVIIKTIEMGHQAASSYPALPNF>gi|3522886|gb|AE001277.1:c6191-5448[SEQ ID NO:70]ATGAAAAAGCAAGAAAAAATGCACCCTCAAAACCTTCTTAAAGTTTTTATTTTTTTCTTGGCATTTTTCATATCCTATCCCTCGGCTGAAGCCCATTCTCCTCTCCAATCATCAATCCAAGAAAAAATTCTAACTGCCCGCCCCGGAGACTATGCCGTCTTAAGCCGAGGATCTCAAAAATTTTTCTTTTTAATTCGCCAAAGTTCTTCGGAAGCGACTTGGGTCGAAATGTCTGAATTTGCCTCCCTAACACAGCAAGAAAAAAAATTAGTAGAACAGTCTTCCTGGAAGAATGCCTTCCATCAACTCCAATCTTCAAAAAAAGTGTACTTGTTACGAATTTCCAAAAATCCTCTTATGATTTTTGTTCTCAAAAATGCGCAATGGATGCCTCTCTCAGAAAAAGATCCTTTGCCTTTCTTTGTAAAAATCCTTCGACTCCCTTTATCTCCAGCCCCCTCTCACTTAATTAAATACAAAGGGAAAGAACGCACCCCCTGGTCTCCGCGAACATCTTTGAATGGAGAACTCATAACCCTTCCTTCCAGTGCTTGGATTTCTGTTTGGCCAAAAGATTCTTCTCCTCTATCAGAAAAAAATATTCTCATATATTTTTCTAACAATGAACGTTTAGCGTTTCCTCTATGGACTAGTATTGATACTCCTACAGGGACAGTGATTATTAAGACTATTGAAATGGGGCACCAAGCCGCCTCCTCCTATCCAGCTCTTCCCAATTTCTAGcrpA, CHLTR 15 kD cysteine-rich protein (Chlamydia trachomatis serovar D (D/UW-3/Cx)DNA sequence[SEQ ID NO:71]AATATGAGCACTGTACCCGTTGTTCAAGGAGCTGGATCTTCCAATTCGGCACAGGATATTTCCACTAGACCATTAACACTGAAAGAGCGTATATCGAATCTTCTATCTTCCACTGCATTTAAGGTGGGATTAGTGGTGATAGGACTACTTTTGTGATTGCTACTTTGATATTCCTAGTTTCGGCAGCTTCGTTTGTAAATGCCATCTATCTAGTAGCTATTCCTGCTATTTGGGATGCGTGAATATCTGCGTAGGAATTTTATCCATGGAAGGACACTGTTCTCCGGAGAGATGGATCTTATGTAAGAAGTATTAAAGACTTCAGAAGATATCATCGATGATGGGCAGATAAACAACTCTAATAAAGTGTTTACTGATGAGAGGTTGAAGCCATAGGTGGGGTAGTGGAATCTCTATCTAGAAGAAATAGTCTGGTGGATCAGACCCAATGATranslated amino acid sequence[SEQ ID NO:72]     NMS TVPVVQGAGS SNSAQDISTR PLTLKERISN LLSSTAFKVGLVVIGLLLVI ATLIFLVSAA SFVNAIYLVA IPAILGCVNI CVGILSMEGHCSPERWILCK KVLKTSEDII DDGQINNSNK VFTDERLNAI GGVVESLSRRNSLVDQTQ*OmcA, CHLTR 9 kD cystein-rich outer membrane complex lipoprotein (Chlamydiatrachomatis serovar D (D/UW-3/Cx)DNA sequence[SEQ ID NO:73]GGGCTAGTTTCTTTTATTGTTAAAAGAATTGCTTTTATCGATAAAAGAAACTTCAAGAGCCCTTTTCTAGAAAGGAGTCTGGAAGTTATGAAAAAAACTGCTTTACTCGCTGCTTTATGTAGTGTTGTTTCTTTAAGTAGTTGTTGTCGATCGTTGACTGTTGCTTCGAAGATCCATGCGCACCTATCCAATGTTCACCTTGTGAATCTAAGAAGAAAGACGTAGACGTGGTTGCAACTCTTGTAACGGGTATGTCCCAGCTTGCAAACCTTGCGGAGGGGATACGCACCAAGATGCTAAACATGGCCTCAAGCTAGAGGAATTCCAGTTGACGGCAAATGCAGACAATAGTranslated amino acid sequence[SEQ ID NO:74]                              GL VSFIVKRIAF IDKRNFKSPFLERSLEVMKK TALLAALCSV VSLSSCCRIV DCCFEDPCAP IQCSPCESKKKDVDGGCNSC NGYVPACKPC GGDTHQDAKH GPQARGIPVD GKCRQ*cutE, apolipoprotein N-acyltransferase (Chlamydia trachomatis serovar D (D/UW-3/Cx)DNA sequence[SEQ ID NO:75]GCTAGTAAGGGAGCCCCTTTAGTGTTTAAACTTGTGTCATACATCATCCTTTCTTGGGTGCTGGTCTGTTTGGCTCAGCCGGATGTAAGTGTTGTAGCTTCTGTTGTTAGTTGTATTTGCGGTTACAGCTTACTTTGGGCTGGGCTTTTTGTTTAGTAGAGCAATTATCTTGGAAGAAAGTTTGGTGCATCGCTTTTATTTGCACTTGGACTGTCGAAGGCGCTCATTTCCTTGGATGCTTGAAGATCTTTATGTAGGGACAAGCATCTATTTTGTTTGGGGTATACTGCTTTCTTATCTCGCCACCCTTTTGCTAGTTTTTCTTGTTTGGTTGTGTGGTGTTGTCGCAAGCAATATAGGGGAGCTCTTGTTTGGCTTCCAGGGGTTTGGTGGCGATAGAAGCAATACGCTATTATGGGTTGCTTTCAGGAGTTTCTTTTGATTTTATTGGCTGGCCTCTTACAGCGCAGCCTATGGCCGGCAATTCGGCAGCTTTTTTGGATGGGCTGGACAAAGCTTTCTAGTTATTGCTGCCAATATATGCTGTTTGCAGTATGTTTATTAAAACACTCTTTTTCCAAAGGTTTGTGGTTGACGTTGTGCGCGTTCCCTTATCTGTTAGGCGAGCGCATTACGATACCTAAATGAAGCATTTTTCCGACTCTGAAGTGCTTCGAGTTGCCATCGTGCAGCCTGGATATAGTCTCATATGCATGCAGGGAGGACGGCTAGTGCTATTTGGAGAGGTTTGGTTTCTTTGTGCCAGACTATTCAAACTCCTGTGATGTGATCGTTTTCCCAGAAGTAAGTGTTCCTTTTGGCTTACATAGACAAGCCTATACTCTTCATGAAAATCAGCCTGATTAGAAAGTTTGCTTCCTAACAAATCTTGGGGCGAGTTTTTCACAAATTTGGATTGGATCCAAGCGATAGCTGAACGTATCAATGCACCGTTATCATGGGAATGGAACGATGGGAAAATAAAGGGGGAATACTGCATTTGTATAATGCTGCTGAATGGTATCGCGAGAAGGGGAAATAACTAGCTATGATAAGCGGATTCTTGTTCCTGGAGGTGAGTACATCCCTGGAGGGAAAAAGGTTTTTCCTTGTGTCAAACCTTTTTCCCAGAATTTGCTCTTCCCTTTCAACGTTTGCCAGGAGAGTTTTCTGGAGTTTGAATATAACAGAGCGAATAAAAGCTGGGATCTCTATTTGTTATGAGGAGACATTTGGGTATGCAATTCGCCCTTACAAAGGCAACAAGCCGATATTTTAGTAAATCTTACTAATGACGGTTGGTATCCGCGTTCAAGGCTGCCTCTAGTACATTTTTTCATGGCATGTTACGTAATCAAGAGTTGGGTATACCTTGTATTCGCGCCTGTCGCACAGGAGTTTCTGCTGCAGTGGATCTTTGGGTAGAATTGTCGGCATACTTCCCTGGGAATCGAGAACTTGCCCAGTTTCTACAGGAGTACTCCAAGTTTCCGTCCTCTTTACAGTTATCATACTGTATATGCAAGGCTGGGTGATGCTCCTCTGTTACTGATTGCAGTTTGTTCGGTTATCGAGCGATTGCCTATTTTTATAGGAAAAAGAAAGAGACCCCACCACAAACATTTTTTTGATranslated amino acid sequence[SEQ ID NO:76]                                                  ASKGAPLVFKLVSY IILSWVLVCL AQPDVSVVAS VVSCICGYSL LWAGLFALVEQLSWKKVWCI AFIWTWTVEG AHFSWMLEDL YVGTSIYFVW GILLSYLATLFASFSCLVVW CCRKQYRGAL VWLPGVWVAI EAIRYYGLLS GVSFDFIGWPLTATAYGRQF GSFFGWAGQS FLVIAANICC FAVCLLKHSF SKGLWLTLCAFPYLLGGAHY EYLKKHFSDS EVLRVAIVQP GYSPHMHAGR TASAIWRGLVSLCQTIQTPV DVIVFPEVSV PFGLHRQAYT LHENQPVLES LLPNKSWGEFFTNLDWIQAI AERYQCTVIM GMERWENKGG ILHLYNAAEC VSREGEITSYDKRILVPGGE YIPGGKIGFS LCQTFFPEFA LPFQRLPGEF SGVVNITERIKAGISICYEE TFGYAIRPYK RQQADILVNL TNDGWYPRSR LPLVHFYHGMLRNQELGIPC IRACRTGVSA AVDSLGRIVG ILPWESRTCP VSTGVLQVSVPLYSYHTVYA RLGDAPLLLI AVCSVIGAIA YFYRKKKETP PQTFF*pal, peptidoglycan-associated lipoprotein (Chlamydia trachomatis serovar D (D/UW-3/Cx)DNA sequence[SEQ ID NO:77]                               G AAAATTGTTA TAGGATCAGGAGAGAAACGT TTCCCATGCT GGGGAGCATT TCCTTCACAA CATATAAAGAAAACCTCATG AGAAAGACTA TTTTTAAAGC GTTTAATTTA TTATTCTCCCTTCTTTTTCT TTCTTCATGC TCTTATCCTT GCAGAGATTG GGAATGCCATGGTTGCGACT CCGCAAGACC TCGTAAATCC TCTTTTGGAT TCGTACCTTTCTACTCCGAT GAAGAAATTC AACAAGCTTT TGTTGAAGAT TTTGATTCCAAAGAAGAGCA GCTGTACAAA ACGAGCGCAC AGAGTACCTC TTTCCGAAATATCACTTTCG CTACAGATAG TTATTCTATT AAAGGAGAGG ATAACCTCACGATTCTTGCA AGCTTAGTTC GTCATTTGCA TAAATCTCCT AAAGCTACGCTATATATAGA GGGCCATACA GATGAACGTG GAGCTGCAGC TTATAACCTAGCTTTAGGAG CTCGTCGTGC GAATGCTGTA AAACAATACC TCATCAAACAGGGAATCGCT GCAGACCGCT TATTCACTAT TTCTTACGGA AAAGAACATCCTGTTCATCC AGGCCATAAT GAATTAGCTT GGCAACAAAA TCGTCGTACTGAATTTAAGA TCCATGCTCG CTAATranslated amino acid sequence[SEQ ID NO:78]                                               ENCYRIRRETFPMLGSI SFTTYKENLM RKTIFKAFNL LFSLLFLSSC SYPCRDWECHGCDSARPRKS SFGFVPFYSD EEIQQAFVED FDSKEEQLYK TSAQSTSFRNITFATDSYSI KGEDNLTILA SLVRHLHKSP KATLYIEGHT DERGAAAYNLALGARRANAV KQYLIKQGIA ADRLFTISYG KEHPVHPGHN ELAWQQNRRTEFKIHAR*


[0028] The following Chlamydia trachomatis outer membrane proteins (full sequences above) are disclosed for the first time as being useful in a C. trachomatis vaccine. A vaccine comprising one or more of these proteins (or native or functional analogues thereof) is a further aspect of this invention (particularly in the context of being presented on the surface of a bleb).
3>gi|6578118|gb|AAC68456.2| predicted Protease containing IRBPand DHR domains [Chlamydia trachomatis][SEQ ID NO: 3]>gi|6578109|gb|AAC68227.2| CHLPN 76kDa Homolog [Chlamydiatrachomatis][SEQ ID NO: 5]>gi|3328866|gb|AAC68034.1| Sulfite Reductase [Chlamydiatrachomatis][SEQ ID NO: 19]>gi|3328815|gb|AAC67986.1| hypothetical protein [Chlamydiatrachomatis][SEQ ID NO: 23]>gi|3328587|gb|AAC67774.1| CMP-2-keto-3-deoxyoctulosonic acidsynthetase [Chlamydia trachomatis][SEQ ID NO: 27]>gi|3329039|gb|AAC68197.1| Thio: disulfide Interchange Protein[Chlamydia trachomatis][SEQ ID NO: 29]>gi|3329000|gb|AAC68161.1| Yop proteins translocation lipoproteinJ [Chlamydia trachomatis][SEQ ID NO: 31]>gi|3328905|gb|AAC68071.1| hypothetical protein [Chlamydiatrachomatis][SEQ ID NO: 33]>gi|3328884|gb|AAC68051.1| Phosphatidate Cytidylytransferase[Chlamydia trachomatis][SEQ ID NO: 35]>gi|3328855|gb|AAC68022.1| hypothetical protein [Chlamydiatrachomatis][SEQ ID NO: 37]>gi|3328772|gb|AAC67946.1| hypothetical protein [Chlamydiatrachomatis][SEQ ID NO: 39]>gi|3328763|gb|AAC67938.1| O-Sialoglycoprotein Endopeptidasefamily [Chlamydia trachomatis][SEQ ID NO: 49]>gi|6578102|gb|AAC67897.2| ATP Synthase Subunit K [Chlamydiatrachomatis][SEQ ID NO: 51]>gi|3329252|gb|AAC68382.1| S14 Ribosomal Protein [Chlamydiatrachomatis][SEQ ID NO: 53]>gi|3328987|gb|AAC68150.1| hypothetical protein [Chlamydiatrachomatis][SEQ ID NO: 57]>gi|3328972|gb|AAC68136.1| Apolipoprotein N-Acetyltransferase[Chlamydia trachomatis][SEQ ID NO: 59]>gi|3328612|gb|AAC67797.1| Fructose-6-P Phosphotransferase[Chlamydia trachomatis][SEQ ID NO: 61]>gi|3328517|gb|AAC67709.1| hypothetical protein [Chlamydiatrachomatis][SEQ ID NO: 63]>gi|3328482|gb|AAC67677.1| L28 Ribosomal Protein [Chlamydiatrachomatis][SEQ ID NO: 65]>gi|3328436|gb|AAC67635.1| SS DNA Binding Protein [Chlamydiatrachomatis][SEQ ID NO: 67]>gi|3328411|gb|AAC67611.1| hypothetical protein [Chlamydiatrachomatis][SEQ ID NO: 69]


[0029] Amino Acid Sequences:


[0030] >gi|6578118|gb|AAC68456.2| predicted Protease containing IRBP and DHR domains [Chlamydia trachomatis][SEQ ID NO:3]


[0031] >gi|6578109|gb|AAC68227.2| CHLPN 76 kDa Homolog [Chlamydia trachomatis][SEQ ID NO:5]


[0032] >gi|3328866|gb|AAC68034.1| Sulfite Reductase [Chlamydia trachomatis][SEQ ID NO:19]


[0033] >gi|3328815|gb|AAC67986.1| hypothetical protein [Chlamydia trachomatis][SEQ ID NO:23]


[0034] >gi|3328587|gb|AAC67774.1| CMP-2-keto-3-deoxyoctulosonic acid synthetase [Chlamydia trachomatis][SEQ ID NO:27]


[0035] >gi|3329039| gb|AAC68197.1| Thio:disulfide Interchange Protein [Chlamydia trachomatis][SEQ ID NO:29]


[0036] >gi|3329000|gb|AAC68161.1| Yop proteins translocation lipoprotein J [Chlamydia trachomatis][SEQ ID NO:31]


[0037] >gi|3328905|gb|AAC68071.1| hypothetical protein [Chlamydia trachomatis][SEQ ID NO:33]


[0038] >gi|3328884|gb|AAC68051.1| Phosphatidate Cytidylytransferase [Chlamydia trachomatis][SEQ ID NO:35]


[0039] >gi|3328855|gb|AAC68022.1| hypothetical protein [Chlamydia trachomatis][SEQ ID NO:37]


[0040] >gi|3328772|gb|AAC67946.1| hypothetical protein [Chlamydia trachomatis][SEQ ID NO:39]


[0041] >gi|3328763|gb|AAC67938.1| O-Sialoglycoprotein Endopeptidase family [Chlamydia trachomatis][SEQ ID NO:49]


[0042] >gi|6578102|gb|AAC67897.2| ATP Synthase Subunit K [Chlamydia trachomatis][SEQ ID NO:51]


[0043] >gi|3329252|gb|AAC68382.1| S14 Ribosomal Protein [Chlamydia trachomatis][SEQ ID NO:53]


[0044] >gi|3328987|gb|AAC68150.1| hypothetical protein [Chlamydia trachomatis][SEQ ID NO:57]


[0045] >gi|3328972|gb|AAC68136.1| Apolipoprotein N-Acetyltransferase [Chlamydia trachomatis][SEQ ID NO:59]


[0046] >gi|3328612|gb|AAC67797.1| Fructose-6-P Phosphotransferase [Chlamydia trachomatis][SEQ ID NO:61]


[0047] >gi|3328517|gb|AAC67709.1| hypothetical protein [Chlamydia trachomatis][SEQ ID NO:63]


[0048] >gi|3328482|gb|AAC67677.1| L28 Ribosomal Protein [Chlamydia trachomatis][SEQ ID NO:65]


[0049] >gi|3328436|gb|AAC67635.1| SS DNA Binding Protein [Chlamydia trachomatis][SEQ ID NO:67]


[0050] >gi|3328411|gb|AAC67611.1| hypothetical protein [Chlamydia trachomatis][SEQ ID NO:69]


[0051] Again, when such blebs are present in a vaccine formulation they may be more protective against Chlamydia trachomatis infection than the use of the protein in isolation.


