Vacuum-assisted pump

Information

  • Patent Grant
  • 6409478
  • Patent Number
    6,409,478
  • Date Filed
    Friday, February 26, 1999
    25 years ago
  • Date Issued
    Tuesday, June 25, 2002
    22 years ago
Abstract
A self-priming centrifugal pump including a supplementary vacuum pump and a float valve. The vacuum pump serves to draw liquid to the pump for priming and the float valve shut of flow to the vacuum pump when liquid reaches a predetermined level to prevent entry of liquid into the vacuum pump. In some embodiments the float valve includes an o-ring valve seal and the vacuum pump includes an oil delivery system to distribute oil from an oil reservoir to improve lubrication.
Description




FIELD OF THE INVENTION




This invention relates to centrifugal pumps and more particularly to centrifugal pumps with vacuum-assisted self-priming.




BACKGROUND




Centrifugal pumps are the most common pumps for moving liquids from place to place and are used in irrigation, domestic water systems, sewage handling and many other applications. Liquid is urged through the pump by a spinning disk-shaped impeller positioned inside an annular volute. The volute has an eye at the center where water enters the pump and is directed into the center of the impeller. The rotation of the impeller flings the liquid outward to the perimeter of the impeller where it is collected for tangential discharge. As the liquid is driven outward, a vacuum is created at the eye, which tends to draw more fluid into the pump.




One of the principle limitations on the use of centrifugal pumps is their limited ability to draw fluid for priming when starting from an air-filled or dry condition. The impeller, which is designed to pump liquids, often cannot generate sufficient vacuum when operating in air to draw liquid up to the pump when the standing level of the liquid is below the eye of the pump. Once the liquid reaches the eye, the outward motion of the liquid away from the eye creates the vacuum necessary to draw a continuing stream of liquid. However, until liquid reaches the impeller, very little draw is generated.




In many applications, such as dewatering construction sites or pits, the standing water level is many feet below the level of the pump. As a result, when the pump is not in operation, there is no water in the pump. To begin pumping, the pump must first self-prime by drawing water up to the pump from the standing water lever or the pump must be manually primed by being filled with water from a secondary source. Since manual priming requires user intervention, it is generally preferable that the pump be capable of self-priming. This is particularly true in applications, such as dewatering, where pump operation is intermittent and the need for priming recurrent.




To supplement the limited capability of the spinning impeller to generate vacuum, an auxiliary vacuum pump is sometimes used with centrifugal pumps. This vacuum pump, which is typically a positive displacement-type pump, has an intake near the eye of the impeller. As the vacuum pump draws a vacuum, water is drawn up to the centrifugal pump for priming. A float valve is provided between the vacuum pump and the input near the eye of the impeller to close off the intake when the centrifugal pump has been primed. This valve prevents water from reaching and possibly damaging the vacuum pump.




In pumps used for dewatering, reliability is of critical importance. If a pump for dewatering a site fails, the site and equipment at the site may be flooded. Although centrifugal pumps are relatively simple and reliable, in the past, the valves and vacuum pumps used to for self-priming have proven less reliable. For instance, prior float valves have not reliably shut off when water reached the pump, thereby allowing water to enter and damage the vacuum pump. Similarly, prior vacuum pumps have exhibited unacceptable internal failure rates even when the float valve is operating correctly.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a side elevational view of a pump according to the present invention.





FIG. 2

is an enlarged view of a portion of the pump of FIG.


1


.





FIG. 3

is a side elevational view of a vacuum pump assembly according to the present invention.





FIG. 4

is a partial cross sectional view of part of a vacuum pump assembly taken along lines


4





4


in FIG.


3


.





FIG. 5

is a partial cross-sectional view of a float valve assembly according to the present invention.











DETAILED DESCRIPTION




A pump according to the present invention is shown generally at


10


in FIG.


