The present invention relates to a method for securing composite laminate structures, and more particularly to a method for bonding two or more composite laminate structures to produce an even stronger joint between the joined surfaces of the structures.
Vacuum assisted molding methods are well known in the art for forming resin-fiber composite structures. Traditionally, however, the formation of such structures has been limited to panels and other like-shaped structures. Complexly shaped structures, such as a portion of a skin and an associated stiffener, have heretofore been difficult, if not impossible, to produce from traditional composite molding systems and methods in a single molding step because such complex structures are difficult to “lay up”. By “lay up”, it is meant arranging a plurality of fiber plies (i.e., layers) into a single fiber preform. As such, the manufacture of various complexly shaped structures has typically involved forming two independent composite laminate structures through the well known vacuum molding process, and then securing the structures together via rivets or other like mechanical fasteners in a separate manufacturing step.
Various attempts have been made to bond two or more completely formed composite laminate structures together via a suitable adhesive. U.S. Pat. No. 4,786,343, assigned to The Boeing Company, discloses various methods for bonding two or more composite laminate structures together via an adhesive. While these methods have proven effective in bonding a wide variety of complexly shaped composite laminate structures, it would nevertheless be desirable to provide a system and method in which the bonding of two or more complexly shaped composite structures can be accomplished on a suitable tool, in a single manufacturing operation, using an otherwise conventional vacuum assisted resin transfer molding process. More specifically, it would be highly desirable to provide a system and method in which dry fiber preforms (i.e., multi-layer preforms that have not yet been preimpregnated with resin) can be placed on a suitable tool with the preforms precisely aligned in the desired orientation relative to one another, with an adhesive material placed at the desired bond line(s), and the bonding of the preforms together accomplished immediately prior to infusing the preforms with resin, and all with a single manufacturing operation. This would eliminate the added labor associated with subsequently taking the finished composite laminate component pieces and precisely aligning same, in a separate manufacturing step, prior to adhering the independent component pieces together. It is further expected that a system and method which accomplishes heating and flowing of the adhesive into the surfaces of two or more independent, dry fiber preforms, will produce even greater migration of the viscous adhesive into the plys of each of the preforms.
The present invention relates to systems and methods for forming complexly shaped structures from two or more independent dry fiber preforms in a single manufacturing operation. In a preferred implementation, the method involves the steps of taking the dry fiber preforms and assembling the preforms with adhesive material between those surfaces of the preforms that are to be bonded together. This is preferably accomplished with the preforms resting on a tool of a conventional vacuum assisted resin transfer molding apparatus. The preforms are precisely aligned relative to one another, and one or more alignment tools are used to maintain the preforms in the desired alignment. An airtight structure, for example, a vacuum bag, is then placed over the entire structure. The vacuum bag has at least one opening in communication with a reservoir filled with resin, and at least one opening in communication with a vacuum generating source.
In preferred embodiments, the adhesive comprises a thin film layer of adhesive which is placed between each of the surfaces of the two preforms being bonded together. The entire assembly is heated to a temperature sufficient to cause the adhesive to become viscous and to migrate (i.e., flow) into the plys of each of the preforms. A vacuum force is generated at this time which further assists in causing the viscous adhesive to migrate and thoroughly “wet” several plys of each of the preforms at those areas where the adhesive has been placed. When it is determined that satisfactory wetting of the dry fiber preforms with the adhesive has occurred, resin from the resin reservoir is admitted into the airtight enclosure and drawn through each of the preforms to thoroughly wet each of the preforms. The resin substantially fills the microscopic pockets and interstices around each fiber in those plys which the adhesive has wet. This strengthens the bondline at those areas that are being joined by the adhesive.
The entire assembly is then allowed to cure before being removed from the tool. Once removed, the two preforms form a rigid, single piece composite laminate structure. Advantageously, the bonding of the independent dry fiber preforms and the subsequent infusion of resin into each of the preforms can be accomplished in a single manufacturing operation. The joint produced at the bondline(s) of the preforms is enhanced due to the increased migration of the viscous adhesive into the plys of each of the preforms at those areas where bonding has taken place.
The features, functions, and advantages can be achieved independently in various embodiments of the present inventions or may be combined in yet other embodiments.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description of the preferred embodiments is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
Referring to
It is strongly preferred that dry fiber preforms be used as this will maximize, or at least increase, strength at the joint between the two preforms 14 and 16 when the manufacturing operation is completed. Each of the dry fiber preforms 14 and 16 comprise preformed fiber layups, typically comprised of fiberglass or carbon cloth. In this particular example, the dry fiber preform 14 will eventually comprise a section of skin (e.g., a mold line skin) of an aircraft fuselage while dry fiber preform 16 comprises a stiffener. The stiffener can include any of a wide range of stiffening elements such as a hat-shaped stiffening element, J-shaped stiffening element, I-beam, C-shaped stiffening element, etc. Indeed, it is understood that the systems and methods of the present invention are not limited to the bonding of any two particular shapes of preforms, but can be adapted for use with a wide variety of differently shaped preforms to form complexly shaped assemblies such as C-shaped composite laminate assemblies, Z-shaped assemblies, and so forth.
