The present disclosure relates to packing for placement over a chronic wound, and particularly to packing for use with a vacuum bandage coupled to a vacuum source.
Gauze or commercially available foam packing is typically used to pack a wound. One example is the ALLEVYN® Cavity Wound Dressing available from Smith & Nephew. This particular wound dressing is made of a polyurethane foam. Gauze is often used to absorb liquid and exudate present on the wound surface.
The present invention comprises one or more of the following features or combinations thereof:
The present invention comprises one or more of the following features or combinations thereof:
A bandage for use with a wound and a vacuum source is provided. The bandage comprises a wound dressing member having a wound contacting surface and a port configured for communication with the vacuum source. The member further includes holes formed in the wound contacting surface and configured for communication with a wound surface of the wound. The member includes a passageway between the port and each hole. The combination may further include a pack coupled to the top surface of the member. The pack may illustratively include an aperture positioned about the port of the member. A connecter of the member may be received within the aperture.
In illustrative embodiments, the pack further includes a bottom surface, a top surface, a side wall extending from the top surface to the bottom surface, and a slit in communication with the aperture. The slit is defined by first and second confronting interior surfaces which each extend from the top surface of the pack to the bottom surface and from the aperture to the side wall. The illustrative pack further includes an adhesive layer coupled to the bottom surface of the pack for coupling the pack to the top surface of the member. The pack may be made of either open-celled or closed-cell foam.
The member may be generally non-compressible and made of a medical grade silicone. The member may further include a connecter coupled to the top surface of the member. Such a connecter may be received within the aperture of the pack and configured for communication with the port of the member and the vacuum source.
Other features of the disclosure will become apparent to those skilled in the art upon consideration of the following detailed description of the preferred embodiments exemplifying the best mode of carrying out the disclosure as presently perceived.
The detailed description particularly refers to the accompanying figures in which:
A wound care bandage 10 is provided for use with a vacuum and irrigation source 12, 14, respectively, as shown in
Bandage 10 promotes the healing of a large wound 16 (shown in
Bandage 10 also includes a foam packing 30 above and adjacent member 19, as shown in
Member 19, of bandage 10, is made of a medical grade silicone or other type of elastomer which is pliable. Two companies, for example, which manufacture such medical grade silicone are GE Silicones and NuSil Technology. It is within the scope of this disclosure, however, to include a wound dressing member made of any type of thin, flexible material that is non-porous and non-foam-like. This thin, flexible material is also generally non-absorptive. For example, materials such as polyvinylchloride (PVC), PVC free of diethylhexylphthalate (DEHP-free PVC), polyurethane, or polyethylene may be used in the manufacture of member 19.
Further, member 19 may be molded to include anti-microbial constituents. For example, it is within the scope if this disclosure to impregnate member 19 with silver ions which are known anti-microbials. Member 19 is also made of a generally non-adhesive material. Therefore, member 19 does not adhere to the wound surface 18. Further, member 19 is solid in nature and generally non-compressible. For example, when a negative pressure is applied to member 19, a thickness 20 of member 19, as shown in
As shown in
Layer 22 includes a wound contacting surface 50 and an upper or opposite surface 52. Wound contacting surface 50, or portions thereof, contacts and generally conforms to the wound surface 18. Opposite surface 52 includes a central area 54 and a plurality of channels 56 which extend radially away from central area 54, as shown in
A plurality of radially extending protrusions or bosses 62 are positioned around central area 54. Bosses 62 are positioned between central area 54 and channels 56, 58, as shown in
Illustratively, four bosses 62 are shown in
Connecter 26, as shown in
In some embodiments, member 19 is made by heat sealing opposite surface 52 of layer 22 and bottom surface 68 of cover 24 together and by heat sealing connecter 26 to top surface 70 of cover 24. Each of connecter 26, cover 24 (or the combination of cover 24 and connecter 26), and layer 22 may be pre-shaped and formed from semi-cured silicone. Once the connecter 26, cover 24, and layer 22 are placed together appropriately, the entire member 19 may be heated to heat seal and cure each of the three components to one another. Alternatively, for example, the cover 24 only may be made from semi-cured silicone while the connecter 26 and layer 22 may be made from fully cured silicone. Once placed together and heated, connecter 26 and layer 22 will heat seal to cover 24. Semi-cured silicone may be bought and pre-molded from a manufacturer such as NuSil Technology, for example. Although the method of heat sealing the cover 24, connecter 26, and layer 22 to each other is disclosed, it is within the scope of this disclosure to form member 19 by coupling layer 22, cover 24, and connector 26 together by another suitable means such as through the use of adhesives, for example. Further, it is within the scope of this disclosure to provide a member 19 where cover 24 lies adjacent to, but is not coupled to, layer 22.