1


. Pump


10


includes a centrifugal section


12


, a float valve assembly


14


and a vacuum pump assembly


16


. The centrifugal section includes an intake


18


leading to an eye


20


of a volute


22


. The volute has an output


24


to which is connected a check valve


26


to prevent reverse flow when the pump is priming or idle. An impeller


28


is mounted inside the volute on a shaft


30


. The shaft is supported by a bearing housing


32


, which is mounted on a pedestal


34


. A bracket or bell housing


36


connects the bearing frame to a motor (not shown). A combustion motor is often used for dewatering applications because it eliminates the need for electrical power, although an electric motor may be used as well in which case the bell housing is not required. Shaft


30


has a drive end


38


, which is driven by the motor.




The portion of pump


10


described above is a standard centrifugal pump, such as a Cornell Pump Company Model No. 14NHGH-F18DB. It should be noted that this pump has a scaling system that allows the pump to safely run dry for extended periods of time. This system includes an oil reservoir to provide cooling. While the centrifugal pump will efficiently pump water or other liquids, it will not draw significant vacuum when operated dry. Priming is accomplished with the previously mentioned vacuum pump assembly and regulated by the float valve.




As shown in

FIG. 2

, vacuum pump assembly


16


is mounted to the top of bearing housing


32


on a mounting plate


50


. A housing or base


52


is bolted to the plate and supports a shaft


54


on bearings


56


. See

FIGS. 2 and 3

. Base


52


also contains an oil reservoir


58


. Shaft


54


projects through one end of base


52


to support a pulley


60


. A drive linkage in the form of a belt


62


connects pulley


60


to a pulley


64


mounted on drive end


38


of shaft


30


, passing through bell housing


36


. Thus, when the motor turns shaft


30


to turn impeller


28


, the belt and pulleys simultaneously turn shaft


54


in vacuum pump assembly


16


. A guard


65


covers the pulley and belt.




Shaft


54


includes an eccentric section


66


to which is mounted a connecting rod


68


. See FIG.


4


. Connecting rod


68


is tied to a slider


70


by a pin


72


. An oil delivery system in the form of two oil flingers


74


attached to shaft


54


throws oil in the oil reservoir up onto the connecting rod, pin and slider to insure adequate lubrication. The flingers are rigid and similar to a thumb screw screwed into shaft


54


. In should be understood, that the flingers could also take many other configurations, such as flexible strips or a partially submerged disk which could likewise flip oil onto components above the oil level. Alternatively, some type of pumping system could be provided to convey oil onto the moving components that are not in contact with the oil bath.




Slider


70


extends upward through a sleeve section


76


that is bolted to the top of base


52


. Sleeve


76


includes two seals


78


and a bushing


80


to guide slider


70


. A grease fitting


82


allows introduction of grease into a cavity


84


between the seals.




A diaphragm housing


86


is mounted to the top of sleeve


76


and encloses a pump chamber that houses a diaphragm


88


. Diaphragm


88


is mounted to the top of slider


70


and is driven up and down with the slider when shaft


54


rotates. As the diaphragm moves up and down in the pump chamber, air is moved by operation of three check valves. As the diaphragm moves up in the chamber, air is drawn through an intake check valve


90


positioned in an intake port


92


. T he check valve includes a disk-shaped rubber seal


94


, which is positioned over a number of holes


96


in the chamber in the intake port. As the diaphragm rises and generates a vacuum, the seal is lifted and air is drawn into the lower portion of the chamber.




At the same time that air is being drawn into the lower portion of the chamber, the diaphragm is compressing air in the upper portion and forcing it into an output port


98


through an output check valve


100


via holes


102


. Output check valve


100


is similar to intake check valve


90


and includes a seal


104


which lifts to release air as positive pressure is generated in the upper portion of the pump chamber. The output check valve is centered over the diaphragm to maximize flow rate through the output port.




After the diaphragm has completed its upward motion, it begins to move down, closing both the intake and output check valves. Subsequently pressure begins to drop above the diaphragm and rise below, causing a flexible rubber seal


110


in a diaphragm check valve


106


to open, allowing air to move from below the diaphragm to above through holes


108


. It should be noted that the upper and lower portions of the pump chamber are separated by a flexible rubber seal


111


extending between the perimeter of the diaphragm and the wall of the chamber. Similarly, a flexible seal


112


extending between the slider and the wall of the chamber seals the bottom of the chamber. It should also be noted that, in contrast to prior designs, bolts


114


holding the chamber housing to the sleeve are not installed from inside the cavity, thereby eliminating a possible source of air leakage.