[0052] Particularly beneficial pairs of Chlamydia trachomatis antigens are further preferred embodiments of this invention. Thus in a further aspect a Gram-negative bleb (preferably from gonococcus) is provided presenting on its surface both the PorB and PmpG outer membrane proteins from Chlamydia trachomatis. Furthermore, a Gram-negative bleb (preferably from gonococcus) is provided presenting on its surface both the PorB and MOMP (from one or more serovars) outer membrane proteins from Chlamydia trachomatis. Lastly, a Gram-negative bleb (preferably from gonococcus) is provided presenting on its surface both the PmpG and MOMP (from one or more serovars) outer membrane proteins from Chlamydia trachomatis.


[0053] By MOMP (or OMP1 or OMP I) from one or more (1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more) serovars it is preferred that one or more should be selected from a list serovars consisting of: B, Ba, D, Da, E, L1, L2, L2a, F, G, K, L3, A, C, H, I, Ia, & J; more preferably from a list consisting of D, E, F, G, K, H, I, & J. Most preferably one or more MOMPs should at least comprise MOMP from serovar D or E (most preferably D). A further preferred strategy is the selection of one or more MOMP from each of the following 3 serogroups: B-serogroup (consisting of serovars B, Ba, D, Da, E, L1, L2 and L2a, and preferably selected from serovars D, Da, & E); F-G-serogroup (consisting of serovars F and G); and C-serogroup (consisting of servars A, C, H, I, Ia, J, K, and L3, and preferably selected from serovars H, I, Ia, J and K).


[0054] Most preferably the genes for the Chlamydia trachomatis antigens should be inserted at the PorA locus of Neisseria (preferably gonococcus).


[0055] Such a prepartion formulated as a vaccine may give enhanced protection to a host against Chlamydia trachomatis than when a single antigen is administered.


[0056] Preferably the bleb has been derived from a strain (preferably gonococcus) which has been modified to upregulate one or more protective outer membrane antigens (as described below).


[0057] Preferably the bleb has been derived from a strain (preferably gonococcus) which has been modified to downregulate one or more immunodominant variable or non-protective outer membrane antigens (as described below).


[0058] Preferably the blebs are derived from a strain (preferably gonococcus) which has a detoxified lipid A portion of bacterial LPS, due to the strain having been engineered to reduce or switch off expression of one or more genes which cause LPS to be toxic (preferably selected from the following genes, or homologues thereof htrB, msbB and lpxK; see section below).


[0059] Preferably the blebs are derived from a strain (preferably gonococcus) which has a detoxified lipid A portion of bacterial LPS, due to the strain having been engineered to express at a higher level of one or more genes producing a gene product that is capable of detoxifying LPS (preferably selected from the following genes, or homologues thereof: pmrA, pmrB, pmrE and pmrF; see section below).


[0060] Vaccine compositions comprising the bleb of the invention and a pharmaceutically suitable excipient or carrier is also envisaged. Preferably the vaccine additionally comprises a mucosal adjuvant. Mucosal adjuvants are well known in the art (see Vaccine Design “The subunit and adjuvant approach” (eds Powell M. F. & Newman M. J.) (1995) Plenum Press New York). A preferred mucosal adjuvant is LT2 (or LTII, which can be split into LTIIa and LTIIb—see Martin et al. Infection and Immunity, 2000, 68:281-287). Preferably such vaccines should be formulated and administered as described below in “vaccine formulations”.


[0061] The content of blebs per dose in the vaccine will typically be in the range 1-100 μg, preferably 5-50 μg, most typically in the range 5-25 μg.


[0062] Optimal amounts of components for a particular vaccine can be ascertained by standard studies involving observation of appropriate immune responses in subjects. Following an initial vaccination, subjects may receive one or several booster immunisations adequately spaced.


[0063] A method of preventing Chlamydia trachomatis infection in a host is also provided comprising the steps of administering an effective amount of the above vaccine to a host in need thereof. Preferably the vaccine is mucosally administered via either a intranasal, oral, intradermal or intravaginal route.


[0064]

Chlamydia pneumoniae
Antigens Integrated into a Gram Negative Bacterial bleb


[0065] In a further aspect, the invention provides a Gram-negative bleb presenting on its surface a protective antigen from Chlamydia pneumoniae. Neisseria meningitidis, Moraxella catharralis, and Haemophilus influenzae are preferred species for the production of said bleb. A bacterial strain capable of producing such a bleb is a further aspect of the invention. Such protective antigens are preferably one or more of those listed below:


[0066] 1) Cell Envelope: Membrane Proteins, Lipoproteins and Porins
4Gene:Protein Function:yaeTOMP85 homolog60IM60 kD inner membrane proteinlgtprolipoprotein diacylglyceryl transferasecrpACHLTR 15 kD cysteine-rich proteinomcB60 kD cysteine-rich outer membrane complex proteinomcA9 kD cysteine-rich outer membrane complex lipoproteincutEapolipoprotein N-acetyltransferaseompAmajor outer membrane proteinpalpeptidoglycan-associated lipoproteinporBouter membrane protein analog


[0067] 2) Coding Genes (Not in C. trachomatis)
5Gene:Protein Function:yqfFconserved hypothetical inner membrane proteinyxjGhypothetical proteinguaAGMP synthaseguaBinosine 5′-monophosphate dehydrogenaseargRsimilarity to arginine repressorCPn0232similarity to 5′-methylthioadenosine nucleosidaseCPn0251conserved hypothetical proteinCPn0278conserved outer membrane lipoprotein protein/a>CPn0279possible ABC transporter permeaseyxjGhypothetical proteinyqeVhypothetical proteinCPn0486hypothetical proline permeaseCPn05053-methyladenine DNA glycosylaseCPn0562CHLPS 43 kDa proteinCPn0585similarity to CHLPS IncAyvyDconserved hypothetical proteinCPn0608uridine 5′-monophosphate synthaseCPn0735uridine kinaseCPn0907CutA-like periplasmic divalent cation tolerance proteinCPn0927CHLPS 43 kDa proteinCPn0928CHLPS 43 kDa proteinCPn0929CHLPS 43 kDa proteinCPn0980similar to S. cerevisiae 52.9 kDa proteinbioAadenosylmethionine-8-amino-7-oxononanoateaminotransferasebioDdethiobiotin synthetasebioBbiotin synthaseCPn1045conserved hypothetical membrane proteinCPn1046tryptophan hydroxylase


[0068] 3) Chlamydia-Specific Proteins
6Gene:Protein Function:pmp_1polymorphic outer membrane proteinpmp_2polymorphic outer membrane proteinpmp_3polymorphic outer membrane proteinpmp_3polymorphic outer membrane proteinpmp_4polymorphic outer membrane proteinpmp_4polymorphic outer membrane proteinpmp_5polymorphic outer membrane proteinpmp_5polymorphic outer membrane proteinCPn0133CHLPS hypothetical proteinCPn0186similarity to IncAincBinclusion membrane protein BincCinclusion membrane protein CCPn0332CHLTR T2 proteinltuBLtuB proteinpmp_6polymorphic outer membrane proteinpmp_7polymorphic outer membrane proteinpmp_8polymorphic outer membrane proteinpmp_9polymorphic outer membrane proteinpmp_10polymorphic outer membrane proteinpmp_10polymorphic outer membrane proteinpmp_11polymorphic outer membrane proteinpmp_12polymorphic outer membrane proteinpmp_13polymorphic outer membrane proteinpmp_14polymorphic outer membrane proteinpmp_15polymorphic outer membrane proteinpmp_16polymorphic outer membrane proteinpmp_17polymorphic outer membrane proteinpmp_17polymorphic outer membrane proteinpmp_17polymorphic outer membrane proteinpmp_18polymorphic outer membrane proteinpmp_19polymorphic outer membrane proteinpmp_20polymorphic outer membrane proteineuoCHLPS Euo proteinCPn0562CHLPS 43 kDa protein homologCPn0585similar to CHLPS inclusion membrane protein ACPn0728CHLPN 76 kDa protein homologCPn0729CHLPN 76 kDa protein homologgp6DCHLTR plasmid proteinCPn0927CHLPS 43 kDa protein homologCPn0928CHLPS 43 kDa protein homologCPn0929CHLPS 43 kDa protein homologpmp_21polymorphic outer membrane proteinltuALtuA protein


[0069] (Full sequence information has been published at the Chlamydia Genome Project web site: http://chlamydia-www.berkeley.edu:4231/index.html).


[0070] Additional Chlamydia Genes, and Encoded Proteins, Suitable for Expression in a Gram-Negative Bacteria for OMV Vaccine Preparation:
7Chlamydia pneumoniae 98 kD putative outer membraneWO2000262protein gene.37-A2Patent InventorsDUNN PLOOMEN RPMURDIN ADChlamydia POMP91B precursor gene.WO2000262Patent InventorsDUNN PL39-A2OOMEN RPMURDIN ADChlamydia antigen CPN100634 full length codingWO2000327sequence.94-A2Patent InventorsOOMEN RPWANG JMURDIN ADChlamydia antigen CPN100634 gene open reading frame.WO2000327Patent InventorsOOMEN RP94-A2WANG JMURDIN ADChlamydia antigen CPN100635 full length codingWO2000327sequence.94-A2Patent InventorsOOMEN RPWANG JMURDIN ADChlamydia antigen CPN100635 gene open reading frame.WO2000327Patent InventorsOOMEN RP94-A2WANG JMURDIN ADChlamydia antigen CPN100638 full length codingWO2000327sequence.94-A2Patent InventorsOOMEN RPWANG JMURDIN ADChlamydia antigen CPN100638 gene open reading frame.WO2000327Patent InventorsOOMEN RP94-A2WANG JMURDIN ADChlamydia antigen CPN100639 full length codingWO2000327sequence.94-A2Patent InventorsOOMEN RPWANG JMURDIN ADChlamydia antigen CPN100639 gene open reading frame.WO2000327Patent InventorsOOMEN RP94-A2WANG JMURDIN ADChlamydia antigen CPN100708 full length codingWO2000327sequence.94-A2Patent InventorsOOMEN RPWANG JMURDIN ADChlamydia antigen CPN100708 gene open reading frame.WO2000327Patent InventorsOOMEN RP94-A2WANG JMURDIN ADC. pneumoniae ATP/ADP translocase coding sequence.WO2000391Patent InventorsDUNN P57-A1OOMEN RPWANG JMURDIN ADChlamydia pneumoniae 98 kDa outer membrane proteinWO2000327CPN100640 gene.84-A1Patent InventorsDUNN POOMEN RPWANG JMURDIN ADChlamydia pneumoniae 98 kDa outer membrane proteinWO2000327coding region.84-A1Patent InventorsDUNN POOMEN RPWANG JMURDIN ADDNA encoding a 9 kDa cysteine-rich membrane protein.WO2000537Patent InventorsDUNN P64-A1OOMEN RPWANG JMURDIN ADDNA encoding a 60 kDa cysteine-rich membrane protein.WO2000553Patent InventorsDUNN P26-A1OOMEN RPWANG JMURDIN ADA 9 kDa cysteine-rich membrane protein.WO2000537Patent InventorsDUNN P64-A1OOMEN RPWANG JMURDIN ADA 60 kDa cysteine-rich membrane protein of ChlamydiaWO2000553pneumoniae.26-A1Patent InventorsDUNN POOMEN RPWANG JMURDIN ADC. pneumoniae mip (outer membrane protein).WO2000067Patent InventorsDUNN PL41-A1OOMEN RPMURDIN ADC. pneumoniae mip (outer membrane protein) truncatedWO2000067protein.41-A1Patent InventorsDUNN PLOOMEN RPMURDIN ADC. pneumoniae omp protein sequence.WO2000067Patent InventorsDUNN PL43-A2OOMEN RPMURDIN ADC. pneumoniae omp protein truncated sequence.WO2000067Patent InventorsDUNN PL43-A2OOMEN RPMURDIN ADAmino acid sequence of the CPN100111 polypeptide.WO2000111Patent InventorsOOMEN RP83-A2MURDIN ADAmino acid sequence of the CPN100224 polypeptide.WO2000111Patent InventorsOOMEN RP83-A2MURDIN ADAmino acid sequence of the CPN100230 polypeptide.WO2000111Patent InventorsOOMEN RP83-A2MURDIN ADAmino acid sequence of the CPN100231 polypeptide.WO2000111Patent InventorsOOMEN RP83-A2MURDIN ADAmino acid sequence of the CPN100232 polypeptide.WO2000111Patent InventorsOOMEN RP83-A2MURDIN ADAmino acid sequence of the CPN100233 polypeptide.WO2000111Patent InventorsOOMEN RP83-A2MURDIN ADAmino acid sequence of the CPN100394 polypeptide.WO2000111Patent InventorsOOMEN RP83-A2MURDIN ADAmino acid sequence of the CPN100395 polypeptide.WO2000111Patent InventorsOOMEN RP83-A2MURDIN ADAmino acid sequence of the POMP91A protein ofWO2000111Chlamydia pneumoniae.80-A1Patent InventorsDUNN PLOOMEN RPMURDIN ADChlamydia pneumoniae antigen CPN100202 proteinWO2000067sequence.39-A2Patent InventorsOOMEN RPMURDIN ADChlamydia pneumoniae antigen CPN100149 proteinWO2000067SEQ ID NO: 2.40-A1Patent InventorsOOMEN RPMURDIN ADChlamydia pneumoniae antigen CPN100605 proteinWO2000067SEQ ID NO: 2.42-A2Patent InventorsOOMEN RPMURDIN ADChlamydia antigen CPN100634.WO2000327Patent InventorsOOMEN RP94-A2WANG JMURDIN ADChlamydia antigen CPN100635.WO2000327Patent InventorsOOMEN RP94-A2WANG JMURDIN ADMature Chlamydia antigen CPN100635.WO2000327Patent InventorsOOMEN RP94-A2WANG JMURDIN ADChlamydia antigen CPN100638.WO2000327Patent InventorsOOMEN RP94-A2WANG JMURDIN ADChlamydia antigen CPN100639.WO2000327Patent InventorsOOMEN RP94-A2WANG JMURDIN ADChlamydia antigen CPN100708.WO2000327Patent InventorsOOMEN RP94-A2WANG JMURDIN ADC. pneumoniae ATP/ADP translocase protein sequence.WO2000391Patent InventorsDUNN P57-A1OOMEN RPWANG JMURDIN ADChlamydia pneumoniae 98 kD putative outer membraneWO2000262protein.37-A2Patent InventorsDUNN PLOOMEN RPMURDIN ADChlamydia POMP91B precursor protein.WO2000262Patent InventorsDUNN PL39-A2OOMEN RPMURDIN ADChlamydia pneumoniae 98 kDa outer membrane proteinWO2000327CPN100640.84-A1Patent InventorsDUNN POOMEN RPWANG JMURDIN ADChlamydia pneumoniae processed 98 kDa outer membraneWO2000327protein CPN100640.84-A1Patent InventorsDUNN POOMEN RPWANG JMURDIN ADC. pneumoniae mip (outer membrane protein) encodingWO2000067DNA.41-A1Patent InventorsDUNN PLOOMEN RPMURDIN ADC. pneumoniae omp protein encoding DNA.WO2000067Patent InventorsDUNN PL43-A2OOMEN RPMURDIN ADDNA encoding the CPN100111 polypeptide.WO2000111Patent InventorsOOMEN RP83-A2MURDIN ADDNA encoding the CPN100224 polypeptide.WO2000111Patent InventorsOOMEN RP83-A2MURDIN ADDNA encoding the CPN100230 polypeptide.WO2000111Patent InventorsOOMEN RP83-A2MURDIN ADDNA encoding the CPN100231 polypeptide.WO2000111Patent InventorsOOMEN RP83-A2MURDIN ADDNA encoding the CPN100232 polypeptide.WO2000111Patent InventorsOOMEN RP83-A2MURDIN ADDNA encoding the CPN100233 polypeptide.WO2000111Patent InventorsOOMEN RP83-A2MURDIN ADDNA encoding the CPN100394 polypeptide.WO2000111Patent InventorsOOMEN RP83-A2MURDIN ADDNA encoding the CPN100395 polypeptide.WO2000111Patent InventorsOOMEN RP83-A2MURDIN ADNucleotide sequence of the POMP91A gene of ChlamydiaWO2000111pneumoniae.80-A1Patent InventorsDUNN PLOOMEN RPMURDIN ADChlamydia pneumoniae antigen CPN100202 nucleotideWO2000067sequence.39-A2Patent InventorsOOMEN RPMURDIN ADChlamydia pneumoniae antigen CPN100149 proteinWO2000067encoding DNA SEQ ID NO: 1.40-A1Patent InventorsOOMEN RPMURDIN ADChlamydia pneumoniae antigen CPN100605 proteinWO2000067encoding DNA SEQ ID NO: 1.42-A2Patent InventorsOOMEN RPMURDIN AD


[0071] When such blebs are present in a vaccine formulation they may be more protective against Chlamydia pneumoniae infection than the use of the protein/antigen in isolation.


[0072] Particularly beneficial pairs of Chlamydia pneumoniae antigens have also been found. Thus in a further aspect a Gram-negative bleb (preferably from meningococcus) is provided presenting on its surface both the PorB and MOMP outer membrane proteins from Chlamydia pneumoniae. Furthermore, a Gram-negative bleb (preferably from meningococcus) is provided presenting on its surface both MOMP and one or more Pmp outer membrane proteins from Chlamydia pneumoniae. A Gram-negative bleb (preferably from meningococcus) is additionally provided presenting on its surface both the PorB and one or more Pmp outer membrane proteins from Chlamydia pneumoniae. A Gram-negative bleb (preferably from meningococcus) is also provided presenting on its surface both the PorB and Npt1 proteins from Chlamydia pneumoniae. A Gram-negative bleb (preferably from meningococcus) is additionally provided presenting on its surface both the Npt1 and one or more Pmp proteins from Chlamydia pneumoniae. Lastly, a Gram-negative bleb (preferably from meningococcus) is provided presenting on its surface both the Npt1 and MOMP proteins from Chlamydia pneumoniae. Bacterial strains from which these blebs are derived are further aspects of this invention.


[0073] Such prepartions formulated as a vaccine can give enhanced protection to a host against Chlamydia than when a single antigen is administered.