As mentioned above, cover 24 is coupled to layer 22 and connecter 26 is coupled to cover 24 to form member 19. Cover 24 and layer 22 cooperate to form distinct passageways 72 of member 19 (as shown in
Layer 22 includes through holes 74 which extend from channels 56, 58 through layer 22 to wound contacting surface 50, as shown in
Illustrative member 19 of bandage 10 includes a smooth wound contacting surface 50, as shown in
The vacuum or negative pressure which draws blood from the body to the wound surface 18 and draws exudate from the wound 16 up through member 19 promotes the healing of wound 16. As wound 16 heals, granulations form along the wound surface 18. Granulations, therefore, are the replacement within the wound bed of tissue lost. As the granulations fill in the wound bed causing the wound 16 to heal, member 19 rides up on the wound surface 18 on top of the granulations which are formed.
Although illustrative bandage 10 includes one central port 60, it is within the scope of this disclosure to include multiple ports. In order to accommodate different sized wounds 16, member 19 may be trimmed to fit a particular wound 16. Further, some embodiments of member 19 include scale markings. Scale markings indicate areas where a caregiver may trim member 19 to fit a particular wound 16. Further, the scale markings may denote measurement sizes, for example, to permit a caregiver to cut the member 19 to fit a pre-measured wound 16. In order to accommodate various types and placements of wounds on patients, it is within the scope of this disclosure to include a member or members in various conforming shapes and sizes suitable for treating chronic wounds on a patient's heel, abdomen, or sternum, for example.
A switch valve 76 is illustratively provided, as shown in
Vacuum/irrigation tube 34 extends over the edge of packing 30 and out from under the edge of the sealing film 40. In use, irrigation source 14 delivers liquid through tube 34 and port 60 of cover 24 and into passageways 72 of member 19. The fluid moves radially out through passageways 72 to holes 74. The fluid then moves down through holes 74 to impinge on wound surface 18.
As described above, bandage 10 includes foam packing 30. Foam packing includes a top surface 80 and a bottom surface 82. Illustratively, foam packing 30 is rectangular and sized to match member 19. An adhesive 84 may be attached to bottom surface 82, as shown in
As mentioned above, packing 30 includes aperture 32 which extends from top surface 80 to bottom surface 82. Illustratively, aperture 30 is centrally located to receive connecter 26 which is centrally located on cover 24 of member 19. It is within the scope of this disclosure for packing 30 to have an aperture which is not centrally located provided that the aperture cooperates with either a connecter of member 19 or with a port of the cover of member 19. As shown in
As shown in
In an alternative embodiment shown in
It is within the scope of this disclosure for foam packing 30 to be perforated to facilitate customizing the size of the foam to the wound cavity without using scissors. Further, foam packing 30 includes open-cell or closed-cell types of foam. For example, it is within the scope of this disclosure to include foam packing 30 made of hydrophobic or hydrophilic polyurethane foam or polyvinylalcohol foam.
As mentioned above, bandage 10 includes sealing layer or film 40 that is placed over packing 30 and around tube 34, as shown in
Although this invention has been described in detail with reference to certain embodiments variations and modifications exist within the scope and spirit of the invention as described and defined in the following claims.