A dry fiber preform (e.g., 14 and 16) is typically formed from a plurality of plys or layers of fibrous material without any adhesive between adjacent layers within that dry fiber preform. Such a dry fiber preform is also typically formed with adjacent layers being disposed so that the fibers extend perpendicularly to each other. Thus, it can be said that the fibers are directed along the X and Y axes of the surface of the material but that no fibers extend in the Z direction. Thus, when opposing surfaces (e.g. a surface 14a of dry fiber preform 14 and a surface 16a of dry fiber preform 16) are bonded together with adhesive, the adhesive essentially forms the only means by which the two opposing surfaces are held together. Thus, the greater the migration of adhesive into each of the plys of the surfaces being bonded together, the greater the joint strength becomes.
With further reference to
In preferred implementations as shown in the figures, the adhesive layer 20 is preferably placed only between those opposing surfaces 14a and 16a that are to be bonded together. The inventors have recognized that this can be especially beneficial for producing relatively lightweight composite parts (e.g., composite skin panels, etc.) intended for aerospace applications in which weight can be an important consideration. Alternative implementations, however, can include adhesives placed at other strategic locations (e.g., joints and interfaces between two separate preforms) where additional or further strength may be needed, including between the plies of a given preform.
Regarding the adhesive layer 20, a wide range of adhesives can be used, although high modulus adhesives are generally preferred. In various implementations, the adhesive layer 20 can also be a self-supporting film of adhesive. Exemplary adhesives that can be used in various implementations of the present invention are described in U.S. Pat. No. 4,786,343 to Hertzberg, the entire disclosure of which is incorporated herein by reference.
With further reference to
The vacuum bag 26 also includes at least one opening, and in the drawing of
Referring to
The heating phase causes the adhesive layer 20 to become viscous and to migrate (i.e., flow) into several plys of each of the preforms 14 and 16. By heating the preforms 14 and 16 along with the adhesive 20, this also has the beneficial effect of removing any residual moisture that may be contained in the preforms 14 and 16 which might otherwise impede the flow of the adhesive 20 into the plys of the preforms 14 and 16. The use of dry fiber preforms rather than prepregs is important because the adhesive is able to flow more easily into several plys of each preform 14 and 16. Thus, wetting of more than just the surface ply of each preform 14 and 16 occurs. This is in contrast to methods which involve heating already completely resin cured preforms with an adhesive layer placed between surfaces to be joined, which typically only allow the outermost ply of each preform to be wetted with the adhesive. With methods of the present invention, the viscous adhesive flows and substantially fills the interstices and microscopic voids around the individual fibers of the first several plys of each preform 14 and 16.
Further, by using dry fiber preforms rather than prepregs, various implementations of the invention can also allow for reduction in manufacturing costs by eliminating the need for and costs associated with forming prepregs (e.g., preimpregnating fiber with resin and using an autoclave to process and form the prepregs). Indeed, various implementations of the invention enable bonding independent dry fiber preforms to one another with adhesive and subsequent infusion of resin into each preform to be accomplished in a single manufacturing operation.
During the above-described initial phase of heating the preforms 14 and 16 and the adhesive layer 20, a vacuum may be generated by the vacuum sources 28 to further assist in drawing the viscous adhesive 20 into the plys of each of the preforms 14 and 16. However, the use of dry fiber preforms and the heating of the preforms together with the adhesive layer 20 is sufficient to cause wetting of several plys of the preforms 14 and 16 at the eventual bond areas.
After the adhesive 20 has fully wetted at least some plys of each of the dry fiber preforms 14 and 16, the preforms are allowed to cool down to a temperature between about room temperature, i.e., about 70° F. (21° C.) and 200° F. (93° C.), and more preferably about 150° F. (65° C.). Once the preforms 14 and 16 have cooled to this temperature, the vacuum sources 28 are turned on, if they haven't already been operating during the prior heating phase, and suitable valves (not shown) in the resin supply conduits 34 allow resin to flow from the resin reservoir 36 through the openings 33 in the vacuum bag 26 and into each of the preforms 14 and 16. The resin thoroughly wets all of the plys of each of the preforms 14 and 16 and further flows into the small interstices and voids around the fibers in those plys which have previously been wetted by the adhesive 20. By this time, the adhesive 20 can be partially cured (referred to in the art typically as “B-staged”), and only a small degree of little additional flow of the adhesive 20 will occur until the viscosity becomes too high for flow to continue. Thus, the adhesive 20 will not be pulled away from the bond line at the surfaces of the preforms 14 and 16 being joined. By flowing into the interstices, pockets and voids (which the adhesive 20 has not occupied) around those fibers previously wetted by the adhesive 20, the resin “backfills” these areas to further enhance the strength of the joint formed between the preforms 14 and 16.