[0074] Preferably the bleb has been derived from a strain which has been modified to upregulate one or more protective outer membrane antigens (see below; for instance for meningocococcal protective outer membrane antigens see section “Neisserial bleb preparations” for those antigens that should preferably be upregulated).


[0075] Preferably the bleb has been derived from a strain which has been modified to downregulate one or more immunodominant variable or non-protective outer membrane antigens (as described below; for instance for meningocococcal variable/non-protective outer membrane antigens see section “Neisserial bleb preparations” for those antigens that should preferably be downregulated).


[0076] Preferably the blebs are derived from a strain which has a detoxified lipid A portion of bacterial LPS, due to the strain having been engineered to reduce or switch off expression of one or more genes which cause LPS to be toxic (preferably selected from the following genes, or homologues thereof htrB, msbB and lpxK; see section below).


[0077] Preferably the blebs are derived from a strain which has a detoxified lipid A portion of bacterial LPS, due to the strain having been engineered to express at a higher level of one or more genes producing a gene product that is capable of detoxifying LPS (preferably selected from the following genes, or homologues thereof: pmrA, pmrB, pmrE and pmrF; see section below).


[0078] Vaccine compositions comprising the bleb of the invention and a pharmaceutically suitable excipient or carrier are also envisaged. Preferably the vaccine additionally comprising a mucosal adjuvant. Mucosal adjuvants are well known in the art (see Vaccine Design “The subunit and adjuvant approach” (eds Powell M. F. & Newman M. J.) (1995) Plenum Press New York). A preferred mucosal adjuvant is LT2 (or LTII, which can be split into LTIIa and LTIIb—see Martin et al. Infection and Immunity, 2000, 68:281-287). Preferably such vaccines should be formulated and administered as described below in “Vaccine formulations”.


[0079] The content of blebs per dose in the vaccine will typically be in the range 1-100 μg, preferably 5-50 μg, most typically in the range 5-25 μg.


[0080] Optimal amounts of components for a particular vaccine can be ascertained by standard studies involving observation of appropriate immune responses in subjects. Following an initial vaccination, subjects may receive one or several booster immunisations adequately spaced.


[0081] The efficacy of a C. pneumoniae vaccine can be evaluated in a mouse model of infection such as the one described by Murdin et al., 2000, J. Infect. Dis. 181 (suppl 3):S5444-5 1. The protection elicited by a vaccine formulation can be assessed by reduction of the bacterial load in the lung after a challenge infection with C. pneumoniae.


[0082] A method of preventing Chlamydia pneumoniae infection in a host is also provided comprising the steps of administering an effective amount of the above vaccine to a host in need thereof. Preferably the vaccine is mucosally administered via either an intranasal, intradermal or oral route.


[0083] Further Improvements in the Bacteria and blebs of the Invention


[0084] The Gram-negative bacterium of the invention may be further genetically engineered by one or more processes selected from the following group: (a) a process of down-regulating expression of immunodominant variable or non-protective antigens, (b) a process of upregulating expression of protective OMP antigens, (c) a process of down-regulating a gene involved in rendering the lipid A portion of LPS toxic, (d) a process of upregulating a gene involved in rendering the lipid A portion of LPS less toxic, and (e) a process of down-regulating synthesis of an antigen which shares a structural similarity with a human structure and may be capable of inducing an auto-immune response in humans. These processes are described in detail in WO 01/09350 (incorporated by reference herein).


[0085] Such bleb vaccines of the invention are designed to focus the immune response on a few protective (preferably conserved) antigens or epitopes—formulated in a multiple component vaccine. Where such antigens are integral OMPs, the outer membrane vesicles of bleb vaccines will ensure their proper folding. This invention provides methods to optimize the OMP and LPS composition of OMV (bleb) vaccines by deleting immunodominant variable as well as non protective OMPs, by creating conserved OMPs by deletion of variable regions, by upregulating expression of protective OMPs, and by eliminating control mechanisms for expression (such as iron restriction) of protective OMPs. In addition the invention provides for the reduction in toxicity of lipid A by modification of the lipid portion or by changing the phosphoryl composition whilst retaining its adjuvant activity or by masking it. Each of these new methods of improvement individually improve the bleb vaccine, however a combination of one or more of these methods work in conjunction so as to produce an optimised engineered bleb vaccine which is immuno-protective and non-toxic—particularly suitable for paediatric use.


[0086] (a) A Process of Down-Regulating Expression of Immunodominant Variable or Non-Protective Antigens


[0087] Many surface antigens are variable among bacterial strains and as a consequence are protective only against a limited set of closely related strains. An aspect of this invention covers the reduction in expression, or, preferably, the deletion of the gene(s) encoding variable surface protein(s) which results in a bacterial strain producing blebs which, when administered in a vaccine, have a stronger potential for cross-reactivity against various strains due to a higher influence exerted by conserved proteins (retained on the outer membranes) on the vaccinee's immune system. Examples of such variable antigens include: for Neisseria—pili (PilC) which undergoes antigenic variations, PorA, Opa, TbpB, FrpB; for H. influenzae—P2, P5, pilin, IgA1-protease; and for Moraxella—CopB, OMP106.


[0088] Other types of gene that could be down-regulated or switched off are genes which, in vivo, can easily be switched on (expressed) or off by the bacterium. As outer membrane proteins encoded by such genes are not always present on the bacteria, the presence of such proteins in the bleb preparations can also be detrimental to the effectiveness of the vaccine for the reasons stated above. A preferred example to down-regulate or delete is Neisseria Opc protein. Anti-Opc immunity induced by an Opc containing bleb vaccine would only have limited protective capacity as the infecting organism could easily become Opc. H. influenzae HgpA and HgpB are other examples of such proteins.


[0089] In process a), these variable or non-protective genes are down-regulated in expression, or terminally switched off. This has the surprising advantage of concentrating the immune system on better antigens that are present in low amounts on the outer surface of blebs.


[0090] The strain can be engineered in this way by a number of strategies including transposon insertion to disrupt the coding region or promoter region of the gene, or point mutations or deletions to achieve a similar result. Homologous recombination may also be used to delete a gene from a chromosome (where sequence X comprises part (preferably all) of the coding sequence of the gene of interest). It may additionally be used to change its strong promoter for a weaker (or no) promoter. All these techniques are described in WO 01/09350 (published by WIPO on Aug. 2, 2001 and incorporated by reference herein).


[0091] (b) A Process of Upregulating Expression of Protective OMP Antigens


[0092] This may be done by inserting a copy of such a protective OMP into the genome (preferably by homologous recombination), or by upregulating expression of the native gene by replacing the native promoter for a stronger promoter, or inserting a strong promoter upstream of the gene in question (also by homologous recombination). Such methods can be accomplished using the techniques described in WO 01/09350 (published by WIPO on Aug. 2, 2001 and incorporated by reference herein).


[0093] Such methods are particularly useful for enhancing the production of immunologically relevant Bleb components such as outer-membrane proteins and lipoproteins (preferably conserved OMPs, usually present in blebs at low concentrations).


[0094] (c) A Process of Down-Regulating a Gene Involved in Rendering the Lipid A Portion of LPS Toxic


[0095] The toxicity of bleb vaccines presents one of the largest problems in the use of blebs in vaccines. A further aspect of the invention relates to methods of genetically detoxifying the LPS present in Blebs. Lipid A is the primary component of LPS responsible for cell activation. Many mutations in genes involved in this pathway lead to essential phenotypes. However, mutations in the genes responsible for the terminal modifications steps lead to temperature-sensitive (htrB) or permissive (msbB) phenotypes. Mutations resulting in a decreased (or no) expression of these genes result in altered toxic activity of lipid A. Indeed, the non-lauroylated (htrB mutant) [also defined by the resulting LPS lacking both secondary acyl chains] or non-myristoylated (msbB mutant) [also defined by the resulting LPS lacking only a single secondary acyl chain] lipid A are less toxic than the wild-type lipid A. Mutations in the lipid A 4′-kinase encoding gene (lpxK) also decreases the toxic activity of lipid A.


[0096] Process c) thus involves either the deletion of part (or preferably all) of one or more of the above open reading frames or promoters. Alternatively, the promoters could be replaced with weaker promoters. Preferably the homologous recombination techniques are used to carry out the process. Preferably the methods described in WO 01/09350 (published by WIPO on Aug. 2, 2001 and incorporated by reference herein) are used. The sequences of the htrB and msbB genes from Neisseria meningitidis B, Moraxella catarrhalis, and Haemophilus influenzae are provided in WO 01/09350 for this purpose.


[0097] (d) A Process of Upregulating a Gene Involved in Rendering the Lipid A Portion of LPS less Toxic


[0098] LPS toxic activity could also be altered by introducing mutations in genes/loci involved in polymyxin B resistance (such resistance has been correlated with addition of arninoarabinose on the 4′ phosphate of lipid A). These genes/loci could be pmrE that encodes a UDP-glucose dehydrogenase, or a region of antimicrobial peptide-resistance genes common to many enterobacteriaciae which could be involved in aminoarabinose synthesis and transfer. The gene pmrF that is present in this region encodes a dolicol-phosphate manosyl transferase (Gunn J. S., Kheng, B. L., Krueger J., Kim K., Guo L., Hackett M., Miller S. I. 1998. Mol. Microbiol. 27: 1171-1182).


[0099] Mutations in the PhoP-PhoQ regulatory system, which is a phospho-relay two component regulatory system (f.i. PhoP constitutive phenotype, PhoPc), or low Mg++ environmental or culture conditions (that activate the PhoP-PhoQ regulatory system) lead to the addition of aminoarabinose on the 4′-phosphate and 2-hydroxymyristate replacing myristate (hydroxylation of myristate). This modified lipid A displays reduced ability to stimulate E-selectin expression by human endothelial cells and TNF-α secretion from human monocytes.


[0100] Process d) involves the upregulation of these genes using a strategy as described in WO 01/09350 (published by WIPO on Aug. 2, 2001 and incorporated by reference herein).


[0101] (e) A Process of Down-Regulating Synthesis of an Antigen which Shares a Structural Similarity with a Human Structure and may be Capable of Inducing an Auto-Immune Response in Humans


[0102] The isolation of bacterial outer-membrane blebs from encapsulated Gram-negative bacteria often results in the co-purification of capsular polysaccharide. In some cases, this “contaminant” material may prove useful since polysaccharide may enhance the immune response conferred by other bleb components. In other cases however, the presence of contaminating polysaccharide material in bacterial bleb preparations may prove detrimental to the use of the blebs in a vaccine. For instance, it has been shown at least in the case of N. meningitidis that the serogroup B capsular polysaccharide does not confer protective immunity and is susceptible to induce an adverse auto-immune response in humans. Consequently, process e) of the invention is the engineering of the bacterial strain for bleb production such that it is free of capsular polysaccharide. The blebs will then be suitable for use in humans. A particularly preferred example of such a bleb preparation is one from N. meningitidis serogroup B devoid of capsular polysaccharide.


[0103] This may be achieved by using modified bleb production strains in which the genes necessary for capsular biosynthesis and/or export have been impaired as described in WO 01/09350 (published by WIPO on Aug. 2, 2001 and incorporated by reference herein). A preferred method is the deletion of some or all of the Neisseria meningitidis cps genes required for polysaccharide biosynthesis and export. For this purpose, the replacement plasmid pMF121 (described in Frosh et al. 1990, Mol. Microbiol. 4:1215-1218) can be used to deliver a mutation deleting the cpsCAD (+galE) gene cluster. Alternatively the siaD gene could be deleted, or down-regulated in expression (the meningococcal siaD gene encodes alpha-2,3-sialyltransferase, an enzyme required for capsular polysaccharide and LOS synthesis). Such mutations may also remove host-similar structures on the saccharide portion of the LPS of the bacteria.


[0104] Combinations of Methods a)-e)


[0105] It may be appreciated that one or more of the above processes may be used to produce a modified strain from which to make improved bleb preparations of the invention. Preferably one such process is used, more preferably two or more (2, 3, 4, or 5) of the processes are used in order to manufacture the bleb vaccine. As each additional method is used in the manufacture of the bleb vaccine, each improvement works in conjunction with the other methods used in order to make an optimised engineered bleb preparation.


[0106] A preferred meningococcal (particularly N. meningitidis B) bleb preparation comprises the use of processes b), c) and e) (optionally combined with process a)). Such bleb preparations are safe (no structures similar to host structures), non-toxic, and structured such that the host immune response will be focused on high levels of protective (and preferably conserved) antigens. All the above elements work together in order to provide an optimised bleb vaccine.


[0107] Similarly for M. catarrhalis, non-typeable H. influenzae, gonococcus, and non serotype B meningococcal strains (e.g. serotype A, C, Y or W), preferred bleb preparations comprise the use of processes b) and c), optionally combined with process a).


[0108] Preferred Neisserial bleb Preparations


[0109] One or more of the following genes (encoding protective antigens) are preferred for upregulation via process b) when carried out on a Neisserial strain, including gonococcus, and meningococcus (particularly N. meningitidis B): NspA (WO 96/29412), Hsf-like (WO 99/31132), Hap (PCT/EP99/02766), PorA, PorB, OMP85 (WO 00/23595), PilQ (PCT/EP99/03603), PldA (PCT/EP99/06718), FrpB (WO 96/31618), TbpA (U.S. Pat. No. 5,912,336), TbpB, FrpA/FrpC (WO 92/01460), LbpA/LbpB (PCT/EP98/05117), FhaB (WO 98/02547), HasR (PCT/EP99/05989), lipo02 (PCT/EP99/08315), Thp2 (WO 99/57280), MltA (WO 99/57280), and ctrA (PCT/EP00/00135). They are also preferred as genes which may be heterologously introduced into other Gram-negative bacteria.


[0110] One or more of the following genes are preferred for downregulation via process a): PorA, PorB, PilC, ThpA, TbpB, LbpA, LbpB, Opa, and Opc (most preferably PorA).


[0111] One or more of the following genes are preferred for downregulation via process c): htrB, msbB and lpxK (most preferably msbB which removes only a single secondary acyl chain from the LPS molecule).


[0112] One or more of the following genes are preferred for upregulation via process d): pmrA, pmrB, pmrE, and pmrF.


[0113] One or more of the following genes are preferred for downregulation via process e): galE, siaA, siaB, siaC, siaD, ctrA, ctrB, ctrC, and ctrD (the genes are described in described in WO 01/09350—published by WIPO on Aug. 2, 2001 and incorporated by reference herein).


[0114] Many of the above open reading frames and upstream regions are described in WO 01/09350 (incorporated by reference herein).