This application is a Continuation of U.S. patent application Ser. No. 13/709,161 filed Dec. 10, 2012, which is a Continuation of U.S. patent application Ser. No. 12/328,531 filed Dec. 4, 2008, now U.S. Pat. No. 8,350,116, issued Jan. 8, 2013, which is a Continuation of U.S. patent application Ser. No. 10/495,908 filed May 19, 2004, now U.S. Pat. No. 7,534,927, issued May 19, 2009, which is a U.S. national counterpart application of International Application Serial No. PCT/US02/041229 filed Dec. 20, 2002, which claims the benefit of U.S. Provisional Application Ser. No. 60/344,589 filed Dec. 26, 2001, the disclosures of each of which are expressly incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
1355846 | Rannells | Oct 1920 | A |
2547758 | Keeling | Apr 1951 | A |
2632443 | Lesher | Mar 1953 | A |
2682873 | Evans et al. | Jul 1954 | A |
2910763 | Lauterbach | Nov 1959 | A |
2969057 | Simmons | Jan 1961 | A |
3066672 | Crosby, Jr. et al. | Dec 1962 | A |
3367332 | Groves | Feb 1968 | A |
3520300 | Flower Jr. | Jul 1970 | A |
3568675 | Harvey | Mar 1971 | A |
3648692 | Wheeler | Mar 1972 | A |
3682180 | McFarlane | Aug 1972 | A |
3826254 | Mellor | Jul 1974 | A |
4080970 | Miller | Mar 1978 | A |
4096853 | Weigand | Jun 1978 | A |
4139004 | Gonzalez, Jr. | Feb 1979 | A |
4165748 | Johnson | Aug 1979 | A |
4184510 | Murry et al. | Jan 1980 | A |
4233969 | Lock et al. | Nov 1980 | A |
4245630 | Lloyd et al. | Jan 1981 | A |
4256109 | Nichols | Mar 1981 | A |
4261363 | Russo | Apr 1981 | A |
4275721 | Olson | Jun 1981 | A |
4284079 | Adair | Aug 1981 | A |
4297995 | Golub | Nov 1981 | A |
4333468 | Geist | Jun 1982 | A |
4373519 | Errede et al. | Feb 1983 | A |
4382441 | Svedman | May 1983 | A |
4392853 | Muto | Jul 1983 | A |
4392858 | George et al. | Jul 1983 | A |
4419097 | Rowland | Dec 1983 | A |
4465485 | Kashmer et al. | Aug 1984 | A |
4475909 | Eisenberg | Oct 1984 | A |
4480638 | Schmid | Nov 1984 | A |
4525166 | Leclerc | Jun 1985 | A |
4525374 | Vaillancourt | Jun 1985 | A |
4540412 | Van Overloop | Sep 1985 | A |
4543100 | Brodsky | Sep 1985 | A |
4548202 | Duncan | Oct 1985 | A |
4551139 | Plaas et al. | Nov 1985 | A |
4569348 | Hasslinger | Feb 1986 | A |
4605399 | Weston et al. | Aug 1986 | A |
4608041 | Nielsen | Aug 1986 | A |
4640688 | Hauser | Feb 1987 | A |
4655754 | Richmond et al. | Apr 1987 | A |
4664662 | Webster | May 1987 | A |
4710165 | McNeil et al. | Dec 1987 | A |
4733659 | Edenbaum et al. | Mar 1988 | A |
4743232 | Kruger | May 1988 | A |
4758220 | Sundblom et al. | Jul 1988 | A |
4787888 | Fox | Nov 1988 | A |
4826494 | Richmond et al. | May 1989 | A |
4838883 | Matsuura | Jun 1989 | A |
4840187 | Brazier | Jun 1989 | A |
4863449 | Therriault et al. | Sep 1989 | A |
4867150 | Gilbert | Sep 1989 | A |
4872450 | Austad | Oct 1989 | A |
4878901 | Sachse | Nov 1989 | A |
4897081 | Poirier et al. | Jan 1990 | A |
4906233 | Moriuchi et al. | Mar 1990 | A |
4906240 | Reed et al. | Mar 1990 | A |
4915694 | Yamamoto | Apr 1990 | A |
4917112 | Kalt | Apr 1990 | A |
4919654 | Kalt et al. | Apr 1990 | A |
4941882 | Ward et al. | Jul 1990 | A |
4953565 | Tachibana et al. | Sep 1990 | A |
4969880 | Zamierowski | Nov 1990 | A |
4985019 | Michelson | Jan 1991 | A |