The complete wetting of each of the preforms 14 and 16 with resin can be visually detected by an operator if the vacuum bag 26 comprises a translucent vacuum bag. If not, thorough wetting can be assumed as soon as the resin begins to be drawn out of the preforms 14 and 16 and into each of the tubing sections 30 (
Referring to
The preforms 14 and 16 are then held at this temperature for preferably between about four hours to eight hours, depending on the resin system, and more preferably for about six hours, again depending on the resin being used. This fully cures the adhesive 20 and the resin in each of the preforms 14 and 16 to form a single composite laminate structure.
In various implementations, the joint(s) at the surfaces of the preforms 14 and 16 which have been bonded together have exhibited a significant improvement in “pull away” strength of about 25%–30% over those composite laminate structures where adhesive has been used to bond otherwise completely or partially cured preforms into a single structure. In strength testing, a joint constructed in accordance with a preferred method of the present invention showed an improvement in the maximum average shear load that could be applied before separation of the joined components began to occur from 186 lb./in. to 264 lb./in.
Once the preforms 14 and 16 have been fully cured, the vacuum bag 26 is removed, the alignment members 22 are separated from the preforms 14 and 16, and the preform 14 is removed from the release layer 18.
With brief reference to
Turning to
Various implementations of the present invention can provide significant manufacturing advantages over previously developed methods which rely on using fully cured preforms to begin the adhesive bonding process. In preferred implementations, the dry fiber preforms 14 and 16 and the adhesive layer 20 can be set up in one step within the vacuum bag 26 and then formed in a single manufacturing operation. This saves significant labor and time over those methods which require the preforms to be partially or fully cured with resin before being bonded together. Various implementations of the present invention may also provide for better locational control of features, less final trim cleanup work and better part definition. Various implementations of the present invention can also require fewer tools during the infusion step.
By using dry fiber preforms, the preforms themselves do not need to be stored in a carefully temperature controlled environment, as would typically be the case with B-staged preforms. The use of dry fiber preforms rather than B-staged preforms also means that limitations on the time during which the preforms can be stored is not a consideration, as would be the case with B-staged preforms. B-staged preforms must typically be used within a relatively short time period (typically one month or less) from the time that the B-staging has occurred. Various implementations of the present invention further involve less handling and human contact with the resin by workers because of the use of dry fiber preforms rather than B-staged or fully wetted preforms.
The methods and systems of the present invention may be used with, or may include, apparatuses and/or teachings described in U.S. Pat. No. 4,786,343 to Hertzberg; U.S. Pat. No. 4,902,215 to Seemann III; U.S. Pat. No. 4,942,013 to Palmer et al; U.S. Pat. No. 5,939,013 to Han; and U.S. application Ser. No. 09/731,945 (U.S. Publication number 20020022422), filed Dec. 7, 2000, all of which are hereby incorporated by reference.
While various preferred embodiments have been described, those skilled in the art will recognize modifications or variations which might be made without departing from the inventive concept. The examples illustrate the invention and are not intended to limit it. Therefore, the description and claims should be interpreted liberally with only such limitation as is necessary in view of the pertinent prior art.
This application is a continuation-in-part of U.S. patent application Ser. No. 09/915,886 filed on Jul. 26, 2001 now abandoned. The disclosure of which is incorporated herein by reference in its entirety as if fully set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
4470862 | More et al. | Sep 1984 | A |
4560428 | Sherrick et al. | Dec 1985 | A |
4622091 | Letterman | Nov 1986 | A |
4695344 | Crane et al. | Sep 1987 | A |
4786343 | Hertzberg | Nov 1988 | A |
4902215 | Seemann, III | Feb 1990 | A |
4942013 | Palmer et al. | Jul 1990 | A |
4966802 | Hertzberg | Oct 1990 | A |
4988469 | Reavely et al. | Jan 1991 | A |
5061542 | Brace | Oct 1991 | A |
5080851 | Flonc et al. | Jan 1992 | A |
5300360 | Kocsis et al. | Apr 1994 | A |
5403537 | Seal et al. | Apr 1995 | A |
5567499 | Cundiff et al. | Oct 1996 | A |
5840238 | Setiabudi et al. | Nov 1998 | A |
5851336 | Cundiff et al. | Dec 1998 | A |
5939013 | Han et al. | Aug 1999 | A |
5981023 | Tozuka et al. | Nov 1999 | A |
6555045 | McClure et al. | Apr 2003 | B1 |
20020022422 | Waldrop, III et al. | Feb 2002 | A1 |
20030019567 | Burpo et al. | Jan 2003 | A1 |
20030090025 | Nelson et al. | May 2003 | A1 |
Number | Date | Country |
---|---|---|
2 225 277 | May 1990 | GB |
Number | Date | Country | |
---|---|---|---|
20040256053 A1 | Dec 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09915886 | Jul 2001 | US |
Child | 10851512 | US |