[0115] Preferred gonococcal genes to upregulate via process b) include one or more of the following:
8[SEQ ID NO:79]Neisseria gonorrheae lactoferrin receptor precursor (lbpA) gene,complete cds.ACCESSION U16260VERSION  U16260.1 GI:915277Source: Neisseria gonorrhoeae/strain=“FA19”gene=“lbpA” nucleotides: 278..3109protein_id=“AAC13780.1”/db_xref=“GI:915278”            /translation=“MNKKHGFPLTLTALAIATAFPAYAAQAGAAALDAAQSQSLKEVTVPAAKVGRRSKEATGLGKIVKTSETLNKEQVLGIRDLTRYDPGVAVVEQGNGASGGYSIRGVDKNRVAVSVDGVAQIQAFTVQGSLSGYGGRGGSGAINEIEYENISTVEIDKGAGSSDHGSGALGGAVAFRTKEAADLISDGKSWGIQAKTAYGSKNRQFMKSLGAGFSKDGWEGLLIRTERQGRETRPHGDIADGVEYGIDRLDAFRQTYDIKRKTTEPFFLVEGENTLKPVAKLAGYGIYLNRQLNRWVKERIEQNQPLSAEEEAQVREAQARHENLSAQAYTGGGRILPDPMDYRSGSWLAKLGYRFGGRHYVGGVFEDTKQRYDIRDMTEKQYYGTDEAEKFRDKSGVYDGDDFRDGLYFVPNIEEWKGDKNLVKGIGLKYSRTKFIDEHHRRRRMGLLYRYENEKYSDNWADKAVLSFDKQGVATDNNTLKLNCAVYPAVDKSCRASADKPYSYDSSDRFHYREQHNVLNASFEKSLKNKWTKHHLTLGFGYDASKAVSRPEQLSHNAARISESTGFDEKNQDKYRLGKPEVVEGSVCGYIETLRSRKCVPRKINGSNIHISLNDRFSIGKYFDFSLGGRYDRKNFTTSEELVRSGRYADRSWNSGIVFKPNRHFSVSYRASSGFRTPSFQELFGIDIYHDYPKGWQRPALKSEKAANREIGLQWKGDFGFLEISSFRNRYTDMIAVADQKTKLPDSAGRLTEIDIRDYYNAQNMSLQGINILGKIDWNGVYGKLPEGLYTTLAYNRIKPKSVSNRPDLSLRSYALDAVQPSRYVLGFGYDQPEGKWGANIMLTYSKGKNPDELAYLAGDQKRYSAGRVTSSWKTADVSAYLNLKKRLTLRAAIYNIGNYRYVTWESLRQTAES                     TANRHGGDSNYGRYAAPGRNFSLALEMKF”[SEQ ID NO:80]   1 ctcgggataa cggcatcaat ctttcgggaa atggttcgac taatcctcaa agtttcaaag  61 ccgacaatct tcttgtaacg ggcggctttt acggcccgca ggcggcggaa ttgggcggca 121 ctattttcaa taaggatggg aaatctcttg gtataactga agatattgaa aatgaagttg 181 aaaatgaagc tgatgttggc gaacagttag aacctgaagt taaaccccaa ttcggcgtgg 241 tattcggtgc gaagaaagat aataaagagg tggaaaaatg aataagaaac acggttttcc 301 gctgactttg acggcgttgg ccattgcaac cgcttttccg gcttatgctg cccaagcggg 361 ggcggcggca cttgatgcgg cgcaaagtca atcattgaaa gaggttaccg tccgtgccgc 421 caaagtggga cggcgatcga aagaggcgac aggtttgggc aaaatcgtca aaacgtcgga 481 aacgttgaac aaagaacagg tactcggtat ccgcgacctg acgcgctacg atccgggcgt 541 ggcggttgtc gaacagggca acggcgcgag cggcggctac tcgatacgcg gcgtagataa 601 aaaccgtgtg gcggtttcgg ttgacggcgt tgcccaaata caggcgttta ccgtgcaggg 661 atcgttgagc ggatacggcg gacgcggcgg cagcggcgca atcaacgaaa tcgaatatga 721 aaacatcagc acggtggaaa tcgacaaagg cgccggttcg tccgatcacg gcagcggcgc 781 actcggcggc gcggtcgcct tccgcaccaa agaggcggca gacctgattt cagacggcaa 841 aagctggggg atacaggcaa aaaccgctta cggcagtaaa aaccgccaat ttatgaagtc 901 gctcggcgcg gggttcagca aagacggttg ggaagggctg ctaatccgaa ccgaacgcca 961 agggcgggaa acgcgcccgc acggcgatat tgcggacggg gtggaatacg gcatagaccg1021 tttggacgcg ttccgccaga catacgatat taaacgcaag acaacagagc catttttctt1081 agtagagggc gagaatacac tcaagcccgt ggcaaaattg gcgggctacg ggatatattt1141 gaaccgccag ctcaaccgct gggtaaaaga acgtattgaa caaaatcagc ctttaagtgc1201 tgaagaagag gcgcaggtgc gggaggcgca ggcgcgccac gaaaacctgt ccgcccaagc1261 ctacacgggc ggcggcagga tattgcccga tccgatggat taccgcagcg gctcttggct1321 tgccaagctg ggctaccgct tcggcggcag gcattatgtc ggcggcgtgt ttgaggatac1381 caaacagcgt tacgacatcc gcgatatgac ggaaaaacag tattacggta cggacgaggc1441 ggaaaagttt agagacaaga gcggggtgta cgacggcgac gatttccgcg acggcttgta1501 ttttgtgccg aatatagaag agtggaaggg cgataaaaat ttggtcaagg gcataggttt1561 gaaatattcc cgcaccaaat ttattgacga acatcaccgc cgccgccgta tgggtttgct1621 gtaccgttat gaaaatgaga aatactcgga caactgggcg gataaggcgg tgttgtcgtt1681 tgacaaacag ggcgtggcaa ccgacaacaa cacgctgaag ctgaattgcg ccgtgtatcc1741 tgccgtggac aaatcctgcc gcgcgtcggc ggacaaaccg tattcctacg acagcagcga1801 ccgtttccac taccgcgaac agcacaatgt tttgaatgcc tcgtttgaga agtcgctgaa1861 aaacaaatgg acgaaacacc atctgacttt gggcttcggt tacgatgctt ccaaagcagt1921 atcccgccca gaacagcttt cccacaatgc ggcaaggatt tcggaatcca cgggattcga1981 tgaaaagaat caagataagt accgtttggg taagcccgaa gtcgtcgaag ggtcggtctg2041 cggctatatc gaaaccctgc gttcccgcaa atgcgtgcca agaaaaatca acggcagcaa2101 tatccacatt tctttgaacg accgtttttc aatcggcaaa tattttgatt tcagcttggg2161 cggcaggtac gaccggaaaa acttcaccac gtcggaagaa ctcgtccgca gcgggcggta2221 tgccgaccgt tcgtggaaca gcggcatcgt gttcaaaccg aaccggcatt tttccgtgtc2281 ttaccgcgcc tccagcggct tcagaacgcc ttccttccaa gaacttttcg ggatagacat2341 ttatcacgat tatccgaaag gctggcagcg tcccgccctg aaatcggaaa aggcagccaa2401 ccgggaaatc ggtttgcagt ggaagggcga tttcggcttt ttggaaatca gcagtttccg2461 caaccgttat accgatatga ttgccgttgc cgatcaaaaa accaaattgc cggattcagc2521 aggacgattg acagagattg atatacgcga ttattacaat gcccaaaata tgtcgcttca2581 aggcatcaac atcttgggga aaatcgactg gaacggcgta tacggcaaac tgcccgaagg2641 cctgtacacc acattggcgt acaaccgtat caaaccgaaa tcggtatcca accggccgga2701 cttgtccctc cgcagctatg ctttggatgc ggtacagccg tcgcgttatg ttttggggtt2761 cggatacgac cagcccgagg ggaaatgggg cgcaaacatt atgctgacct attccaaagg2821 gaaaaaccct gacgagcttg cttatctggc aggcgatcaa aaacgatatt cggcaggaag2881 ggttacgtct tcttggaaaa cggcagatgt ttccgcttat ctgaatctga aaaaacggct2941 gaccttgagg gcggctatct acaatatcgg caactaccgc tacgttactt gggaatcctt3001 gcgccagact gcggaaagca cggcaaaccg gcacggcggc gacagcaact atggaaggta3061 tgccgcaccg ggcaggaact tcagcctcgc gctcgaaatg aagttttaaa ggaaatgccg3121 tctggaagct tgatctgcac cccaaaagtc ggactaaacc gccaactgat taaggtgcag3181 gtttttttga ttcaatataa acaagatttc cgccgtcatt cccgcgcagg cgggaatccg3241 gacattcaat gctaaggcaa tttatcggaa atgactgaaa ctcaaaaaac cggattccca//[SEQ ID NO:81]Neisseria gonorrhoeae lactoferrin binding protein B precursor.Source: Neisseria gonorrhoeae”/strain=“FA19”ACCESSION   AAD08809PID         g4106393VERSION     AAD08809.1  GI:4106393/gene=“lbpB”   coding sequence: 1..728, “AF072890.1:310..2496”   1 mrklnyygia llplmlascg gnfgvqpvve stptaypvtf kskdvptspp paepsvettp  61 vnrpavgaam rllrrntafh redgtaipds kqaeeklsfk egdvlflygs kgnklqqlks 121 eihkrdsdve irtsekenkk ygyefvdagy vytkngkdei eqnsggkrft hrfgydgfvy 181 ysgerpsqsl psagtvkyfg nwqymtdakr hrtgkavasd dlgyitfygn digatsyaak 241 daddrekhpa eytvdfdkki lkgeliknqy vqkkndpkkp ltiynitadl ngnrftgsak 301 vntevktrha dkeylffhtd adqrleggff gdngeelagr fisndngvfg vfagkqktna 361 sgtnpampfg khtkildslk isvdeatden prpfevstmp dfghpdkllv egreiplvsk 421 ektidladgr kmtvsaccdf ltyvklgrik terpavkpka qdeedsginn geesedeeei 481 aeesedevse ddngededei veeeadeaee ieeeaeeeep eeespeegng vsdgippape 541 alkgrdidlf lkgirtaead ipktgtahyt gtwearigep iqwdnkadka akaefdvdfg 601 nksisgtlte qngvepafri engviegngf hptartrdng inlsgngstn pqsfkadnll 661 vtggfygpqa aelggtifnk dgkslgited ienevenead vgeqlepevk pqfgvvfgak 721 kdnkevek[SEQ ID NO:82]Neisseria gonorrhoeae transferrin-binding protein A (tbpA) gene, completecds.ACCESSION   AF241227VERSION     AF241227.1  GI:9719361source          :Neisseria gonorrhoeae/strain=“Pgh3-2”gene “tbpA” coding sequence: 223..2946/protein_id=“AAF97766.1/db_xref=“GI:9719362”/translation=“MQQQHLFRFNILCLSLMTALPAYAENVQAGQAQEKQLDTIQVKAKKQKTRRDNEVTGLGKLVKTADTLSKEQVLDIRDLTRYDPGIAVVEQGRGASSGYSIRGMDKNRVSLTVDGLAQIQSYTAQAALGGTRTAGSSGAINEIEYENVKAVEISKGSNSVEQGSGALAGSVAFQTKTADDVIGEGRQWGIQSKTAYSGKNRGLTQSIALAGRIGGAEALLIRTGRHAGEIRAHEAAGRGVQSFNRLAPVEDGSDYAYFVVEGECPDGYAACKDKPKKDVVGEDKRQTVSTRDYTGPNRFLADPLSYESRSWLFRPGFRFENKRHYIGGILERTQQTFDTRDMTVPAFLTKAVFDANSKQAGSLRGNGKYAGNHKYGGLFTNGENNAPVGAEYGTGVFYDETHTKSRYGLEYVYTNADKDTWADYARLSYDRQGIGLDNHFQQTHCSADGSDKYCRPSADKPFSYYKSDRVIYGESHRLLQAAFKKSFDTAKIRHNLSVNLGYDRFGSNLRHQDYYYQSANRAYSLKTPPQNNGKKTSPYWVSIGRGNVVTGQICRSGNNTYTDCTPRSINGKSYYAAVRDNVRLGRWADVGAGLRYDYRSTHSDDGSVSTGTHRTLSWNTGIVLKPADWLDLTYRTSTGFRLPSFAEMYGWRSGDKIKAVKIDPEKSFNKEAGIVFKGDFGNLEASWFDNAYRDLIVRGYEAEIKNGKEQAKGAPAYLNAQSARITGINILGKIDWNGVWDKLPEGWYSTFAYNRVRVRDIKKRADRTDIQSHLFDAIQPSRYVVGSGYDQPEGKWGVNGMLTYSKAKEITELLGSRALLNGNSRNTKATARRTRPWYIVDVSGYYTVKKHFTLRA                     GVYNLLNHRYVTWENVRQTAAGAVNQHKNVGVYNRYAAPGRNYTFSLEMKF”[SEQ ID NO:83]   1 cgaagagttg ggcggatggt ttgcctatcc gggcaatgaa caaacgaaaa atgcgcaagc  61 ttcatccggc aatggaaatt cagcaggcag cgcgaccgtg gtattcggtg cgaaacgcca 121 aaagcttgtg caataagcac ggctgccgaa caatcgagaa taaggcttca gacggcatcg 181 ttcctgccga ttccgtctga aagcgaagat tagggaaaca ctatgcaaca gcaacatttg 241 ttccgattca atattttatg cctgtcttta atgactgcgc tgcccgctta tgcagaaaat 301 gtgcaagccg gacaagcaca ggaaaaacag ttggacacca tacaggtaaa agccaaaaaa 361 cagaaaaccc gccgcgataa cgaagtaacc ggtttgggca aattggtcaa aaccgccgac 421 acactcagca aagaacaggt actcgacatc cgcgacctga cgcgttacga ccccggcatc 481 gccgtcgtcg aacaggggcg cggcgcaagc tcgggctact cgatacgcgg tatggacaaa 541 aaccgcgtct ccttgacggt ggacggcttg gcgcaaatac agtcctacac cgcgcaggcg 601 gcattgggcg ggacgaggac ggcgggcagc agcggcgcaa tcaatgaaat cgagtatgaa 661 aacgttaagg ctgtcgaaat cagcaaaggc tcaaactcgg tcgaacaagg cagcggcgca 721 ttggcgggtt cggtcgcatt tcaaaccaaa accgcagacg atgttatcgg ggaaggcagg 781 cagtggggca ttcagagtaa aaccgcctat tccggcaaaa accgggggct tacccaatcc 841 atcgcgctgg cggggcgcat cggcggtgcg gaggctttgc tgatccgcac cggccggcac 901 gcgggggaaa tccgcgccca cgaagccgcc ggacgcggcg ttcagagctt taacaggctg 961 gcgccggttg aagacggcag tgactatgcc tattttgtgg tcgaaggaga atgccctgat1021 ggatatgcgg cttgtaaaga caaaccgaaa aaagatgttg tcggcgaaga caaacgtcaa1081 acggtttcca cccgagacta cacgggcccc aaccgcttcc ttgccgatcc gctttcatac1141 gaaagccggt cgtggctgtt ccgcccgggt tttcgttttg agaataagcg gcactacatc1201 ggcggcatac tcgaacgcac gcaacaaact ttcgacacgc gcgatatgac ggttccggca1261 ttcctgacca aggcggtttt tgatgcaaat tcaaaacagg cgggttcttt gcgcggcaac1321 ggcaaatacg cgggcaacca caaatacggc gggctgttta ccaacggcga aaacaatgcg1381 ccggtgggcg cggaatacgg tacgggcgtg ttttacgacg agacgcacac caaaagccgc1441 tacggtttgg aatatgtcta taccaatgcc gataaagaca cttgggcgga ttatgcccgc1501 ctctcttacg accggcaggg catcggtttg gacaaccatt ttcagcagac gcactgttct1561 gccgacggtt cggacaaata ttgccgcccg agtgccgaca agccgttttc ctattacaaa1621 tccgaccgcg tgatttacgg ggaaagccac aggctcttgc aggcggcatt caaaaaatcc1681 ttcgataccg ccaaaatccg ccacaacctg agcgtgaatc tcggttacga ccgcttcggc1741 tctaatctgc gccatcagga ttattattat caaagtgcca accgcgccta ttcgttgaaa1801 acgccccctc aaaacaacgg caaaaaaacc agcccctatt gggtcagcat aggcagggga1861 aatgtcgtta cggggcaaat ctgccgctcg ggcaacaata cttatacgga ctgcacgccg1921 cgcagcatca acggcaaaag ctattacgcg gcggtccggg acaatgtccg tttgggcagg1981 tgggcggatg tcggcgcggg cttgcgctac gactaccgca gcacgcattc ggacgacggc2041 agcgtttcca ccggcacgca ccgcaccctg tcctggaaca ccggcatcgt cctcaaacct2101 gccgactggc tggatttgac ttaccgcact tcaaccggct tccgcctgcc ctcgtttgcg2161 gaaatgtacg gctggcggtc gggcgataaa ataaaagccg tcaaaatcga tccggaaaaa2221 tcgttcaaca aagaagccgg catcgtgttt aaaggcgatt tcggcaactt ggaggcaagt2281 tggttcgaca atgcctaccg cgatttgatt gtccggggtt atgaagcgga aattaaaaac2341 ggcaaagaac aagccaaagg cgccccggct tacctcaatg cccaaagcgc gcggattacc2401 ggcatcaata ttttgggcaa aatcgattgg aacggcgtat gggataaatt gcccgaaggt2461 tggtattcta catttgccta taatcgtgtc cgtgtccgcg acatcaaaaa acgcgcagac2521 cgcaccgata ttcaatcaca cctgtttgat gccatccaac cctcgcgcta tgtcgtcggc2581 tcgggctatg accaaccgga aggcaaatgg ggcgtgaacg gtatgctgac ttattccaaa2641 gccaaggaaa tcacagagtt gttgggcagc cgggctttgc tcaacggcaa cagccgcaat2701 acaaaagcca ccgcgcgccg tacccgccct tggtatattg tggatgtgtc cggttattac2761 acggttaaaa aacacttcac cctccgtgcg ggcgtgtaca acctcctcaa ccaccgctat2821 gttacttggg aaaatgtgcg gcaaactgcc gccggcgcag tcaaccaaca caaaaatgtc2881 ggcgtttaca accgatatgc cgcccccggc cgcaactaca catttagctt ggaaatgaag2941 ttctaaacgt ccgaacgccg caaatgccgt ctgaaaggct tcagacggcg ttttttacac3001 aatccccacc gtttcccatc cttcccgata caccg[SEQ ID NO:84]Neisseria gonorrhoeae strain UU1008 transferrin-binding protein 2(tbpB) gene, complete cds.ACCESSION   U65222VERSION     U65222.1  GI:2286066Source: Neisseria gonorrhoeae/strain=“UU1008”gene=“tbpB” coding sequence: 