5037397 | Kalt et al. | Aug 1991 | A |
5086170 | Luheshi et al. | Feb 1992 | A |
5092858 | Benson et al. | Mar 1992 | A |
5100396 | Zamierowski | Mar 1992 | A |
5134994 | Say | Aug 1992 | A |
5149331 | Ferdman et al. | Sep 1992 | A |
5167613 | Karami et al. | Dec 1992 | A |
5176663 | Svedman et al. | Jan 1993 | A |
5215522 | Page et al. | Jun 1993 | A |
5232453 | Plass et al. | Aug 1993 | A |
5261893 | Zamierowski | Nov 1993 | A |
5278100 | Doan et al. | Jan 1994 | A |
5279550 | Habib et al. | Jan 1994 | A |
5298015 | Komatsuzaki et al. | Mar 1994 | A |
5342376 | Ruff | Aug 1994 | A |
5344415 | DeBusk et al. | Sep 1994 | A |
5358494 | Svedman | Oct 1994 | A |
5437622 | Carion | Aug 1995 | A |
5437651 | Todd et al. | Aug 1995 | A |
5447492 | Cartmell | Sep 1995 | A |
5527293 | Zamierowski | Jun 1996 | A |
5549584 | Gross | Aug 1996 | A |
5556375 | Ewall | Sep 1996 | A |
5607388 | Ewall | Mar 1997 | A |
5636643 | Argenta et al. | Jun 1997 | A |
5645081 | Argenta et al. | Jul 1997 | A |
6033390 | von Dyck | Mar 2000 | A |
6071267 | Zamierowski | Jun 2000 | A |
6135116 | Vogel et al. | Oct 2000 | A |
6241747 | Ruff | Jun 2001 | B1 |
6287316 | Agarwal et al. | Sep 2001 | B1 |
6345623 | Heaton | Feb 2002 | B1 |
6488643 | Tumey et al. | Dec 2002 | B1 |
6493568 | Bell et al. | Dec 2002 | B1 |
6553998 | Heaton et al. | Apr 2003 | B2 |
6814079 | Heaton et al. | Nov 2004 | B2 |
8350116 | Lockwood | Jan 2013 | B2 |
8884094 | Lockwood | Nov 2014 | B2 |
20020065494 | Lockwood | May 2002 | A1 |
20020077661 | Saadat | Jun 2002 | A1 |
20020115951 | Norstrem et al. | Aug 2002 | A1 |
20020120185 | Johnson | Aug 2002 | A1 |
20020143286 | Tumey | Oct 2002 | A1 |
20060079852 | Bubb et al. | Apr 2006 | A1 |
Number | Date | Country |
---|---|---|
550575 | Mar 1986 | AU |
745271 | Apr 1999 | AU |
755496 | Feb 2002 | AU |
2005436 | Jun 1990 | CA |
26 40 413 | Mar 1978 | DE |
43 06 478 | Sep 1994 | DE |
295 04 378 | Oct 1995 | DE |
0100148 | Feb 1984 | EP |
0117632 | Sep 1984 | EP |
0161865 | Nov 1985 | EP |
0358302 | Mar 1990 | EP |
1018967 | Aug 2004 | EP |
692578 | Jun 1953 | GB |
2 195 255 | Apr 1988 | GB |
2 197 789 | Jun 1988 | GB |
2 220 357 | Jan 1990 | GB |
2 235 877 | Mar 1991 | GB |
2 329 127 | Mar 1999 | GB |
2 333 965 | Aug 1999 | GB |
4129536 | Apr 1992 | JP |
71559 | Mar 1999 | SG |
8002182 | Oct 1980 | WO |
8704626 | Aug 1987 | WO |
9010424 | Sep 1990 | WO |
9309727 | May 1993 | WO |
9420041 | Sep 1994 | WO |
9605873 | Feb 1996 | WO |
9718007 | May 1997 | WO |
9913793 | Mar 1999 | WO |
Entry |
---|
N.A. Bagautdinov, “Variant of External Vacuum Aspiration in the Treatment of Purulent Diseases of the Soft Tissues,” Current Problems in Modern Clinical Surgery: Interdepartmental Collection, edited by V. Ye Volkov et al. (Chuvashia State University, Cheboksary, U.S.S.R. 1986);pp. 94-96 (certified translation). |
Louis C. Argenta, MD and Michael J. Morykwas, PhD; “Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Animal Studies & Basic Foundation”; Annals of Plastic Surgery, vol. 38, No. 6, Jun. 1997; pp. 553-562. |
Susan Mendez-Eastmen, RN; “When Wounds Won't Heal” RN Jan. 1998, vol. 61 (1); Medical Economics Company, Inc., Montvale, NJ, USA; pp. 20-24. |
