The present disclosure relates generally to devices used to acquire a tissue sample, such as in medical devices. More specifically, in some embodiments, the present disclosure relates to devices used to acquire a soft tissue sample using a vacuum assist.
The embodiments disclosed herein will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. These drawings depict only typical embodiments, which will be described with additional specificity and detail through use of the accompanying drawings in which:
In certain instances, a soft tissue lesion (e.g., tumor) may grow within a patient at various locations, such as breast, liver, lung, kidney, spleen, prostate, lymph nodes, etc. Sampling of a small portion of the lesion to determine the type of lesion such that a treatment regimen can be planned and implemented may be recommended to the patient. In some embodiments, the tissue sampling can be performed utilizing a biopsy device percutaneously inserted into the lesion. The biopsy device can include an inner cannula or stylet including a sample notch configured to receive a tissue sample and an outer cannula configured to sever the tissue sample from the lesion. A pathologist may desire that the tissue sample be of a minimum size (e.g., length, volume) to most effectively determine the lesion type.
Embodiments herein describe biopsy devices and methods to assist in obtaining a tissue sample of adequate size from a lesion within a patient's body. The devices can be percutaneously inserted into the lesion. In some embodiments within the scope of this disclosure, the devices include a stylet including a sample notch configured to receive a tissue sample, an outer cannula configured to sever the tissue sample from the lesion, a vacuum member in fluid communication with the sample notch, and an actuating member or handle configured to displace the stylet and outer cannula sequentially from proximal positions to distal positions either automatically or manually. The vacuum member is configured to generate a vacuum when the stylet is displaced by the actuator. The actuating member is armed by an arming slide such that the stylet and outer cannula are disposed in the proximal positions when the actuator is armed. A throw or penetration distance of the needle is adjustable by an adjustable stop member.
In use, in some embodiments within the scope of this disclosure, the biopsy device is armed by positioning the stylet and the outer cannula in proximal positions utilizing the arming slide. The stylet and the outer cannula are percutaneously inserted into the patient adjacent the lesion. The actuating member is actuated to displace the stylet into the lesion. The vacuum member generates a vacuum within the sample notch of the stylet as the stylet is displaced into the lesion. The tissue sample is sucked or drawn into the sample notch by the vacuum to increase the size of the tissue sample. The actuating member is actuated to displace the outer cannula over the stylet to sever the tissue sample from the lesion. The stylet and the outer cannula are removed from the patient. The tissue sample is removed from the sample notch.
As further illustrated in
As illustrated in
The proximal stylet cannula 132 can be a cylindrical tube with a lumen extending therethrough. The proximal stylet cannula 132 may be fixedly coupled to the stylet hub 131 and a proximal end may extend through the piston 136 into the vacuum tube 135 such that the lumen is in fluid communication with the vacuum tube 135. The distal stylet cannula 133 can be a cylindrical tube with a lumen extending therethrough. The distal stylet cannula 133 can be co-axially disposed over a distal portion of the proximal stylet cannula 132 such that the lumen of the distal stylet cannula 133 is in fluid communication with the lumen of the proximal stylet cannula 132 and the vacuum tube 135. The proximal stylet cannula 132 and the distal stylet cannula 133 can be fixedly coupled using any suitable technique, such as welding, gluing, and frictional fit. Other techniques are contemplated. In other embodiments, the proximal and distal stylet cannulae 132, 133 may be a stylet cannula of a unibody construct.
A sample notch 139 may be disposed in the distal stylet cannula 133 adjacent a distal end and configured to receive a tissue sample. The sample notch 139 can have a length ranging from about 19 millimeters to about 22 millimeters and a depth ranging from about 50% to about 80% of a diameter of the distal stylet cannula 133. The sample notch 139 may be in fluid communication with the vacuum tube 135 through the lumens of the proximal and distal stylet cannulae 132, 133.
The trocar tip 134 may be disposed at the distal end of the distal stylet cannula 133. The trocar tip 134 can be at least partially disposed within the lumen of the distal stylet cannula 133. The trocar tip 134 may be fixedly coupled to the distal stylet cannula 133 utilizing any suitable technique. For example, the technique can include welding, gluing, and friction fit. Other techniques are contemplated within the scope of this disclosure. The trocar tip 134 can include a sharp point 145 and sharp facets 146 configured to penetrate and cut tissue.