Vacuum pump assembly


16


is connected by a hose


116


to an output port


118


on float valve assembly


14


. As shown in

FIG. 5

, the output port is mounted atop a valve housing or float box


120


, an upper portion


122


of which is cylindrical and a lower portion


124


of which is frustro-conical in shape. The float box is mounted on the intake of the centrifugal pump. Holes


125


allow water to rise into the float box from the intake.




When there is no water in the float box, a float


126


hangs freely. The float is connected through linkage assembly


128


to a valve stem


130


. A seal


132


, consisting of an o-ring


134


supported by a small flange


136


, is mounted on the valve stem and positioned away from a valve seat


137


formed in the float box when the float is hanging freely. This configuration allows air to be drawn through the valve seat and into the output port for subsequent delivery to the vacuum pump. The upper portion of stem


130


is supported in a guide


138


formed in output port


118


. This guide allows the stem to move up and down freely, but restricts lateral movement.




As water enters the float box and lifts the float, the linkage shifts the valve stem


130


upward to push the seal against the valve seat, thereby stopping withdrawal of air from the housing. This action prevents the water from being drawn into the vacuum pump. The absence of sharp projections in the float box reduces that chance that the float ball will become hung on the side of the float box, as may occur with existing designs.




It should be noted that the valve tends be held closed by the vacuum that builds quickly after the valve closes because of the cross-sectional area of the seal and stem. As a result, a hysteresis effect is created whereby the valve will not open until the water drops well below the level at which the valve first closed. Similarly, after opening, the valve will not close again until the water rises well above the level where the valve opened. The amount of hysteresis can be established by balancing the cross-sectional area of the valve against the size and density of the ball. The hysteresis is important because, as the pump is being primed, water flow is turbulent and subject to surging which would otherwise cause the valve to repeatedly open and close. The small area of holes


125


also helps to reduce fluctuations in the level of water in the valve housing.




While the invention has been disclosed in its preferred form, the specific embodiments thereof as disclosed and illustrated herein are not to be considered in a limiting sense as numerous variations are possible. Applicants regard the subject matter of their invention to include all novel and non-obvious combinations and subcombinations of the various elements, features, functions and/or properties disclosed herein. No single feature, function, element or property of the disclosed embodiments is essential. The following claims define certain combinations and subcombinations which are regarded as novel and non-obvious. Other combinations and subcombinations of features, functions, elements and/or properties may be claimed through amendment of the present claims or presentation of new claims in this or a related application. Such claims, whether they are broader, narrower or equal in scope to the original claims, are also regarded as included within the subject matter of applicants' invention.