James H. Blackburn, II, MD, et al; “Negative-Pressure Dressings as a Bolster for Skin Grafts”; Annals of Plastic Surgery, vol. 40, No. 5, May 1998, pp. 453-457. |
John Masters; “Reliable, Inexpensive and Simple Suction Dressings”; Letters to the Editor, British Journal of Plastic Surgery, 1998, vol. 51 (3), p. 267; Elsevier Science/The British Association of Plastic Surgeons, UK. |
S.E. Greer, et al “The Use of Subatmospheric Pressure Dressing Therapy to Close Lymphocutaneous Fistulas of the Groin” British Journal of Plastic Surgery (2000), vol. 53, pp. 484-487. |
George V. Letsou, MD., et al; “Stimulation of Adenylate Cyclase Activity in Cultured Endothelial Cells Subjected to Cyclic Stretch”; Journal of Cardiovascular Surgery, vol. 31, 1990, pp. 634-639. |
Orringer, Jay, et al; “Management of Wounds in Patients with Complex Enterocutaneous Fistulas”; Surgery, Gynecology & Obstetrics, Jul. 1987, vol. 165, pp. 79-80. |
International Search Report for PCT International Application PCT/GB95/01983; dated Nov. 23, 1995. |
PCT International Search Report for PCT International Application PCT/GB98/02713; dated Jan. 8, 1999. |
PCT Written Opinion; PCT International Application PCT/GB98/02713; dated Jun. 8, 1999. |
PCT International Examination and Search Report, PCT International Application PCT/GB96/02802; dated Jan. 15, 1998 & Apr. 29, 1997. |
PCT Written Opinion, PCT International Application PCT/GB96/02802; dated Sep. 3, 1997. |
Dattilo, Philip P., Jr., et al; “Medical Textiles: Application of an Absorbable Barbed Bi-directional Surgical Suture”; Journal of Textile and Apparel, Technology and Management, vol. 2, Issue 2, Spring 2002, pp. 1-5. |
Kostyuchenok, B.M., et al; “Vacuum Treatment in the Surgical Management of Purulent Wounds”; Vestnik Khirurgi, Sep. 1986, pp. 18-21 and 6 page English translation thereof. |
Davydov, Yu. A., et al; “Vacuum Therapy in the Treatment of Purulent Lactation Mastitis”; Vestnik Khirurgi, May 14, 1986, pp. 66-70, and 9 page English translation thereof. |
Yusupov. Yu. N., et al; “Active Wound Drainage”, Vestnik Khirurgi, vol. 138, Issue 4, 1987, and 7 page English translation thereof. |
Davydov, Yu. A., et al; “Bacteriological and Cytological Assessment of Vacuum Therapy for Purulent Wounds”; Vestnik Khirurgi, Oct. 1988, pp. 48-52, and 8 page English translation thereof. |
Davydov, Yu. A., et al; “Concepts for the Clinical-Biological Management of the Wound Process in the Treatment of Purulent Wounds by Means of Vacuum Therapy”; Vestnik Khirurgi, Jul. 7, 1980, pp. 132-136, and 8 page English translation thereof. |
Chariker, Mark E., M.D., et al; “Effective Management of incisional and cutaneous fistulae with closed suction wound drainage”; Contemporary Surgery, vol. 34, Jun. 1989, pp. 59-63. |
Egnell Minor, Instruction Book, First Edition, 300 7502, Feb. 1975, pp. 24. |
Egnell Minor: Addition to the Users Manual Concerning Overflow Protection—Concerns all Egnell Pumps, Feb. 3, 1983, p. 1. |
Svedman, P.: “Irrigation Treatment of Leg Ulcers”, The Lancet, Sep. 3, 1983, pp. 532-534. |
Chinn, Steven D. et al.: “Closed Wound Suction Drainage”, The Journal of Foot Surgery, vol. 24, No. 1, 1985, pp. 76-81. |
Arnljots, Björn et al.: “Irrigation Treatment in Split-Thickness Skin Grafting of Intractable Leg Ulcers”, Scand J. Plast Reconstr. Surg., vol. 19, 1985, pp. 211-213. |