A vacuum member such as vacuum tube 135 can be disposed adjacent a proximal end of the stylet hub 131. In some embodiments, a proximal end of the stylet hub 131 may extend into the vacuum tube 135. The vacuum tube 135 may include a cylindrical tube having a closed proximal end, an open distal end, and a bore extending therebetween. The piston 136 can be slidingly disposed within the bore and can be configured to seal against an inner surface of the vacuum tube 135. The piston 136 may be formed of a compliant material, such as rubber, latex, and thermoplastic elastomer. Other materials are contemplated, such as a rigid plastic piston with a compliant O-ring. The distal end of the proximal stylet cannula 132 can extend through the piston 136 into the bore of the vacuum tube 135 wherein the lumen of the proximal stylet cannula 132 is in fluid communication with the bore. The piston 136 may be fixedly coupled to the stylet hub 131. When the stylet hub 131 is proximally translated, the vacuum tube 135 is stationary relative to the handle 110 and the piston 136 is proximally translated within the bore of the vacuum tube 135 causing air within the vacuum tube 135 to be expelled through the sample notch 139. When the stylet hub 131 is distally translated, the vacuum tube 135 is stationary relative to the handle 110 and the piston 136 is distally translated within the bore of the vacuum tube 135 to generate a vacuum within the bore proximal to the piston 136 and within the sample notch 139.
The cutting cannula 152 can be fixedly coupled to the cutting cannula hub 151 and co-axially disposed over the proximal and distal stylet cannulae 132, 133. The cutting cannula 152 can include a cylindrical tube with a lumen extending therethrough. A distal end 158 of the cutting cannula 152 can be beveled wherein the distal end 158 may sever a tissue sample from a lesion when the cutting cannula 152 is translated over the sample notch 139. The cutting cannula 152 may include marker bands 159 disposed along a length of the cutting cannula 152. The marker bands 159 can be equally spaced to indicate an insertion depth of the cutting cannula 152. For example, a distance between the marker bands 159 can be one centimeter. Other distances are contemplated. Further, the marker bands 159 may reflect ultrasound energy wherein a location of the cutting cannula 152 can be determined using ultrasound imaging techniques.
The finger grips 174 may be disposed at a distal end of the arming slide 170. The finger grips 174 can be grasped by fingers of the user to proximally displace the arming slide 170 when arming the biopsy device 100. The finger grips 174 may include grip-enhancing features, such as ribs, grooves, bumps, dimples, a textured surface, and a compliant surface. Other grip-enhancing features are contemplated. The arming slide 170 may be returned to a distal position by a distally directed force applied by the return spring 173. The return spring 173 can be co-axially disposed within the cutting cannula drive spring 153.
The adjustment wheel 182 may include grip-enhancing features to improve handling of the adjustment wheel 182 when an adjustment of a desired penetration depth is made. The grip-enhancing features may include ribs, grooves, bumps, dimples, a textured surface, and a compliant surface. Other grip-enhancing features are contemplated. The adjustment wheel 182 can be disposed through the wheel window 117 of the top shell 111 and a wheel window of the bottom shell wherein the adjustment wheel 182 can be rotated by the user. When the adjustment wheel 182 is rotated, the threaded stop 181 is axially translated to adjust a stop position of the hubs 131, 151 and the depth of needle penetration.
In use, the biopsy device 100 may be utilized to obtain a tissue sample, such as a soft tissue sample of a lesion located in the breast, liver, lung, kidney, spleen, prostate, or lymph nodes of a patient. The lesion can be a tumor or any other type of soft tissue malformation.
In some embodiments, the arming slide 170 may be gripped again by the user and translated proximally a second time. As the arming slide 170 is translated proximally a second time, the stylet hub 131 may be engaged by the arming slide 170 when the stylet hub catch is received within the angled slot. The stylet hub 131 can be translated proximally to a proximal position in an armed state wherein the stylet drive spring is compressed. Tactile and/or audible feedback may be provided to the user to indicate that the stylet hub 131 is in the armed state. The stylet hub 131 may be retained in the proximal position by engagement of the stationary shoulder and the trigger catch as previously described. Proximal displacement of the stylet hub 131 causes the proximal and distal stylet cannulae 132, 133 to be translated proximally. Further, when the stylet hub 131 is displaced proximally, the piston 136 may be translated proximally within the vacuum tube and the air within the vacuum tube can be expelled through the sample notch. In certain embodiments, a desired penetration depth can be set when the adjustment wheel 182 is rotated to adjust a position of the threaded stop 181 as indicated by the position of the indicium 184 in relation to the penetration depth indicia 116.
As illustrated in
As illustrated in
As illustrated in
In another embodiment, the second button 124 can be depressed to engage the actuator tab to disengage the first protrusion from the stationary shoulder. When disengaged, the stylet hub 131 may be driven distally by the stylet drive spring. Following distal displacement of the stylet hub 131, the first button 122 can be depressed to disengage the second protrusion from the stationary shoulder and allow the cutting cannula hub 151 to be driven distally by the cannula drive spring.
When the stylet hub 131 and/or the cutting cannula hub 151 are driven proximally and stopped by the threaded stop 183, a loud noise is created by the impact. The loud noise may be disturbing to the user and/or a patient. In some embodiments, the vacuum generated by the biopsy device 100 when the stylet hub 131 is driven distally can dampen the impact noise of the stylet hub 131 impacting the threaded stop 183.