Claims
  • 1. A self-priming pump, comprising:a centrifugal pump section including a volute and an impeller disposed in the volute and supported on an impeller shaft, the impeller shaft being supported in a bearing housing and having a drive end opposite the impeller, the pump section further including a bracket attached to the bearing housing and surrounding the drive end of the impeller shaft; a motor mounted to the bracket and configured to turn the impeller shaft; a vacuum pump assembly mounted to the centrifugal pump section and having a vacuum pump input shaft configured to actuate a diaphragm-type vacuum pump upon rotation; and a drive linkage extending from the drive end of the impeller shaft through the bracket and to the vacuum pump input shaft, the drive linkage being configured to transfer power from the drive end of the impeller shaft to the vacuum pump assembly when the motor turns the shaft.
  • 2. The self-priming pump of claim 1, where the bracket is removably attached to the bearing housing.
  • 3. The self-priming pump of claim 1, where the impeller includes a bore in which an impeller end of the impeller shaft is received to secure the impeller to the impeller shaft.
  • 4. The self-priming pump of claim 3, further comprising a threaded fastener that is aligned parallel to the impeller shaft and extended into the impeller end of the impeller shaft to secure the impeller to the impeller shaft.
  • 5. The self-priming pump of claim 1, where the vacuum pump assembly is mounted to the bearing housing via bolt-type fasteners that extend perpendicularly to an upper portion of the bearing housing.
  • 6. The self-priming pump of claim 5, where spacers are positioned between a bottom portion of the vacuum pump assembly and the upper portion of the bearing housing.
  • 7. The self-priming pump of claim 1, where the motor is an electric motor.
  • 8. The self-priming pump of claim 1, where the motor is a combustion-type motor.
  • 9. The self-priming pump of claim 1 where the diaphragm-type vacuum pump includes a diaphragm and an output check valve centered over the diaphragm.
  • 10. The self-priming pump of claim 1, where the diaphragm-type vacuum pump includes a plurality of check valves configured to inhibit reverse airflow through the diaphragm-type vacuum pump.
  • 11. The self-priming pump of claim 1, further comprising a mechanical seal configured to provide a seal between the impeller shaft and the centrifugal pump section.
  • 12. A self-priming pump, comprising:a centrifugal pump section including a volute and an impeller disposed in the volute and supported on an impeller shaft, the impeller shaft being supported in a bearing housing and having a drive end opposite the impeller, the pump section further including a bracket removably attached to the bearing housing and surrounding the drive end of the impeller shaft; a motor mounted to the bracket and configured to turn the impeller shaft; a vacuum pump assembly mounted to the centrifugal pump section and having a vacuum pump input shaft configured to actuate a diaphragm-type vacuum pump upon rotation; and a drive linkage coupled between the drive end of the impeller shaft and the vacuum pump input shaft and configured to transfer power to the vacuum pump assembly when the motor turns the impeller shaft.
  • 13. A self-priming pump, comprising:a centrifugal pump section including an intake, a volute and an impeller disposed in the volute and supported on an impeller shaft, the impeller shaft being supported in a bearing housing and having a drive end opposite the impeller, the pump section further including a bracket attached to the bearing housing and surrounding the drive end of the impeller shaft; a motor mounted to the bracket and configured to turn the impeller shaft; and a vacuum pump assembly including a diaphragm-type vacuum pump mounted to the centrifugal pump section and configured to generate, upon rotation of the impeller shaft, a vacuum in order to draw fluid to the impeller via the intake and thereby prime the centrifugal pump section, where the self-priming pump is configured to fluidly de-couple the vacuum pump assembly from the intake upon priming of the centrifugal pump section to inhibit fluid from entering the vacuum pump assembly.
  • 14. The self-priming pump of claim 13, where the bracket is removably attached to the bearing housing.
  • 15. The self-priming pump of claim 13, where the impeller includes a bore in which an impeller end of the impeller shaft is received to secure the impeller to the impeller shaft.
  • 16. The self-priming pump of claim 15, further comprising a threaded fastener that is aligned parallel to the impeller shaft and extended into the impeller end of the impeller shaft to secure the impeller to the impeller shaft.
  • 17. The self-priming pump of claim 13, where the vacuum pump assembly is mounted to the bearing housing via bolt-type fasteners that extend perpendicularly to an upper portion of the bearing housing.
  • 18. The self-priming pump of claim 17, where spacers are positioned between a bottom portion of the vacuum pump assembly and the upper portion of the bearing housing.
  • 19. The self-priming pump of claim 13, where the motor is an electric motor.
  • 20. The self-priming pump of claim 13, where the motor is a combustion-type motor.
  • 21. The self-priming pump of claim 13 where the diaphragm-type vacuum pump includes a diaphragm and an output check valve centered over the diaphragm.
  • 22. The self-priming pump of claim 13, where the diaphragm-type vacuum pump includes a plurality of check valves configured to inhibit reverse airflow through the diaphragm-type vacuum pump.
  • 23. The self-priming pump of claim 13, further comprising a mechanical seal configured to provide a seal between the impeller shaft and the centrifugal pump section.
US Referenced Citations (7)
Number Name Date Kind
1201594 King Oct 1916 A
1475994 Havens Dec 1923 A
1840257 Saxe et al. Jan 1932 A
1910775 Saxe May 1933 A
2192442 Hoffman Mar 1940 A
2845875 Corbett Aug 1958 A
4249865 Sloan Feb 1981 A