Svedman, P.: “A Dressing Allowing Continuous Treatment of a Biosurface”, IRCS Medical Science: Biomedical Technology, Clinical Medicine, Surgery and Transplantation, vol. 7, 1979, p. 221. |
Svedman, P. et al.: “A Dressing System Providing Fluid Supply and Suction Drainage Used for Continuous or Intermittent Irrigation”, Annals of Plastic Surgery, vol. 17, No. 2, Aug. 1986, pp. 125-133. |
K.F. Jeter, T.E. Tintle, and M. Chariker, “Managing Draining Wounds and Fistulae: New and Established Methods,” Chronic Wound Care, edited by D. Krasner (Health Management Publications, Inc., King of Prussia, PA 1990), pp. 240-246. |
G. {hacek over (Z)}ivadinovic, V. ukić, {hacek over (Z)}. Maksimović, . Radak, and P. Pe{hacek over (e)}ka, “Vacuum Therapy in the Treatment of Peripheral Blood Vessels,” Timok Medical Journal 11 (1986), pp. 161-164 (certified translation). |
F.E. Johnson, “An Improved Technique for Skin Graft Placement Using a Suction Drain,” Surgery, Gynecology, and Obstetrics 159 (1984), pp. 584-585. |
A.A. Safronov, Dissertation Abstract, Vacuum Therapy of Trophic Ulcers of the Lower Leg with Simultaneous Autoplasty of the Skin (Central Scientific Research Institute of Traumatology and Orthopedics, Moscow, U.S.S.R. 1967) (certified translation). |
M. Schein, R. Saadia, J.R. Jamieson, and G.A.G. Decker, “The ‘Sandwich Technique’ in the Management of the Open Abdomen,” British Journal of Surgery 73 (1986), pp. 369-370. |
D.E. Tribble, “An Improved Sump Drain-Irrigation Device of Simple Construction,” Archives of Surgery 105 (1972) pp. 511-513. |
C.E. Tennant, “The Use of Hypermia in the Postoperative Treatment of Lesions of the Extremities and Thorax,” Journal of the American Medical Association 64 (1915), pp. 1548-1549. |
Selections from W. Meyer and V. Schmieden, Bier's Hyperemic Treatment in Surgery, Medicine, and the Specialties: A Manual of Its Practical Application, (W.B. Saunders Co., Philadelphia, PA 1909), pp. 17-25, 44-64, 90-96, 167-170, and 210-211. |
V.A. Solovev et al., Guidelines, The Method of Treatment of Immature External Fistulas in the Upper Gastrointestinal Tract, editor-in-chief Prov. V.I. Parahonyak (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1987) (“Solovev Guidelines”). |
V.A. Kuznetsov & N.A. Bagautdinov, “Vacuum and Vacuum-Sorption Treatment of Open Septic Wounds,” in II All-Union Conference on Wounds and Wound Infections: Presentation Abstracts, edited by B.M. Kostyuchenok et al. (Moscow, U.S.S.R. Oct. 28-29, 1986) pp. 91-92 (“Bagautdinov II”). |
V.A. Solovev, Dissertation Abstract, Treatment and Prevention of Suture Failures after Gastric Resection (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1988) (“Solovev Abstract”). |
V.A.C.® Therapy Clinical Guidelines: A Reference Source for Clinicians (Jul. 2007). |
Number | Date | Country | |
---|---|---|---|
20140350495 A1 | Nov 2014 | US |
Number | Date | Country | |
---|---|---|---|
60344589 | Dec 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13709161 | Dec 2012 | US |
Child | 14292272 | US | |
Parent | 12328531 | Dec 2008 | US |
Child | 13709161 | US | |
Parent | 10495908 | US | |
Child | 12328531 | US |