1. Technical Field
This invention generally relates to a vacuum canister for a central vacuum system. More particularly, the invention relates to a vacuum canister that includes an auxiliary vacuum intake assembly that is mounted in the clean air chamber of the vacuum canister. Specifically, the invention relates to a vacuum canister that has an automatic electronic auxiliary vacuum intake assembly mounted in the clean air chamber of the vacuum canister.
2. Background Information
Central vacuum cleaner systems are common in newer homes and other buildings. These systems provide a convenient and easy way for periodically vacuuming the floors or rugs in the various rooms of a building and they eliminate the need for moving cumbersome hand-held units from room-to room.
Central vacuum systems typically include a vacuum canister, a light, portable hose, a range of vacuum cleaner attachments, a network of conduits installed in the walls and floors of the building and a number of wall-mounted receptacles. The vacuum canister is usually positioned in an out-of-the-way location in the building, such as the basement, utility room or garage.
Vacuum canisters include an electric vacuum pump assembly that is used to create the suction to draw dust-laden air through the portable vacuum hose and the rest of the central vacuum system. Canisters also include a motor for driving the pump, a filter for collecting dust entrained in the airstream, a device for collecting the entrained dust and a mechanism for circulating cleaned air back into the building.
The portable hose used with these types of systems is typically a flexible hose that includes an elongated rigid tube at one end and an end fitting at the other end. Various cleaning attachments are connectable to the elongated rigid tube and the end fitting is connectable to the conduit system through the wall receptacles.
The wall receptacles include an intake valve covered by an airtight flap or pivotable valve plate to prevent air from being unintentionally drawn into the conduit system. This maintains the vacuum state within the central vacuum system. Air enters the system only through the wall receptacle to which the portable hose is attached. The vacuum pump assembly motor is automatically turned when the portable hose is attached to the wall receptacle. This is accomplished through the provision of an electrical connection between the wall receptacle and the motor in the vacuum canister. A shorted two-prong connector is mounted to the end fitting of the portable vacuum hose that connects to the receptacle. A mating connector is built into the receptacle. The electric motor is automatically turned on when the connectors are mated during insertion of the end fitting into the receptacle. The motor is automatically turned off when the end fitting is removed from the receptacle.
It is reasonably expensive to provide the conduits and automatically activated wall receptacles for central vacuum systems. It has therefore been fairly common practice to not provide an automatically activated wall receptacle for the room in which the vacuum canister is located. As an alternative, vacuum canister manufacturers have provided an auxiliary vacuum intake assembly located on the canister itself. The auxiliary vacuum intake assembly is positioned on the canister so that it feeds directly into the area of the canister that filters the vacuumed air. The user simply attaches the portable hose to the auxiliary vacuum intake assembly. These auxiliary vacuum intake assemblies may not include automatic starting of the vacuum pump when the hose is inserted into the vacuum opening of the receptacle. The user therefor has to manually activate the main on/off switch for the vacuum canister in order to start the motor and vacuum pump. Some central vacuum canisters, however, are provided with automatic starting and stopping of the vacuum pump. In these instances, the auxiliary vacuum intake assembly and the motor have to be wired together. It has been common practice to feed the wires from the auxiliary vacuum intake assembly, through the dust catchment area to the motor. The problem with this is that the dust and debris traveling through the dust catchment area tend to damage the wiring. In order to overcome this problem, some have installed the wiring from the assembly to the motor by positioning the wires on the outside surface of the vacuum canister. External wiring is, however, both unsightly and potentially dangerous and the wiring may easily become dislodged.
There is therefore a need in the art for providing a mechanism for providing a convenient, cost effective, vacuum canister with an electronic auxiliary vacuum intake assembly therein.
The preferred embodiments of the invention, illustrative of the best mode in which applicant has contemplated applying the principles, are set forth in the following description and are shown in the drawings and are particularly and distinctly pointed out and set forth in the appended claims.
Similar numerals refer to similar parts throughout the drawings.
Referring to
Referring to
In accordance with the present invention, a wall 56 is provided that separates housing 32 into clean and dirt collection chambers 54a, 54b, and that supports a vacuum pump assembly 58, filter support 74 and a filter 72. Wall 56 is preferably a single, integral structure that is molded from plastic or some other suitable material. Wall 56 may, however, be made as more than one component without departing from the scope of this invention. Wall 56 has an upper surface 56a and a lower surface 56b, it is preferably circular in shape and defines both a central bore 68 and an aperture 70. Both bore 68 and aperture 70 connect clean chamber 54a to dirt collection chamber 54b. Wall 56 is of a slightly smaller diameter than the internal diameter of housing 32. An inwardly disposed, annular ledge 60 is provided in housing 32 for supporting wall 56. An annular lip 62 is formed on lower surface 56b of wall 56, and annular lip 62 is adapted to rest on annular ledge 60 when wall 56 is positioned inside housing 32. Upper surface 56a of wall 56 is adapted to support a vacuum pump assembly 58 that includes an AC (alternating current) motor 64 for driving a vacuum pump 66. Clean chamber 54a is a dust-free zone while dirt collection chamber 54b is a dust-laden zone. Vacuum pump 66 and motor 64 are mounted on wall 56 in such a manner that they lie entirely or mainly in the dust-free zone of clean chamber 54a. This aids in preventing the dust in the vacuum system 10 from damaging vacuum pump assembly 58. A filter 72 is attached to a filter support 74 that extends from wall 56 and into dirt collection chamber 54b. Dust-laden air from house 12 is suctioned into dirt collection chamber 54b through suction intake pipe 48, swirls around filter 72, is sucked through filter 72 and into the air stream that travels upwardly through bore 68 and into clean chamber 54a. Cleaned air from clean chamber 54a is exhausted into house 12 through exhaust pipe 50.
As is more clearly shown in
A sheathed electrical cable 96 includes an outer sheath 98 in which a pair of electrical conductors (not shown) is disposed, one end of cable 96 being connected to an electrical switch 100 of receptacle 84 and an opposite end being connected to a main control circuit board 102 (
The vacuum canister 16 having auxiliary vacuum intake assembly 30 functions in the following manner:
Valve member 94 is pivoted into the open position. This activates switch 100 thereby starting motor 64 and vacuum pump 66. Hose-end fitting 106 of a portable hose 91 is inserted into vacuum opening 92. Air is sucked through the portable hose into vacuum opening 92, down ninety-degree elbow 82, through forty-five degree elbow 80, down short straight tube 78 in hole 46c and into dirt collection chamber 54b. The air is sucked through filter 72, upwardly through bore 68 and into clean chamber 54a. The cleaned air is then exhausted into house 12 through exhaust pipe 50.
In the foregoing description, certain terms have been used for brevity, clearness, and understanding. No unnecessary limitations are to be implied therefrom beyond the requirement of the prior art because such terms are used for descriptive purposes and are intended to be broadly construed.
Moreover, the description and illustration of the invention are an example and the invention is not limited to the exact details shown or described.
Number | Name | Date | Kind |
---|---|---|---|
3283093 | Bishop | Nov 1966 | A |
3543325 | Hamrick | Dec 1970 | A |
4654926 | McCambridge | Apr 1987 | A |
4735579 | Muser | Apr 1988 | A |
Number | Date | Country | |
---|---|---|---|
20040177468 A1 | Sep 2004 | US |