1..2052/protein_id=“AAB64243.1/db_xref=“GI:2286067”/translation=“MNNPLVNQAAMVLPVFLLSACLGGGGSFDLDSVDTEAPRAAPKYQDVPSKKPEARKDQGGYGFAMRFKRRNWYRAANENEVKLKESDWEQTDDDEIKNPFKQKNIINALPGNEGELLQDSSQQGKGTSKVRDHHDFKYVWSGFFYKRIKITTKKDESHKIIEARSGPDGYIFYKGRNPSRKLPVSGEVTYKGTWDFLTDVKANQKFTDLGNASTKSGDQYSAFSGELDYIVKKEEDKKEKHKGLGLTTEITVDFEKKTLIGKLIKNNMLINNNTKPTTQYYSLEAQVTGNRFSGKAMATEKGENKQHPFVSDSSSLSGGFFGPQGEELGFRFLSDDGKVAVVGSAKTKDETASSGGTSGGASVSTSNGAAGTSSENKLTTVLDAVELTPNGKKIKDLDNFSNAAQLVVDGIMIPLLPKDSESGGSHTDKGENGKTAFIYETTYTPESDKEDAQTGMATNGVQTVSNTAGGTSGKTKTHYEVQACCSNLNYLKYGLLTRKNSSQADAKMGQVEQSMFLQGERTDEKEIPQEQNVVYSGTWYGHIATNGTSWTREASDQENGNRANFDVNFKDKRITGTLTAENRSEATFTIEAMIEGNGFKGTAKTGNGGFAPDQNSSTGTHKVHITNAAVQGGFYGPNAEELGGWFAYPGNGQTKNAQTSSGNGNSAGSATVVFGAKRQQLV                     K”[SEQ ID NO:85]   1 atgaacaatc cattggtgaa tcaggctgct atggtgctgc ccgtgttttt gttgagcgct  61 tgtctgggcg gaggcggcag tttcgatctt gattctgtcg ataccgaagc cccgcgtgcc 121 gcgccaaagt atcaagatgt tccttccaaa aaaccggaag cccgaaaaga ccaaggcgga 181 tacggtttcg cgatgcgctt caagcggcgg aattggtatc gggcggcaaa cgaaaacgag 241 gttaaactga aagagagtga ttgggaacaa acggatgatg atgagatcaa aaaccctttc 301 aaacaaaaaa atattattaa tgccttacct ggaaatgagg gggaattatt gcaagattcc 361 agtcaacaag gtaagggtac atctaaggtt agggaccatc acgattttaa atacgtatgg 421 tcgggttttt tttataaacg gattaagatt acaactaaaa aagacgaatc tcataaaata 481 atcgaagcca gaagcggtcc tgacggttat attttttata aaggcagaaa tccctcgaga 541 aaacttcctg tttcagggga ggttacgtac aaaggtactt gggatttttt aactgatgtg 601 aaagcaaatc agaaatttac agatttagga aatgcttcta cgaaatccgg agaccaatat 661 agtgcttttt ccggggagtt ggattatata gtcaaaaaag aggaggataa aaaagaaaag 721 cacaaaggtt tgggattaac aacggaaata acggttgatt ttgagaaaaa aaccctgatc 781 ggaaaattaa ttaaaaacaa catgttaatc aataataaca ctaaacccac cacccaatat 841 tacagccttg aggctcaagt aacaggcaac cgcttcagcg gcaaggcgat ggcaaccgaa 901 aaaggcgaaa acaaacaaca tccctttgtt tccgactcgt cttctctgag cggcggcttt 961 ttcggcccgc agggtgagga attgggtttc cgctttttga gcgacgatgg aaaagttgcc1021 gttgtcggca gcgcgaaaac caaagacgaa accgcaagca gtggcggcac ttcgggcggt1081 gcaagcgttt ccacatcaaa cggtgcggca ggcacgtcgt ctgaaaacaa gctgaccacg1141 gttttggatg cggttgaatt gacaccaaac ggcaagaaaa tcaaagatct cgacaacttc1201 agcaacgccg cccaactggt tgtcgacggc attatgattc cgctcctgcc caaggattcc1261 gaaagcgggg gcagtcatac agataaaggt gaaaacggca aaacagcctt tatctacgaa1321 acaacctaca cgccggaaag tgataaagaa gacgctcaaa caggtatggc gaccaatggc1381 gtgcaaaccg tttcaaatac ggcaggcggc acaagtggca aaacaaaaac ccattatgaa1441 gtccaagcct gctgttccaa cctcaattat ctgaaatacg ggttgctgac gcgtaaaaac1501 agtagtcaag ctgacgctaa aatgggacaa gttgaacaaa gtatgttcct ccaaggcgag1561 cgcaccgatg aaaaagaaat tccacaagaa caaaatgtcg tttattcagg cacttggtac1621 gggcatattg ccaccaacgg cacaagttgg acccgcgaag cctccgatca ggaaaatggt1681 aatcgggcaa attttgacgt gaatttcaaa gacaaaagaa ttaccggcac gttaaccgct1741 gaaaacaggt cggaggcaac ctttaccatt gaagccatga ttgagggcaa cggctttaaa1801 ggtacggcga aaaccggtaa tggcggcttt gcgccggatc aaaacagcag caccggtaca1861 cataaagtgc acatcacaaa tgccgcggtg cagggcggtt tttacgggcc taacgccgaa1921 gagttgggcg gttggtttgc ctatccgggc aatggacaaa cgaaaaatgc gcaaacttca1981 tccggcaatg gaaattcagc aggcagcgcg accgtggtat tcggtgcgaa acgccaacag2041 cttgtgaaat aa[SEQ ID NO:86]Neisseria gonorrhoeae pilus biogenesis gene cluster, pilO, pilP andpilQ genes, complete cds.ACCESSION   U40596VERSION     U40596.1  GI:1173872source : Neisseria gonorrhoeae/strain=“MS11”gene=“pilO” coding sequence 22..669/protein_id=“AAC43601.1/db_xref=“GI:1173873”                     /translation=“MASKSSKTNLDLNNLHLLNLPARLFIALLVVAAVLGLGYAGLFKSQMESLEEYEAKETELKNTYKQKSIDAASLNNLRDELASIRSAFDIMLKQLPTDAEIPNLVQELHQAGSSNGLRLDSVMPQPPVDDGPIKKLPYSISITGNYEQISQFTRDVGSLSRIITLESLKIAQSPENGGNPDGKSSILNLSAIATTYQAKSIEELAAEAAQNAEQK”[SEQ ID NO:87]gene=“pilP” coding sequence 687..1229/protein_id=“AAC43602.1/db_xref=“GI:1173874”/translation=“MKHYALLISFLALSACSQSSEDLNEWMAQTRREAKAEIIPFQAPTLPVAPVYSPPQLTGPNAFDFRRMETAKKGENAPDTKRIKETLEKFSLENMRYVGILKSGQKVSGFIEAEGYVYTVGVGNYLGQNYGRIESITDDSIILNELIEDSTGNWVSRKAE                     LLLNSSDKNTEQAAQPEEQN”[SEQ ID NO:88]gene=“pilQ” coding sequence 1248..3410/protein_id=“AAC43603.1/db_xref=“GI:1173875”/translation=“MNTKLTKIISGLFVATAAFQTASAGNITDIKVSSLPNKQKIVKVSFDKEIVNPTGFVTSSPARIALDFEQTGISMDQQVLEYADPLLSKISAAQNSSRARLVLNLNKPGQYNTEVRGNKVWIFINESDDTVSAPARPAVKAAPAAPAKQQAAAPFTESVVSVSAPFSPAKQQAAASAKQQAATPAKQTNIDFRKDGKNAGIIELAALGFAGQPDISQQHDHIIVTLKNHTLPTALQRSLDVADFKTPVQKVTLKRLNNDTQLIITTTGNWELVNKSAAPGYFTFQVLPKKQNLESGGVNNAPKTFTGRKISLDFQDVEIRTILQILAKESGMNIVASDSVSGKMTLSLKDVPWDQALDLVMQARNLDMRQQGNIVNMAPRRAACQRQSLLTSGKRHCRSGRAVFPKLPIEIQKCGRIPQHPALDNADTTGNRNTLVSGRGSVLIDPATNTLIVTDTRSVIEKFRKLIDELDVPAQQVMIEARIVEAADGFSRDLGVKFGATGRKKLKNETSAFGWGVNSGFGGGDKWEAKPKSTCRLPCRKQHFAGARDFSGALNLELSASESLSKTKTLANPRVLTQNRKEAKIESGYEIPFTVTTRSGGGNSTNTELKKAVLGLTVTANITPDGQIIMTVKINKDSPRQCASGNNTILCISTKSLNTQAMVENGGTLIVGGIYEENNGNT                     LTKVPLLATSPLSATSLKHSGKNRPPRTADFQLPPREL”[SEQ ID NO:89]   1 aaacgcacag gaggaaactg aatggcttct aaatcatcta aaaccaactt ggatctcaac  61 aaccttcacc tgctcaacct tcctgccagg ctttttatcg ccctgctggt cgttgccgcc 121 gtgctggggc tcggttatgc cggattgttc aaaagccaga tggaatccct tgaggaatat 181 gaagcaaaag aaaccgaact gaaaaacacc tacaaacaga aaagtatcga cgcggccagc 241 ctgaacaacc ttagggacga acttgcctca atccgctctg ccttcgatat catgttgaaa 301 cagctgccga cagatgcaga aattcccaat ttggttcaag agcttcatca ggcgggttcg 361 agcaacggtc tgcgcttgga cagcgttatg ccccaacctc ccgtagatga cggtcccatc 421 aaaaaattac cctattccat ttccattacc ggaaattacg aacagatcag ccaatttacc 481 cgcgatgtcg gcagtctctc ccgaatcatt acccttgagt cgctgaaaat cgcccaatct 541 ccggaaaacg gcggcaatcc tgacggcaag agcagtatcc tgaacctcag cgccattgcc 601 accacctacc aagcaaaatc catagaagag cttgccgcag aagcggcaca aaatgccgag 661 caaaaataac ttacgttagg gaaaccatga aacactatgc cttactcatc agctttctgg 721 ctctctccgc gtgttcccaa agttctgaag acctaaacga atggatggca caaacgcgac 781 gcgaagccaa agcagaaatc atacctttcc aagcacctac cctgccggtt gcgccggtat 841 acagcccgcc gcagcttaca gggccgaacg cattcgactt ccgccgcatg gaaaccgcca 901 aaaaagggga aaatgccccc gacaccaagc gtattaaaga aacgctggaa aaattcagtt 961 tggaaaatat gcgttatgtc ggcattttga agtccggaca gaaagtctcc ggcttcatcg1021 aggctgaagg ttatgtctac actgtcggtg tcggcaacta tttgggacaa aactacggta1081 gaatcgaaag cattaccgac gacagcatca tcctgaacga gctgatagaa gacagcacgg1141 gcaactgggt ttcccgtaaa gcagaactgc tgttgaattc ttccgacaaa aacaccgaac1201 aagcggcaca gcctgaggaa caaaattaag aagaggatta ctccattatg aataccaaac1261 tgacaaaaat catttccggt ctctttgtcg caaccgccgc ctttcagacg gcatcggcag1321 gaaacattac agacatcaaa gtttcctccc tgcccaacaa acagaaaatc gtcaaagtca1381 gctttgacaa agagattgtc aacccgaccg gcttcgtaac ctcctcaccg gcccgcatcg1441 ccttggactt tgaacaaacc ggcatttcca tggatcaaca ggtactcgaa tatgccgatc1501 ctctgttgag caaaatcagt gccgcacaaa acagcagccg tgcgcgtctg gttctgaatt1561 tgaacaaacc gggccaatac aataccgaag tacgcgggaa caaagtttgg atattcatta1621 acgaatcgga cgataccgtg tccgcccccg cccgcccagc cgtaaaagcc gcgcctgccg1681 caccggcaaa acaacaggct gccgcaccgt ttaccgagtc cgtagtatcc gtatccgcac1741 cgttcagccc ggcaaaacaa caggcagcgg catcggcaaa acaacaggcg gcgacaccgg1801 caaaacaaac caatatcgat ttccgcaaag acggcaaaaa tgccggcatt atcgaattgg1861 cggcattggg ctttgccggg cagcccgaca tcagccaaca gcacgaccac atcatcgtta1921 cgctgaaaaa ccataccctg ccgaccgcgc tccaacgcag tttggatgtg gcagacttca1981 aaacaccggt tcaaaaggtt acgctgaaac gcctcaataa cgacacccag ctgattatca2041 caacaaccgg caactgggaa ctcgtcaaca aatccgccgc gcccggatac tttaccttcc2101 aagtcctgcc gaaaaaacaa aacctcgagt caggcggcgt gaacaatgcg cccaaaacct2161 tcacaggccg gaaaatctcc cttgacttcc aagatgtcga aatccgcacc atcctgcaga2221 ttttggcaaa agaatccggg atgaacattg ttgccagcga ctccgtcagc ggcaaaatga2281 ccctctccct caaagacgta ccttgggatc aggctttgga tttggttatg caggcgcgca2341 acctcgatat gcgccagcaa gggaacatcg tcaacatggc cccgcgacga gctgcttgcc2401 aaagacaaag ccttcttaca agcggaaaaa gacattgccg atctgggcgc gctgtattcc2461 caaaacttcc aattgaaata caaaaatgtg gaagaattcc gcagcatcct gctttggaca2521 atgccgacac gaccggaaac cgcaacacgc ttgtcagcgg caggggcagc gtgctgatcg2581 atcccgccac caacaccctg attgttaccg atacccgcag cgtcatcgaa aaattccgca2641 aactgattga cgaattggac gtacccgcgc aacaagtgat gattgaggcg cgtatcgtcg2701 aagcggcaga cggcttctcg cgcgatttgg gcgttaagtt cggcgcgaca ggcaggaaaa2761 aactgaaaaa tgagacgagc gcattcggct ggggcgtgaa ctccggcttc gggggcggcg2821 ataaatggga ggccaaacca aaatcaacct gccggttgcc gtgccgcaaa cagcatttcg2881 ctggtgcgcg cgatttctcc ggcgcgttga atttggaatt gtccgcatcc gagtcgcttt2941 caaaaaccaa aacgcttgcc aatccgcgcg tgctgaccca aaaccgcaaa gaggccaaaa3001 tcgaatccgg ttacgaaatt ccttttaccg taactacacg ctcgggcggc ggcaactcta3061 ccaacacgga actcaaaaaa gccgtcttgg ggctgaccgt tacggcgaac atcacgcccg3121 acggacaaat catcatgacc gtcaaaatca acaaagactc gcctcgacaa tgtgcttcag3181 gcaacaacac aatcctatgt atttcgacca aaagcctgaa tacgcaggct atggttgaaa3241 acggcggcac tttgattgtc ggcggtattt atgaagaaaa caacggcaat acgctgacca3301 aagtccccct gttggctaca tccccgttat cggcaacctc tttaaaacac tcgggaaaaa3361 accgaccgcc gcgaactgct gattttcaat tacccccgag ggaattatag atacggcgca3421 acagcctgcg ctattgatgc gtcaaaataa gggcatatgt tttacagcat atgccctttc3481 tttatgcttt ttgccgcgac cgaaatgccg tcattcccgc gagcgaatcc aacttgtccg3541 gtttcggttg tttttcgtct cgtaactttt gagccgtcat tcccgcgaaa tcggaaatcc3601 agtccgttca gtttcggtca tttccgataa attcctgttg cttttcattt ctagattccc3661 actttcgtgg aataacggcg gaagggataa atcctcgcaa tccaaagcct gctcatttcc3721 acaaaaaaca gcaacccgaa acaccccgtc attcccgagc aggcggaatc tagaaccgca3781 acgccaggaa tctgtcggat acggctgaaa ccgaacgact ggattcccg[SEQ ID NO:90]NspANeisseria gonorrhoeae outer membrane protein gene, complete cdsACCESSION   U52069VERSION     U52069.1  GI:1808968source Neisseria gonorrhoeae/strain=“B2”Gene “NspA” coding sequence : 141..665/protein_id=“AAB41581.1/db_xref=“GI:1808969”                                      /translation“MKKALAALIALALPAAALAEGASGFYVQADAAHAKASSSLGSAKGFSPRISAGYRINDLRFAVDYTRYKNYKAPSTDFKLYSIGASVIYDFDTQSPVKPYFGARLSLNRASAHLGGSDSFSKTSAGLGVLAGVSYAVTPNVDLDAGYRYNYVGKVNTVKN                     VRSGELSAGVRVKF”[SEQ ID NO:91]   1 cggcaaagca gccggatgcc gccgcgtatc ttgaggcatt gaaaatatta cgatgcaaaa  61 agaaaatttc agtataatac ggcaggattc tttaacggat tattaacaat ttttctccct 121 gaccataaag gaaccaaaat atgaaaaaag cacttgccgc actgattgcc ctcgcactcc 181 cggccgccgc actggcggaa ggcgcatccg gcttttacgt ccaagccgat gccgcacacg 241 ccaaagcctc aagctcttta ggttctgcca aaggcttcag cccgcgcatc tccgcaggct 301 accgcatcaa cgacctccgc ttcgccgtcg attacacgcg ctacaaaaac tataaagccc 361 catccaccga tttcaaactt tacagcatcg gcgcgtccgt catttacgac ttcgacaccc 421 aatcgcccgt caaaccgtat ttcggcgcgc gcttgagcct caaccgcgct tccgcccact 481 tgggcggcag cgacagcttc agcaaaacct ccgccggcct cggcgtattg gcgggcgtaa 541 gctatgccgt taccccgaat gtcgatttgg atgccggcta ccgctacaac tacgtcggca 601 aagtcaacac tgtcaaaaac gtccgttccg gcgaactgtc cgccggcgtg cgcgtcaaat 661 tctgatatac gcgttattcc gcaaaccgcc gagccttcgg cggttttttg[SEQ ID NO:92]Neisseria gonorrhoeae outer membrane protein (omp85) gene, completecds.ACCESSION   U81959VERSION     U81959.1  GI:1766041Source: Neisseria gonorrhoeae/strain=“FA19”gene=“omp85” coding sequence 1..2379/protein_id=“AAC17600.1/db_xref=“GI:1766042”/translation“MKLKQIASALMMLGISPLAFADFTIQDIRVEGLQRTEPSTVFNYLPVKVGDTYNDTHGSAIIKSLYATGFFDDVRVETADGLLLLTVIVCPTIGSLNITGAKMLQNDAIKKNLESFGLAQSQYFNQATLNQAVAGLKEEYLGRGKLNIQITPKVTKLARNRVDIDITIDEGKSAKITDIEFEGNQVYSDRKLMRQMSLTEGGIWTWLTRSDRFDRQKFAQDMEKVTDFYQNNGYFDFRILDTDIQTNEDKTRQTIKITVHEGGRFRWGKVSIEGDTNEVPKAELEKLLTMKPGKWYERQQMTAVLGEIQNRMGSAGYAYSEISVQPLPNAGTKTVDFVLHIEPGRKIYVNEIHITGNNKTRDEVVRRELRQMESAPYDTSKLQRSKERVELLGYFDNVQFDAVPLAGTPDKVDLNMSLTERSTGSLDLSAGWVQDTGLVMSAGVSQDNLFGTGKSAALRASRSKTTLNGSLSFTDPYFTADGVSLGYDIYGKAFDPRKASTSVKQYKTTTAGGGVRMGIPVTEYDRVNFGLAAEHLTVNTYNKAPKRYADFIKQYGKTDGADGSFKGLLYKGTVGWGRNKTDSALWPTRGYLTGVNAEIALPGSKLQYYSATHNQTWFFPLSKTFTLMLGGEVGIAGGYGRTKEIPFFENFYGGGLGSVRGYESGTLGPKVYDEYGEKISYGGNKKANVSAELLFPMPGAKDARTVRLSLFADAGSVWDGRTYTAAENGNNKSVYSENAHKSTFTNELRYSAGGAVTWLSPLGPMKFIYAYPLKKKPEDEIQRFQFQLGTTF”[SEQ ID NO:93]   1 atgaaactga aacagattgc ctccgcactg atgatgttgg gcatatcgcc tttggcattt  61 gccgacttca ccatccaaga catccgtgtc gaaggcttgc agcgtaccga gccgagcacc 121 gtattcaact acctgcccgt caaagtcggc gacacctaca acgacacaca cggcagtgcc 181 atcatcaaaa gcctgtacgc caccggtttc tttgacgacg tacgagtcga aactgcggac 241 gggctgcttc tgctgaccgt tatcgtatgc