Any methods disclosed herein comprise one or more steps or actions for performing the described method. The method steps and/or actions may be interchanged with one another. In other words, unless a specific order of steps or actions is required for proper operation of the embodiment, the order and/or use of specific steps and/or actions may be modified. For example, a method of obtaining a tissue sample may include one or more of the following steps: arming a tissue sampling device; inserting an inner cannula and an outer cannula into a patient and positioning the inner cannula and outer cannula adjacent a lesion; triggering displacement of the inner cannula from a position adjacent the lesion to a position within the lesion; generating a vacuum in a notch of the inner cannula; sucking a tissue sample into the notch; triggering displacement of the outer cannula from a position adjacent the lesion to a position within the lesion; and severing the tissue sample within the notch from the lesion. Other steps are also contemplated.
Embodiments may be understood by reference to the drawings, wherein like parts are designated by like numerals throughout. It will be readily understood by one of ordinary skill in the art having the benefit of this disclosure that the components of the embodiments, as generally described and illustrated in the figures herein, could be arranged and designed in a wide variety of different configurations. Thus, the following more detailed description of various embodiments, as represented in the figures, is not intended to limit the scope of the disclosure, but is merely representative of various embodiments. While the various aspects of the embodiments are presented in drawings, the drawings are not necessarily drawn to scale unless specifically indicated.
Reference throughout this specification to “an embodiment” or “the embodiment” means that a particular feature, structure, or characteristic described in connection with that embodiment is included in at least one embodiment. Thus, the quoted phrases, or variations thereof, as recited throughout this specification are not necessarily all referring to the same embodiment.
Similarly, in the above description of embodiments, various features are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure. This method of disclosure, however, is not to be interpreted as reflecting an intention that any claim requires more features than those expressly recited in that claim. Rather, as the following claims reflect, inventive aspects lie in a combination of fewer than all features of any single foregoing disclosed embodiment.
It will be appreciated that various features are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure. Many of these features may be used alone and/or in combination with one another.
The phrases “coupled to” and “in communication with” refer to any form of interaction between two or more entities, including mechanical, electrical, magnetic, electromagnetic, fluid, and thermal interaction. Two components may be coupled to or in communication with each other even though they are not in direct contact with each other. For example, two components may be coupled to or in communication with each other through an intermediate component.
The directional terms “distal” and “proximal” are given their ordinary meaning in the art. That is, the distal end of a medical device means the end of the device furthest from the practitioner during use. The proximal end refers to the opposite end, or the end nearest to the practitioner during use. As specifically applied to a biopsy device of this disclosure, the proximal end of the biopsy device refers to the end nearest to the handle and the distal end refers to the opposite end, the end nearest to the trocar tip.
References to approximations are made throughout this specification, such as by use of the term “substantially.” For each such reference, it is to be understood that, in some embodiments, the value, feature, or characteristic may be specified without approximation. For example, where qualifiers such as “about” and “substantially” are used, these terms include within their scope the qualified words in the absence of their qualifiers. For example, where the term “substantially perpendicular” is recited with respect to a feature, it is understood that in further embodiments, the feature can have a precisely perpendicular configuration.
The terms “a” and “an” can be described as one, but not limited to one. For example, although the disclosure may recite a housing having “a stopper,” the disclosure also contemplates that the housing can have two or more stoppers.
Unless otherwise stated, all ranges include both endpoints and all numbers between the endpoints.
Recitation in the claims of the term “first” with respect to a feature or element does not necessarily imply the existence of a second or additional such feature or element.
The claims following this written disclosure are hereby expressly incorporated into the present written disclosure, with each claim standing on its own as a separate embodiment. This disclosure includes all permutations of the independent claims with their dependent claims. Moreover, additional embodiments capable of derivation from the independent and dependent claims that follow are also expressly incorporated into the present written description.
Without further elaboration, it is believed that one skilled in the art can use the preceding description to utilize the invention to its fullest extent. The claims and embodiments disclosed herein are to be construed as merely illustrative and exemplary, and not a limitation of the scope of the present disclosure in any way. It will be apparent to those having ordinary skill in the art, with the aid of the present disclosure, that changes may be made to the details of the above-described embodiments without departing from the underlying principles of the disclosure herein. In other words, various modifications and improvements of the embodiments specifically disclosed in the description above are within the scope of the appended claims. Moreover, the order of the steps or actions of the methods disclosed herein may be changed by those skilled in the art without departing from the scope of the present disclosure. In other words, unless a specific order of steps or actions is required for proper operation of the embodiment, the order or use of specific steps or actions may be modified. The scope of the invention is therefore defined by the following claims and their equivalents.
This application claims priority to U.S. Provisional Application No. 63/139,180, filed on Jan. 19, 2021 and titled, “Vacuum-Assisted Soft Tissue Biopsy Device,” which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
63139180 | Jan 2021 | US |