cctaccatcg gctcgctcaa catcaccggc 301 gccaaaatgc tgcagaacga cgccatcaag aaaaacctcg aatcgttcgg gctggcgcag 361 tcgcaatact ttaatcaggc gacactcaac caggcagtcg ccggcctgaa agaagaatat 421 ctcgggcgcg gcaaactcaa tatccaaatc acgcccaaag taaccaaact cgcccgcaac 481 cgcgtcgaca tcgacatcac gattgacgag ggcaaatccg ccaaaatcac cgacatcgaa 541 tttgaaggca accaagtcta ttccgaccgc aaactgatgc ggcagatgtc gctgaccgaa 601 ggcggcattt ggacatggct gacacgaagc gaccggttcg accgccagaa attcgcccaa 661 gacatggaaa aagtaaccga cttctaccag aacaacggct acttcgattt ccgtatcctc 721 gataccgaca tccaaaccaa cgaagacaaa accaggcaga ccatcaaaat caccgtccac 781 gaaggcggac gtttccgctg gggcaaagtg tcgattgaag gcgacaccaa cgaagtcccc 841 aaggccgaac tggaaaaact gctgaccatg aagcccggca aatggtacga acgccagcag 901 atgaccgccg ttttgggtga gattcagaac cgcatgggct cggcaggcta cgcatacagc 961 gaaatcagcg tacagccgct gccgaacgcc ggaaccaaaa ccgtcgattt cgtcctgcac1021 atcgaaccgg gcagaaaaat ctacgtcaac gaaatccaca tcaccggcaa caacaaaacc1081 cgcgacgaag tcgtgcgccg cgaattgcgc caaatggaat ccgcgcctta cgacacctcc1141 aagctgcaac gctccaaaga gcgcgtcgag cttttgggct acttcgacaa cgtacagttt1201 gatgccgtcc cgcttgccgg tacgcccgac aaagtcgatt tgaacatgag cctgaccgaa1261 cgttccaccg gctcgctcga cttgagcgcg ggctgggttc aggataccgg cttggtcatg1321 tccgccggcg tatcgcagga caacctgttc ggtacgggca agtcggccgc cctgcgcgcc1381 tcgcgaagca aaaccacgct caacggctcg ctgtcgttta ccgacccgta cttcacggca1441 gacggggtca gcctgggcta cgatatttac ggaaaagcct tcgacccgcg caaagcatcg1501 accagcgtca aacaatataa aaccaccacc gccggcggcg gcgtaaggat gggtatcccc1561 gttaccgaat acgaccgcgt caatttcggg ctggcggcgg aacacctgac cgtcaacacc1621 tacaacaaag cacccaaacg ctatgccgac tttatcaaac aatacggcaa aaccgacggc1681 gcagacggca gcttcaaagg cctgctgtac aaaggcactg tcggctgggg gcgcaacaag1741 accgacagcg ccttatggcc gacgcgcggc tacctgaccg gcgtaaatgc cgaaatcgcc1801 ctgcccggca gcaaactgca atactactcc gccacccaca accaaacctg gttcttcccc1861 ttaagcaaaa ccttcacgct gatgctcggc ggcgaagtcg gcattgcggg cggctacggc1921 agaaccaaag aaatcccctt ctttgaaaac ttctacggcg gcggcctggg ttcggtgcgc1981 ggctacgaaa gcggcacgct cggcccgaaa gtgtatgacg aatacggcga aaaaatcagc2041 tacggcggca acaaaaaagc caacgtctcc gccgagctgc tcttcccgat gcccggtgcg2101 aaagacgcac gcaccgtccg cctgagcctg tttgccgacg caggcagcgt gtgggacggc2161 agaacctata ccgccgccga aaacggtaac aacaaatcgg tttactcgga aaacgcgcat2221 aaatccacct ttaccaacga attgcgctat tccgccggcg gcgcggttac ctggctctcg2281 cctttgggcc cgatgaaatt catctacgcc tacccgctga agaaaaaacc ggaagacgaa2341 atccaacgct tccaattcca gctcggcacg acgttctaa[SEQ ID NO:94]PldA1 homolog in Neisseria gonorrhoeaeSource: U. of Oklahoma sequencing projectPldA1-like coding sequence:>GONOCTG01_15 Continuation (15 of 22) of gonoctg01 from base 1400001ATGAATACACGAAATATGCGCTATATTCTTTTGACAGGACTGTTGCCGACGGCATCCGCTTTTGGAGAGACCGCGCTGCAATGCGCCGCTTTGACGGACAATGTTACGCGTTTGGCGTGTTACGACAGGATTTTTGCGGCACAGCTTCCGTCTTCGGCAGGGCAGGAAGGGCAGGAGTCGAAAGCCGTACTCAATCTGACGGAAACCGTCCGCAGCAGCTTGGATAAGGGCGAGGCGGTCATTGTTGTTGAAAAAGGCGGGGATGCGCTTCCTGCCGACAGTGCGGGCGAAACCGCCGATATCTATACGCCTTTGAGCCTGATGTACGACTTGGACAAAAACGATTTGCGCGGGCTGTTGGGCGTACGCGAACACAATCCGATGTACCTTATGCCGTTTTGGTATAACAATTCGCCCAACTATGCCCCGAGTTCGCCGACGCGCGGTACGACTGTACAGGAAAAATTCGGACAGCAGAAACGTGCGGAAACCAAATTGCAGGTTTCGTTCAAAAGCAAAATTGCCGAAAATTTGTTTAAAACCCGCGCGGATCTGTGGTTCGGCTACACCCAAAGATCCGATTGGCAGATTTACAACCAAGGCAGGAAATCCGCGCCGTTCCGCAATACGGATTACAAACCTGAAATTTTCCTGACCCAGCCTGTGAAGGCGGATTTGCCGTTCGGCGGCAGGCTGCGTATGCTCGGTGCGGGTTTTGTCCACCAGTCCAACGGACAGAGCCGTCCCGAATCGCGTTCGTGGAACAGGATTTATGCCATGGCAGGCATGGAATGGGGCAAATTGACGGTGATTCCGCGCGTGTGGGTGCGTGCGTTCGATCAGAGCGGCGATAAAAACGACAATCCCGATATTGCCGACTATATGGGGTATGGCGACGTGAAGCTGCAGTACCGCCTGAACGACAGGCAGAATGTGTATTCCGTATTGCGCTACAACCCCAAAACGGGCTACGGCGCGATTGAAGCCGCCTACACGTTTCCGATTAAGGGCAAACTCAAAGGCGTGGTACGCGGATTCCACGGTTACGGCGAGAGCCTGATCGACTACAACCACAAGCAGAACGGTATCGGTATCGGGTTGATGTTCAACGACTGGGACGGCATCTGA[SEQ ID NO:95]PldA1-like amino acid sequenceMNTRNMRYILLTGLLPTASAFGETALQCAALTDNVTRLACYDRIFAAQLPSSAGQEGQESKAVLNLTETVRSSLDKGEAVIVVEKGGDALPADSAGETADIYTPLSLMYDLDKNDLRGLLGVREHNPMYLMPFWYNNSPNYAPSSPTRGTTVQEKFGQQKRAETKLQVSFKSKIAENLFKTRADLWFGYTQRSDWQIYNQGRKSAPFRNTDYKPEIFLTQPVKADLPFGGRLRMLGAGFVHQSNGQSRPESRSWNRIYAMAGMEWGKLTVIPRVWVRAFDQSGDKNDNPDIADYMGYGDVKLQYRLNDRQNVYSVLRYNPKTGYGAIEAAYTFPIKGKLKGVVRGFHGYGESLIDYNHKQNGIGIGLMFNDWDGI.[SEQ ID NO:96]1000 base pairs upstream PldA1-like sequence (usuable for replacing the promoter for astronger sequence)>GONOCTG01_15 Continuation (15 of 22) of gonoctg01 from base1400001TTTTGGCTTCCAGCGTTTCGTTGTTTTCGTACAAGTCGTAAGTCAGCTTCAGATTGTTGGCTTTTTTAAAGTCTTCGACCGTACTCTCGTCAACATAATTCGACCAGTTGTAGATGTTCAGAGTATCGGTGGCAGCGGCTTCGGCATTGGCAGCAGGTGCGCTGCCTGCTTGAGGCTGCACGGCGTTTTTTTCGCTGCCGCCGCAGGCTGCCAGAGACAGCGCGGCCAAAACGGCTAATACGGATTTTTTCATACGGGCAGATTCCTGATGAAAGAGGTTGGAAAAAAAGAAAACCCCGCGCCCCATAAACACCCCGGCGCAAGGTTTGGGTATTGTAAAGTAAATTTGTGCAAACTCAAAGCGATATTGGCCTGATTTTCCTAAAAAATTACCCTGTTTCCAAAAAAGGGGGGGAAACGGCCGCCCGATTTTGCCGTTTTTTTGCGCCGTCAGGGTGTCCGACGGGCGGATAGAGAAAAAAGGCTTGCATATAATGTAAACCCCCTTTAAAATTGCGCGTTTACAGAATTTATTTTTCTTTCAGGAGATTCCAATATGGCAAACAGCGCACAAGCACGCAAACGTGCCCGCCAGTCCGTCAAACAACGCGCCCACAACGCTAGCCTGCGTACCGCATTCCGCACCGCAGTGAAAAAAGTATTGAAAGCAGTCGAAGCAGGCGATAAAGCTGCCGCACAAGCGGTTTACCAAGAGTCCGTCAAAGTCATCGACCGCATCGCCGACAAAGGCGTGTTTCATAAAAACAAAGCGGCTCGCCACAAAAGCCGCCTGTCTGCAAAAGTAAAAGCACTGGCTTGATTTTTGCAAAACCGCCAAGGCGGTTGATACGCGATAAGCGGAAAACCCTGAAGCCCGACGGTTTCGGGGTTTTCTGTATTTCGGGGGTAAAGTTCGAAATGGCGGAAAGGGTGCGGTTTTTTATCCGAATCCGCTATAAAATGCCGTTTGAAAACCAATATGCCGACAATGGGGGCGGAGPreferred gonococcal genes to downregulate via process a) include one or more ofthe following:[SEQ ID NO:97]Neisseria gonorrhoeae iron-regulated outer membrane protein preFrpB(frpB) gene, complete cds.ACCESSION   U13980VERSION     U13980.1  GI:833694Source: Neisseria gonorrhoeae/strain=“FA19”gene=“frpB” coding sequence: 318..2459/protein_id=“AAC43332.1/db_xref=“GI:833695”                     /translation=“MNAPFFRLSLLSLTLAAGFAHAAENNANVALDTVTVKGDRQGSKIRTNIVTLQQKDESTATDMRELLKEEPSIDFGGGNGTSQFLTLRGMGQNSVDIKVDNAYSDSQILYHQGRFIVDPALVKVVSVQKGAGSASAGIGATNGAIIAKTVDAQDLLKGLDKNWGVRLNSGFAGNNGASYGASVFGKEGNFDGLFSYNRNDEKDYEAGKGFRNDNGGKTVPYSALDKRSYLAKIGTTFGDGDHRIVLSHMKDQHRGIRTVREEFAVSEKNSRITIKRQAPSYRETTQSNTNLAYTGKDLGFVEKLDANAYVLEKKRYSADDKDNGYAGNVKGPNHTRIATRSMNFNFDSRLAEQTLLKYGINYRHQEIKPQAFLNSEFEIKDKEKATNEEKKKNRENEKIAKAYRLTNPTKTDTGAYIEAIHEIDGFTLTGGLRYDRFKVKTHDGKTVSSSSLNPSFGVIWQPREHWSFSASHNYAGRSPRLYDALQTHGKRGIISIADGTKAERARNTEIGFNYNDGTFAANGSYFRQTIKDALANPQNRHDSVAVREAVNAGYIKNHGYELGASYRTGGLTAKVGVSHSKPRFYDTHKDKLLSANPEFGAQVGRTWTASLAYRFKNPNLEIGWRGRYVQKAVGSILAAGQKDRDGKLENVVRQGFGVNDVFANWKPLGKDTLNVNLSVNNV                     FDKFYYPHSQRWTNTLPGVGRDVRLGVNYKF”[SEQ ID NO:98]   1 aaaccggtac ggcgttgccc cgccttagct caaagagaac gattccctaa ggtgctgaag  61 caccgagtga atcggttccg tactatttgt actgtctgcg gcttcgccgc cttgtcctga 121 tttttgttag tccacatata catttccgac aaaacctgtc aacaaaaaac aacgcttcgc 181 aaataaaaac gataatcagc tttacacaac ccccccccgc taatataaac aaaaataatt 241 attattattt tttcttatcc tgccaaacct taacggtttg gcttaacttc ccttcataca 301 ctcaaaagga cgaacaaatg aacgccccgt ttttccgcct cagcctgctc tcgctcacac 361 ttgccgccgg ctttgcccac gcggcagaaa ataatgccaa tgtcgcattg gataccgtta 421 ccgtaaaagg cgaccgccaa ggcagcaaaa tccgtaccaa catcgttacg cttcaacaaa 481 aagacgaaag caccgcaacc gatatgcgcg aactcttaaa agaagagccc tccatcgatt 541 tcggcggcgg caacggcacg tcccaattcc tgacgctgcg cggtatgggt cagaactctg 601 tcgacatcaa ggtggacaac gcctattccg acagccaaat cctttaccac caaggcagat 661 ttattgtcga tcccgctttg gttaaagtcg tttccgtaca gaaaggcgcg ggttccgcct 721 ctgccggtat cggcgcgacc aacggcgcga tcatcgccaa aaccgtcgat gcccaagacc 781 tgctcaaagg cttggataaa aactggggcg tgcgcctcaa cagcggcttt gccggcaaca 841 acggcgcaag ctacggcgca agcgtattcg gaaaagaggg caacttcgac ggtttgttct 901 cttacaaccg caacgatgaa aaagattacg aagccggcaa aggtttccgc aatgacaacg 961 gcggcaaaac cgtaccgtac agcgcgctgg acaaacgcag ctacctcgcc aaaatcggaa1021 caaccttcgg cgacggcgac caccgcatcg tgttgagcca tatgaaagac caacaccggg1081 gcatccgcac tgtgcgtgaa gagtttgccg tcagcgaaaa aaattcacgg ataactatta1141 aacgccaagc cccatcctac cgcgaaacca ctcaatccaa caccaacttg gcgtacaccg1201 gcaaagattt gggctttgtc gaaaaactgg atgccaacgc ctatgtgttg gaaaagaaac1261 gctattccgc cgatgacaaa gataacggct acgcaggcaa tgtaaaaggc cccaaccata1321 cccgaatcgc cactcggagt atgaacttca acttcgacag ccgccttgcc gaacaaaccc1381 tgttgaaata cggcatcaac taccgccatc aggaaatcaa accgcaagcg tttttgaact1441 cggaatttga aataaaagat aaagaaaaag caactaatga agagaaaaag aagaaccgtg1501 aaaatgaaaa aattgccaaa gcctaccgcc tgaccaaccc gaccaaaacc gataccggcg1561 cgtatatcga agccattcac gagattgacg gctttaccct gaccggcggg ctgcgttacg1621 accgcttcaa ggtgaaaacc cacgacggca aaaccgtttc aagcagcagc ctcaacccga1681 gtttcggcgt gatttggcag ccgcgcgaac actggagctt cagcgcgagc cacaactacg1741 ccggccgcag cccgcgcctg tatgacgctc tgcaaaccca cggcaagcgc ggcatcatct1801 cgattgccga cggcacgaaa gccgaacgcg cgcgcaatac cgaaatcggc ttcaactaca1861 acgacggcac gtttgccgca aacggcagct acttccggca gaccatcaaa gacgcgcttg1921 ccaatccgca aaaccgccac gactccgtcg ccgtccgcga agccgtcaac gccggctaca1981 tcaaaaacca cggttacgaa ttgggcgcgt cctaccgcac cggcggcctg accgccaaag2041 tcggcgtaag ccacagcaaa ccgcgctttt acgatacgca caaagacaag ctgttgagcg2101 cgaaccctga atttggcgca caagtcggcc gcacttggac ggcctccctt gcctaccgct2161 tcaaaaaccc gaatctggaa atcggctggc gcggtcgtta tgttcaaaaa gccgtgggtt2221 cgatattggc ggcaggtcaa aaagaccgcg acggcaaatt ggaaaacgtt gtacgccaag2281 gtttcggtgt gaacgatgtc ttcgccaact ggaaaccgct gggcaaagac acgctcaatg2341 ttaatctttc ggttaacaac gtgttcgaca agttctacta tccgcacagc caacgctgga2401 ccaataccct gccgggcgtg ggacgtgatg tacgcctggg cgtgaactac aagttctaaa2461 acgcacatcc cgaaaaaatg ccgtctgaaa gcctttcaga cggcatctgt cctgataatt2521 tgatatatag tggattaaca aaaaccggta cggcgttgcc ccgccttagc tcaaagggaa2581 cgattcccta aggtgctgaa[SEQ ID NO:99]N. gonorrhoeae structural gene for gonococcal protein III (PIII).ACCESSION   X05105VERSION     X05105.1  GI:44889source:Neisseria gonorrhoeae/db_xref=“taxon:485”Gene PIII coding sequence: 103..813/protein_id=“CAA28752.1/db_xref=“GI:44890”/db_xref=“SWISS-PROT:P07050”/translation=“MTKQLKLSALFVALLASGTAVAGEASVQGYTVSGQSNEIVRNNYGECWKNAYFDKASQGRVECGDAVAVPEPEPAPVAVVEQAPQYVDETISLSAKTLFGFDKDSLRAEAQDNLKVLAQRLSRTNVQSVRVEGHTDFMGSEKYNQALSERRAYVVANNLVSNGVPASRISAVGLGESQAQMTQVCQAEVAKLGAKASKAKKREALIACIEPDRRVDVK                     IRSIVTRQVVPARNHHQH”[SEQ ID NO:100]   1 gaattcctat ccgatttgcc gccatgtttc tacagcggcc tgtatgttgg caattcagca  61 gttgcttctg tatctgctgt acaaatctaa tgagggaata aaatgaccaa acagctgaaa 121 ttaagcgcat tattcgttgc attgctcgct tccggcactg ctgttgcggg cgaggcgtcc 181 gttcagggtt acaccgtaag cggccagtcg aacgaaatcg tacgcaacaa ctatggagaa 241 tgctggaaaa acgcctactt tgataaagca agccaaggtc gcgtagaatg cggcgatgcg 301 gttgccgtcc ccgagcccga acccgcgcct gtcgccgttg tggagcaggc tcctcaatat 361 gttgatgaaa ccatttccct gtctgccaaa accctgttcg gtttcgataa ggattcattg 421 cgcgccgaag ctcaagacaa cctgaaagta ttggcgcaac gcctgagtcg aaccaatgtc 481 caatctgtcc gcgtcgaagg ccataccgac tttatgggtt ctgaaaaata caatcaggct 541 ctgtccgaac gccgcgcata cgtagtggca aacaacctgg tcagcaacgg cgtacctgct 601 tctagaattt ctgctgtcgg cttgggcgaa tctcaagcgc aaatgactca agtttgtcaa 661 gccgaagttg ccaaactggg tgcgaaagcc tctaaagcca aaaaacgtga ggctctgatt 721 gcatgtatcg aacctgaccg ccgcgtagat gtgaaaatcc gcagcatcgt aacccgtcag 781 gttgtgccgg cacgcaatca tcaccaacac taaggctagg taatatcttg ccgatgcatg 841 aggttagcgg attttgtacc gggtactgtt gcaatattcg tgaaacgtcg gccggtatcg 901 atgatgtgaa acaaaccccg cttttgcggg gtttgttttt ttgggtggtt ttctgaaacg 961 gctatcgtca gaatcggggt gcaggttcgg attcggattc agattcatgt ttgtgtccca1021 ttgccgcgct ttatagtgga ttaacaaaaa tcaggacaag gcgacgaagc cgcagacagt1081 acaatagtac ggcaaggcga ggcaacgccg taccggttta aatttaatcc actatatcgg1141 ttgaaactct gattttaagg cggtaggatg tgggtttgcc catagcaagg gaatcctttc1201 tgtatcaagc cccgaaaggg ataattcata caaattcacg cctttccccc tcattgggaa1261 atggatggaa tcgtgcccga tgtgtgcggc actgtatgcc ggatatggtt ttatcatcat1321 cccttttcgg ttgaaacccc gcggaattc


[0116] Preferred Pseudomonas aeruginosa bleb Preparations


[0117] One or more of the following genes (encoding protective antigens) are preferred for upregulation via process b): PcrV, OprF, OprI. They are also preferred as genes which may be heterologously introduced into other Gram-negative bacteria.


[0118] Preferred Moraxella catarrhalis bleb Preparations


[0119] One or more of the following genes (encoding protective antigens) are preferred for upregulation via process b): OMP106 (WO 97/41731 & WO 96/34960), HasR (PCT/EP99/03824), PilQ (PCT/EP99/03823), OMP85 (PCT/EP00/01468), lipo06 (GB 9917977.2), lipo10 (GB 9918208.1), lipo11 (GB 9918302.2), lipo18 (GB 9918038.2), P6 (PCT/EP99/03038), ompCD, CopB (Helminen Me., et al (1993) Infect. Immun. 61:2003-2010), D15 (PCT/EP99/03822), OmplA1 (PCT/EP99/06781), Hly3 (PCT/EP99/03257), LbpA and LbpB (WO 98/55606), ThpA and TbpB (WO 97/13785 & WO 97/32980), OmpE, UspA1 and UspA2 (WO 93/03761), FhaB (WO 99/58685) and Omp21. They are also preferred as genes which may be heterologously introduced into other Gram-negative bacteria.


[0120] One or more of the following genes are preferred for downregulation via process a): CopB, OMP106, OmpB1, ThpA, TbpB, LbpA, and LbpB.


[0121] One or more of the following genes are preferred for downregulation via process c): htrB, msbB and lpxK (most preferably msbB).


[0122] One or more of the following genes are preferred for upregulation via process d): pmrA, pmrB, pmrE, and pmrF.


[0123] Many of the above open reading frames and upstream regions are described in WO 01/09350 (incorporated by reference herein).


[0124] Preferred Haemophilus influenzae bleb Preparations


[0125] One or more of the following genes (encoding protective antigens) are preferred for upregulation via process b): D15 (WO 94/12641), P6 (EP 281673), TbpA, TbpB, P2, P5 (WO 94/26304), OMP26 (WO 97/01638), HMW1, HMW2, HMW3, HMW4, Hia, Hsf, Hap, Hin47, Iomp1457 (GB 0025493.8), YtfN (GB 0025488.8), VirG (GB 0026002.6), Iomp1681 (GB 0025998.6), OstA (GB 0025486.2) and Hif (all genes in this operon should be upregulated in order to upregulate pilin). They are also preferred as genes which may be heterologously introduced into other Gram-negative bacteria.


[0126] One or more of the following genes are preferred for downregulation via process a): P2, P5, Hif, IgA1-protease, HgpA, HgpB, HMW1, HMW2, Hxu, TbpA, and TbpB.


[0127] One or more of the following genes are preferred for downregulation via process c): htrB, msbB and lpxK (most preferably msbB).


[0128] One or more of the following genes are preferred for upregulation via process d): pmrA, pmrB, pmrE, and pmrF.


[0129] Many of the above open reading frames and upstream regions are described in WO 01/09350 (incorporated by reference herein).


[0130] Preparations of Membrane Vesicles (blebs) of the Invention


[0131] The manufacture of bleb preparations from any of the aforementioned modified strains may be achieved by harvesting blebs naturally shed by the bacteria, or by any of the methods well known to a skilled person (e.g. as disclosed in EP 301992, U.S. Pat. No. 5,597,572, EP 11243 or U.S. Pat. No. 4,271,147). For Neisseria, the method described in the Example below is preferably used


[0132] A preparation of membrane vesicles obtained from the bacterium of the invention is a further aspect of this invention. Preferably, the preparation of membrane vesicles is capable of being filtered through a 0.22 μm membrane.


[0133] A sterile (preferably homogeneous) preparation of membrane vesicles obtainable by passing the membrane vesicles from the bacterium of the invention through a 0.22 μm membrane is also envisaged.


[0134] Vaccine Formulations


[0135] A preferred embodiment of the invention is the formulation of the bleb preparations of the invention in a vaccine which may also comprise a pharmaceutically acceptable excipient.


[0136] Vaccine preparation is generally described in Vaccine Design (“The subunit and adjuvant approach” (eds Powell M. F. & Newman M. J.) (1995) Plenum Press New York).


[0137] The bleb preparations of the present invention may be adjuvanted in the vaccine formulation of the invention. Suitable adjuvants include an aluminium salt such as aluminum hydroxide gel (alum) or aluminium phosphate, but may also be a salt of calcium (particularly calcium carbonate), iron or zinc, or may be an insoluble suspension of acylated tyrosine, or acylated sugars, cationically or anionically derivatised polysaccharides, or polyphosphazenes.


[0138] Suitable Th1 adjuvant systems that may be used include, Monophosphoryl lipid A, particularly 3-de-O-acylated monophosphoryl lipid A, and a combination of monophosphoryl lipid A, preferably 3-de-O-acylated monophosphoryl lipid A (3D-MPL) together with an aluminium salt. An enhanced system involves the combination of a monophosphoryl lipid A and a saponin derivative particularly the combination of QS21 and 3D-MPL as disclosed in WO 94/00153, or a less reactogenic composition where the QS21 is quenched with cholesterol as disclosed in WO96/33739. A particularly potent adjuvant formulation involving QS21 3D-MPL and tocopherol in an oil in water emulsion is described in WO95/17210 and is a preferred formulation.


[0139] The vaccine may comprise a saponin, more preferably QS21. It may also comprise an oil in water emulsion and tocopherol. Unmethylated CpG containing oligo nucleotides (WO 96/02555) are also preferential inducers of a TH1 response and are suitable for use in the present invention.


[0140] The vaccine preparation of the present invention may be used to protect or treat a mammal susceptible to infection, by means of administering said vaccine via systemic or mucosal route. These administrations may include injection via the intramuscular, intraperitoneal, intradermal or subcutaneous routes; or via mucosal administration to the oral/alimentary, respiratory, genitourinary tracts. Thus one aspect of the present invention is a method of immunizing a human host against a disease caused by infection of a gram-negative bacteria, which method comprises administering to the host an immunoprotective dose of the bleb preparation of the present invention.


[0141] The amount of antigen in each vaccine dose is selected as an amount which induces an immunoprotective response without significant, adverse side effects in typical vaccinees. Such amount will vary depending upon which specific immunogen is employed and how it is presented. Generally, it is expected that each dose will comprise 1-100 μg of protein antigen, preferably 5-50 μg, and most typically in the range 5-25 μg.


[0142] An optimal amount for a particular vaccine can be ascertained by standard studies involving observation of appropriate immune responses in subjects. Following an initial vaccination, subjects may receive one or several booster immunisations adequately spaced.


[0143] Ghost or Killed Whole Cell Vaccines


[0144] The inventors envisage that the above modified bacterial strains may not only be useful in generating bleb preparations useful in vaccines—they may also be easily used to make ghost or killed whole cell preparations and vaccines (with identical advantages). Methods of making ghost preparations (empty cells with intact envelopes) from Gram-negative strains are well known in the art (see for example WO 92/01791). Methods of killing whole cells to make inactivated cell preparations for use in vaccines are also well known. The terms ‘bleb preparations’ and ‘bleb vaccines’ as well as the processes described throughout this document are therefore applicable to the terms ‘ghost preparation’ and ‘ghost vaccine’, and ‘killed whole cell preparation’ and ‘killed whole cell vaccine’, respectively, for the purposes of this invention.







EXAMPLES

[0145] The examples below are carried out using standard techniques, which are well known and routine to those of skill in the art, except where otherwise described in detail. The examples are illustrative, but do not limit the invention.



Example 1


Previously Reported Examples

[0146] Examples describing: Construction of a Neisseiria meningitidis serogroup B strain lacking capsular polysaccharides; Construction of versatile gene delivery vectors (the pCMK series) targeting integration in the porA locus of Neisseiria meningitidis; Construction of a Neisseiria meningitidis serogroup B strain lacking both capsular polysaccharides and the major immunodominant antigen PorA; Up-regulation of the NspA outer membrane protein production in blebs derived from a recombinant Neisseiria meningitidis serogroup B strain lacking functional porA and cps genes; Up-regulation of the D15/Omp85 outer membrane protein antigen in blebs derived from a recombinant Neisseiria meningitidis serogroup B strain lacking functional cps genes but expressing PorA; Construction of versatile promoter delivery vectors; Fermentation processes for producing recombinant blebs; Identification of bacterial promoters suitable for up-regulation antigens-coding genes; Up-regulation of the N. meningitidis serogroup B Omp85 gene by promoter replacement; Up-regulation of the Hsf protein antigen in a recombinant Neisseiria meningitidis serogroup B strain lacking functional cps genes but expressing PorA; Expression of the Green Fluorescent Protein in a recombinant Neisseria meningitidis serogroup B strain lacking functional cps genes but expressing PorA; Up-regulation of the N. meningitidis serogroup B NspA gene by promoter replacement; Up-regulation of the N. meningitidis serogroup B pldA (omplA) gene by promoter replacement; Up-regulation of the N. meningitidis serogroup B tbpA gene by promoter replacement; Up-regulation of the N. meningitidis serogroup B pilQ gene by promoter replacement; Construction of a kanR/sacB cassette for introducing “clean”, unmarked mutations in the N. meningitidis chromosome; Use of small recombinogenic sequences (43 bp) to allow homologous recombination in the chromosome of Neisseria meningitidis; Active protection of mice immunized with WT and recombinant Neisseria meningitidis blebs; and Immunogenicity of recombinant blebs measured by whole cell & specific ELISA methods have been described in WO 01/09350 (incorporated by reference herein).



Example 2


Gonococcal blebs Expressing Chlamydia trachomatis Proteins on its Surface for use in a Vaccine Composition

[0147] Both Chlamydia trachomatis and N. gonorrhoeae cause sexually transmitted diseases, including urethritis, cervicitis, salpingitis and pelvic inflammatory disease. Mixed infection with both CT and GC does occur. Therefore, in the design of a vaccine targeting one, or more of these diseases, the possibility to afford protection against both organisms with one single formulation creates a technical advantage.


[0148] Protection Against N. gono.


[0149] A N. gonorrhoeae OMV vaccine can be obtained from bleb producing strain(s) in which the expression of one or several genes have been up and/or down regulated. A list of genes encoding N. gonorrhoeae proteins for which it is particularly useful to up/down regulate expression is provided above.


[0150] A successful vaccine for the prevention of infection by N. gono may require more than one of the following elements: generation of serum and/or mucosal antibodies to facilitate complement mediated killing of the gonococcus, and/or to enhance phagocytosis and microbial killing by leukocytes such as polymorphonuclear leukocytes, and/or to prevent attachment of the gonococci to the host tissues; induction of a cell mediated immune response may also participate to protection.


[0151] The potential of a bleb gono vaccine preparation can be evaluated by analyzing the induced immune response for serum and/or mucosal antibodies that have antiadherence, and/or opsonizing properties, and/or bactericidal activity, as described by others (McChesney D et al, Infect. Immun. 36: 1006, 1982; Boslego J et al: Efficacy trialof a purified gonococcl pilus vaccine, in Program and Abstracts of the 24th Interscience Conference on Antimicrobial Agents and Chemotherapy, Whashington, American Society for Microbiology, 1984; Siegel M et al, J. Infect. Dis 145: 300, 1982; de la Pas, Microbiology, 141 (Pt4): 913-20, 1995).


[0152] A mouse model of genital infection by N. gono has recently been described (Plante M, J. Infect. Dis., 182: 848-55, 2000). The efficiency of a bleb gono vaccine could also be evaluated by its ability to prevent or to reduce colonization by N. gono in this mouse model of infection.


[0153] Protection Against CT


[0154] A GC/CT bleb vaccine can be obtained from a strain expressing one or several Chlamydia genes, preferably selected from the above list of genes encoding predicted outer membrane proteins.


[0155] Other genes of interest for overexpression in Neisseria are C. trachomatis genes for which no homolog has been found in C. pneumoniae. Such a set of genes has been described in Richard S.; p:9-27, Stephens Stephens Ed. ASM Press, Washington D.C., Chlamydia: Intracellular Biology, Pathogenesis, and Immunity ISBN: 1-55581-155-8 pages: 380.


[0156] Most preferred combinations of Chlamydia trachomatis genes are as follows:


[0157] Major outer membrane protein MOMP (from one or several different serovars) and the Outer membrane Protein Analog (also known as PorB), MOMP (from one or several different serovars) and the Putative Outer Membrane Protein G (pmpG); & PorB and pmpG.


[0158] Although the immunity to CT is not fully understood, there is evidence that Ab play a role in protection. Ab to CT in genital fluids have been associated with immunity to CT (Brunham R C, Infect Immun. March 1983;39(3):1491-4.). A protective role of serum antibody in immunity to chlamydial genital infection has also been shown (Rank R G, Infect Immun. January 1989;57(1):299-301.). Antibodies, e.g. MOMP specific antibodies, have been shown to be capable to neutralize CT infection in vitro and in vivo (Caldwell et al. 1982 Infect. Immun. 38: 745-54, Lucero et al, 1985, Infect. Immun. 50: 595-97, Zhang et al. 1987 J. Immunol. 138: 575-581). The MOMP surface antigen of CT has been shown to bear non linear surface epitopes which are target of neutralizing antibodies (Fan J, J. Infect Dis 1997, 176(3):713-21).


[0159] Thus, an important objective in the design of a protective chlamydia vaccine includes the identification of formulation(s) of the CT antigens able to optimize the induction of a chlamydia specific antibody responses. Optimization of the Ab response includes targeting to the genital mucosa, and/or presentation of properly folded Chlamydia antigens, and/or combination of several antibody targets.


[0160] Mucosal targeting of the immune response to Chlamydia antigen can be achieved by mucosal administration of the vaccine. Intranasal administration of a outer membrane vesicle vaccine can induce persistent local mucosal antibodies and serum antibodies with strong bactericidal activity in humans.


[0161] For certain B cell epitopes, such as non linear epitopes, the presentation of the antigen to the immune system in a properly folded manner is critical. A bleb vaccine prepared from a strain expressing Chlamydia antigen(s) offers to chlamydia OMP an outer membrane environment which can be critical to maintain these antigens in a properly folded structure.


[0162] Combination of several antibody targets can create an increased efficacy by tackling the infection at different steps of the life cycle of the bacteria, such as adhesion to the host cell, internalization by the host cell and/or interference with further steps of the intracellular development.


[0163] The induction and recruitement of Th1 cells into the local genital mucosae are important for immunity against Chlamydia. Thus, an important objective in designing a protective anti-chlamydia vaccine includes the identification of formulation(s) of CT antigen(s) able to optimize the induction of chlamydia speicific Th1 cells, and preferably recruitment of these cells into the genital mucosae. A bleb vaccine prepared from a strain expressing chlamydia antigen(s) can induce a chlamydia specific CMI response. Antigen-specific T-cell responses can be induced in humans after intranasal immunization with an outer membrane vesicle vaccine.


[0164] A particular advantage of a GC/CT bleb vaccine is its capability to induce both Ab and CMI responses.


[0165] The efficacy of the GC/CT bleb vaccine can be evaluated by its ability to elicit Ag or Chlamydia-specific Ab and/or CMI responses. Ab responses can be evaluated by classical techniques such as ELISA or western blot. Preferably, the induced antibodies can neutralize the infectivity of Chlamydia in an in vitro assay (Byrne G. et al. (J Infect Dis. August 1993;168(2):415-20). Preferably, the CMI response is biased toward the Th1 phenotype. A Th1 biased immune response can be assessed by elevated antigen-specific IgG2a/ IgG1 ratios in mice (Snapper et al. 1987, Science 236:944-47). Elevated ratio of Th1/Th2 cytokine, e.g. elevated IFN-gamma/IL-5, ratio upon in vitro restimulation of immune T cells with the antigen(s) can also indicate such a biased Th1 response.


[0166] The ability of the formulation to elicit Ag specific mucosal Ab is of particular interest, and can be demonstrated by detection of antibodies, such as IgG and/or IgA in mucosal fluids, such as genital tract secretions, vaginal lavages. To this end, certain route of administration of the vaccine may be particularly desired such as intranasal, oral, intravaginal, intradermal, deliveries.


[0167] The efficacy of the GC/CT bleb vaccine can be evaluated by its ability to induce protection against a Chlamydia challenge in animal model(s). Examples of such animal models have been described in the literature: genital infection with MoPn in mice (Barron et al. J. Infect. Dis. 1143:63-66), genital infection with human strains in mice (Igietseme et al.2000, Infect. Immun. 68:6798-806, Tuffrey et al. 1992 J. Gen. Microbiol. 138: 1707-1715), Tuffrey), genital infection with GPIC strain in guinea pigs (Rank et al. 1992 Am. J. Pathol. 140:927-936). Protection against infection can be assessed by reduction of shed Chlamydia from the infected site and/or reduction of the histopathological reactions after a challenge infection in immunized animals.


[0168] The advantage of combining two or more Chlamydia antigens (as described above) can be evaluated by one or more of the following techniques:


[0169] Ability to elicit a multi-target Ab and/or T cell protective response


[0170] Ability to elicit Ab titers in an in vitro neutralizing assay, and/or neutralizing Ab against multiple strains (antigenically distinct)


[0171] Ability to elicit a protective immune response against Chlamydia in a mouse model of genital infection as assessed by reduced shedding of bacteria and/or pathology after challenge.



Example 3


Expression of Heterologous Antigens (Clamydia trachomatis MOMP and PorB) in blebs Derived from a Recombinant Neisseiria meningitidis Serogroup B Strain Lacking Functional porA and cps Genes

[0172] Other genes of interest for over-expression in Neisseria are Chlamydia trachomatis genes for which no homologue has been found in Chlamydia pneumoniae. Among those, the major outer membrane protein (MOMP) and the outer membrane protein analog (PorB) have been shown to play a protective role against chlamydial genital infection. Optimization of the Ab response could be achieved by presentation of properly folded proteins.


[0173] MenB bleb vesicles may be used as delivery vectors to express heterologous membrane protein antigens under the control of the engineered porA-lacO promoter described in WO 01/09350. Expressed in the bleb context, recombinant MOMP and PorB from Chlamydia trachomatis serovar D and K can be correctly folded in the membrane and exposed at the surface. Neisseiria meningitidis strains lacking functional cps genes are advantageously used as recipient strains to express the heterologous antigens (WO 01/09350).


[0174] PCR Amplifications of the Genes Coding for MOMP (Chlamydia trachomatis).


[0175] Murine McCoy cells (ATCC) infected either, with Chlamydia trachomatis Serovar K (UW31-CX-serK), or Serovar D (UW31-CX-serD), were lysed in 400 μl of lysis buffer: 50 mM KCl, 10 mM Tris-HCl pH 8.3, 2.5 mM MgCl2, 0.45% Nonidet P40, 0.45% Tween 20 containing 60 μg/ml proteinase K, 3 hours at 56° C. Ten μl of the lysate were used as template to amplify the corresponding genes. The gene coding for MOMP (Serovar K) (SEQID No 1 below) was PCR amplified using the CYK/OMP/5/NDE and CYKD/OMP/3/BG oligonucleotide primers (see table 1). The gene coding for MOMP (Serovar D) (SEQID No 2 below) was PCR amplified using the CYD/OMP/5/NRU and CYKD/OMP/3/BG oligonucleotide primers (see table 1). The conditions used for PCR amplification were those described by the supplier (HiFi DNA polymerase, Boehringer Mannheim, GmbH). Thermal cycling was the following: 25 times (94° C. 1 min., 52° C. 1 min., 72° C. 3 min.) and 1 time (72° C. 10 min., 4° C. up to recovery). The corresponding amplicons (1194 bp) were digested with either NdeI/BglII or NruI/BglII restriction enzymes and can be cloned in the corresponding restriction sites of pCMK (+) delivery vector (as described in WO 01/09350).


[0176] PCR Amplifications of the Genes Coding for PorB (Chlamydia trachomatis).


[0177] Murine McCoy cells (ATCC) infected either, with Chlamydia trachomatis Serovar K (UW31-CX-serK), or Serovar D (UW31-CX-serD), were lysed in 400 μl of lysis buffer: 50 mM KCl, 10 mM Tris-HCl pH 8.3, 2.5 mM MgCl2, 0.45% Nonidet P40, 0.45% Tween 20 containing 60 μg/ml proteinase K, 3 hours at 56° C. Ten μl of the lysate were used as template to amplified the corresponding genes.


[0178] PorB sequences are highly conserved amongst serovar D and K (SEQID No 3 below). The same primers were used to amplify the corresponding genes in both serovars: CYD/PORB/5/NRU and CYD/PORB/3/BG (see table 1). The conditions used for PCR amplification were those described by the supplier (HiFi DNA polymerase, Boehringer Mannheim, GmbH). Thermal cycling was the following: 25 times (94° C. 1 min., 52° C. 1 min., 72° C. 3 min.) and 1 time (72° C. 10 min., 4° C. up to recover corresponding amplicons (1035 bp) were digested with NruI/BglII restriction enzymes and can be cloned in the corresponding restriction sites of pCMK (+) delivery vector (as described in WO 01/09350).


[0179] Transformation


[0180] Linearized recombinant pCMK plasmids can be transformed within a Neisseria meningitidis serogroup B strain lacking functional cps genes (described in WO 01/09350). Integration resulting from a double crossing-over between the pCMK vectors and the chromosomal porA locus can be selected by a combination of PCR and Western Blot screening as described in WO 01/09350.
9TABLE 1Oligonucleotides used in this workOligonucleotidesSequenceRemark(s)CYK/OMP/5/NDE5′-GGG AAT CCA TAT GAA AAA ACT CTT GAANdeIcloning siteATC GG-3′[SEQ ID NO:101]CYKD/OMP/3/BG5′-GGA AGA TCT TTA GAA GCG GAA TTG TGCBgl IIcloning siteAT-3′[SEQ ID NO:102]CYD/OMP/5/NRU5′-CTG CAG AAT CGC GAA TGA AAA AAC TCTNruIcloning siteTGA AAT CGG-3′[SEQ ID NO:103]CYD/POR/5/NRU5′-CTG CAG AAT CGC GAA TGA GTA GCA AGCNruIcloning siteTAG TGA AC-3′[SEQ ID NO:104]CYD/POR/3/BG5′-AGG AGA TCT TTA GAA TTG GAA TCC TCCBgl IIcloning siteGG-3′[SEQ ID NO:105][SEQ ID NO:106]Nucleotide sequence of DNA coding for Chlamydia trachomatis MOMPserovar K protein.atgaaaaaactcttgaaatcggtattagtatttgccgctttgagttctgcttcctccttgcaagctctgcctgtggggaatcctgctgaaccaagccttatgatcgacggaattctgtgggaaggtttcggcggagatccttgcgatccttgcaccacttggtgtgacgctatcagcatgcgcgttggttactacggagactttgttttcgaccgtgttttgaaaactgatgtgaataaagaatttcagatgggagcggcgcctactaccagcgatgtagaaggcttacaaaacgatccaacaacaaatgttgctcgtccaaatcccgcttatggcaaacacatgcaagatgctgaaatgtttacgaacgctgcttacatggcattaaatatctgggatcgttttgatgtattttgtacattgggagcaactaccggttatttaagaggaaactccgcttccttcaacttagttggattattcggaacaaaaacacaatattctaagtttaatacagcgaatcttgttcctaacactgctttggatcgagctgtggttgagctttatacagacaccacctttgcttggagcgtaggtgctcgtgcagctctctgggaatgtgggtgtgcaacgttaggagcttctttccaatatgctcaatctaaacctaaagtagaagagttaaatgttctttgtaatgcatccgaatttactattaataagccgaaaggatatgttggggtggaatttccacttgatattaccgcaggaacagaagctgcgacagggactaaggatgcctctattgactaccatgagtggcaagcaagtttagccctttcttacagattaaatatgttcactccttacattggagttaaatggtctagagtaagttttgatgccgacacgatccgtatcgctcagcctaaattggctgaagcaatcttggatgtcactactctaaacccgaccatcgctggtaaaggagctgtggtctcttccggaagcgataacgaactggctgatacaatgcaaatcgtttccttgcagttgaacaagctgaaatctagaaaatcttgcggtattgcagtaggaacgactattgtagatgcagataaatacgcagttacagttgagactcgcttgatcgatgagagagcagctcacgtaaatgcacaattccgcttctaa[SEQ ID NO:107]Nucleotide sequence of DNA coding for Chlamydia trachomatis MOMP serovarD protein.atgaaaaaactcttgaaatcggtattagtatttgccgctttgagttctgcttcctccttgcaagctctgcctgtggggaatcctgctgaaccaagccttatgatcgacggaattctgtgggaaggtttcggcggagatccttgcgatccttgcgccacttggtgtgacgctatcagcatgcgtgttggttactacggagactttgttttcgaccgtgttttgaaaactgatgtgaataaagaatttcagatgggtgccaagcctacaactgatacaggcaatagtgcagctccatccactcttacagcaagagagaatcctgcttacggccgacatatgcaggatgctgagatgtttacaaatgccgcttgcatggcattgaatatttgggatcgttttgatgtattctgtacattaggagccaccagtggatatcttaaaggaaactctgcttctttcaatttagttggattgtttggagataatgaaaatcaaaaaacggtcaaagcggagtctgtaccaaatatgagctttgatcaatctgttgttgagttgtatacagatactacttttgcgtggagcgtcggcgctcgcgcagctttgtgggaatgtggatgtgcaactttaggagcttcattccaatatgctcaatctaaacctaaagtagaagaattaaacgttctctgcaatgcagcagagtttactattaataaacctaaagggtatgtaggtaaggagtttcctcttgatcttacagcaggaacagatgctgcgacaggaactaaggatgcctctattgattaccatgaatggcaagcaagtttagctctctcttacagactgaatatgttcactccctacattggagttaaatggtctcgagcaagctttgatgccgatacgattcgtatagcccagccaaaatcagctacagctatttttgatactaccacgcttaacccaactattgctggagctggcgatgtgaaaactggcgcagagggtcagctcggagacacaatgcaaatcgtttccttgcaattgaacaagatgaaatctagaaaatcttgcggtattgcagtaggaacaactattgtggatgcagacaaatacgcagttacagttgagactcgcttgatcgatgagagagcagctcacgtaaatgcacaattccgcttctaa[SEQ ID NO:108]Nucleotide sequence of DNA coding for Chlamydia trachomatis PorB serovar Dprotein.atgagtagcaagctagtgaactatctccgtttgactttcctatcttttttagggatcgcatctacttcattagacgctatgcctgcggggaatccggcgtttccagtcatcccggggattaatattgaacagaaaaatgcctgttctttcgatttatgtaattcttatgatgtactatccgcactgtccggtaacctgaagctctgcttctgcggagattatatcttttcagaagaagctcaggtaaaagatgtccctgtcgttacctctgtgacaacagctggggttggtccttctcctgatattacttcgacaaccaaaacgcgaaatttcgatctcgtgaactgtaatctcaatacaaactgtgtagctgtagctttttcccttcctgatcgttcgctgagcgcgattcctctgtttgatgtgagtttcgaagtgaaagtaggaggactgaaacaatactaccgccttcccatgaatgcctatcgagacttcacctcggaacctctcaattctgaatcagaagttacggacgggatgattgaagtacagtccaattacggatttgtttgggatgttagcttgaaaaaagtcatatggaaagatggcgtttcctttgtaggcgtcggtgcagactatcgccatgcttcttgccctattgactacatcattgcaaacagtcaagctaatccagaagtattcatcgctgactcggatgggaaactgaacttcaaggagtggagtgtctgcgtaggtcttactacctatgtgaatgactacgttcttccttacttagcgttttctatagggagtgtttctcgccaagctccggacgacagcttcaaaaaattagaagatcgcttcactaacctcaaatttaaagttcgtaaaattaccagctctcatcgtggaaacatctgcatcggagcgacaaactatgtcgccgataacttcttctacaacgtagaaggaagatggggaagccagcgcgctgtgaacgtctccggaggattccaattctaa



Example 4


Isolation and Purification of blebs from meningococci Devoid of Capsular polysaccharide

[0181] Recombinant blebs can be purified as described below. The cell paste (42 gr) is suspended in 211 ml of 0.1M Tris-Cl buffer pH 8.6 containing 10 mM EDTA and 0.5% Sodium Deoxycholate (DOC). The ratio of buffer to biomass should be 5/1 (V/W). The biomass is extracted by magnetic stirring for 30 minutes at room temperature. Total extract is then centrifuged at 20,000 g for 30 minutes at 4° C. (13,000 rpm in a JA-20 rotor, Beckman J2-HS centrifuge). The pellet should be discarded. The supernatant is ultracentrifuged at 125,000 g for 2 hours at 4° C. (40,000 rpm in a 50.2 Ti rotor, Beckman L8-70M ultracentrifuge) in order to concentrate vesicles. The supernatant should be discarded. The pellet is gently suspended in 25 ml of 50 mM Tris-Cl buffer pH 8.6 containing 2 mM EDTA, 1.2% DOC and 20% sucrose. After a second ultracentrifugation step at 125,000 g for 2 hours at 4° C., vesicles are gently suspended in 44 ml of 3% sucrose and stored at 4° C. All solutions used for bleb extraction and purification contained 0.01% thiomersalate. As illustrated in WO 01/019350, this procedure yields protein preparations highly enriched in outer-membrane proteins.



Example 5


Models for Testing Protection Against gonococcal and C. trachomatis Infection

[0182] This can be done as described above in Example 2. In addition Whittum-Hudson et al. (Vaccine Jul. 16, 2001;19(28-29):4061-71) “The anti-idiotypic antibody to chlamydial glycolipid exoantigen (GLXA) protects mice against genital infection with a human biovar of Chlamydia trachomatis” is a vaginal inoculation model for C. trachomatis (incorporated by reference herein) which can also be used to test vaccine efficacy.


Claims
  • 1. A Gram-negative bacterial bleb not derived from Chlamydia presenting on its surface the PorB outer membrane protein from Chlamydia trachomatis, wherein the combination of the Chlamydia antigen with the native Gram-negative bacterial bleb antigens interact in the prevention or treatment of salpingitis when present in a vaccine formulation.
  • 2. The Gram-negative bleb of claim 1 further presenting on its surface the PmpG outer membrane proteins from Chlamydia trachomatis.
  • 3. The Gram-negative bleb of claim 1 further presenting on its surface MOMP from one or more serovars from Chlamydia trachomatis.
  • 4. A Gram-negative bleb not derived from Chlamydia, presenting on its surface both the PmpG and MOMP (from one or more serovars) outer membrane proteins from Chlamydia trachomatis, wherein the combination of the Chlamydia antigens with the native Gram-negative bacterial bleb antigens interact in the prevention or treatment of salpingitis when present in a vaccine formulation.
  • 5. The bleb of claims 1-4 which are gonococcal blebs.
  • 6. The bleb of claim 5 which has been derived from a gonococcal strain which has been modified to upregulate one or more protective gonococcal outer membrane antigens.
  • 7. The bleb of claims 5 and 6 derived from a gonococcal strain which has been modified to downregulate one or more immunodominant variable or non-protective gonococcal outer membrane antigens.
  • 8. The bleb of claims 5-7 derived from a strain which has a detoxified lipid A portion of bacterial LPS, due to the strain having been engineered to reduce or switch off expression of one or more genes selected from the group consisting of: htrB, msbB and lpxK.
  • 9. The bleb of claims 5-8 wherein the bleb preparation is derived from a strain which has a detoxified lipid A portion of bacterial LPS, due to the strain having been engineered to express at a higher level one or more genes selected from the group consisting of: pmrA, pmrB, pmrE and pmrF.
  • 10. A vaccine composition comprising the bleb of claims 1-9 and a pharmaceutically suitable excipient or carrier.
  • 11. The vaccine of claim 10, additionally comprising a mucosal adjuvant.
  • 12. A method of preventing Chlamydia trachomatis infection in a host comprising the steps of administering an effective amount of the vaccine of claim 10 or 11 to a host in need thereof.
  • 13. The method of claim 12 where in the vaccine is mucosally administered via either a intranasal, oral, or intravaginal route.
  • 14. A Gram-negative bleb produced from Neisseria meningitidis, Moraxella catharralis or Haemophilus influenzae presenting on its surface a protective antigen from Chlamydia pneumoniae.
  • 15. The Gram-negative bleb of claim 14 presenting on its surface a PorB outer membrane protein from Chlamydia pneumoniae.
  • 16. The Gram-negative bleb of claim 15 further_presenting on its surface MOMP outer membrane protein from Chlamydia pneumoniae.
  • 17. The Gram-negative bleb of claim 15 further_presenting on its surface one or more Pmp outer membrane proteins from Chlamydia pneumoniae.
  • 18. The Gram-negative bleb of claim 15 further_presenting on its surface Npt1 protein from Chlamydia pneumoniae.
  • 19. The Gram-negative bleb of claim 14 presenting on its surface one or more Pmp proteins from Chlamydia pneumoniae.
  • 20. The Gram-negative bleb of claim 19 further_presenting on its surface Npt1 protein from Chlamydia pneumoniae.
  • 21. The Gram-negative bleb of claim 19 further presenting on its surface MOMP protein from Chlamydia pneumoniae.
  • 22. The Gram-negative bleb of claim 14 presenting on its surface MOMP protein from Chlamydia pneumoniae.
  • 23. The Gram-negative bleb of claim 22 further presenting on its surface Npt1 protein from Chlamydia pneumoniae.
  • 24. The bleb of claims 14-23 which are meningococcal blebs.
  • 25. The bleb of claim 24 derived from a meningococcal strain that has been modified to upregulate one or more protective meningococcal outer membrane antigens.
  • 26. The bleb of claim 24 or 25 derived from a meningococcal strain that has been modified to downregulate one or more immunodominant variable or non-protective meningococcal outer membrane antigens.
  • 27. The bleb of claims 24-26 derived from a strain which has a detoxified lipid A portion of bacterial LPS, due to the strain having been engineered to reduce or switch oft expression of one or more genes selected from the group consisting of: htrB, msbB and lpxK.
  • 28. The bleb of claims 24-27 wherein the bleb preparation is derived from a strain which has a detoxified lipid A portion of bacterial LPS, due to the strain having been engineered to express at a higher level one or more genes selected from the group consisting of: pmrA, pmrB, pmrE and pmrF.
  • 29. A vaccine composition comprising the bleb of claims 14-28 and a pharmaceutically suitable excipient or carrier.
  • 30. The vaccine of claim 29, additionally comprising a mucosal adjuvant.
  • 31. A method of preventing Chlamydia pneumoniae infection in a host comprising the steps of administering an effective amount of the vaccine of claim 29 or 30 to a host in need thereof.
  • 32. The method of claim 31 where in the vaccine is mucosally administered via either an intranasal, or oral route.
CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application is a National Stage Application filed under 35 U.S.C. §371 of International Application No: PCT/EP02/01356, filed 08 Feb. 2002.

PCT Information
Filing Document Filing Date Country Kind
PCT/EP02/01356 2/8/2002 WO