The invention relates generally to the field of plasma physics, and, in particular, to methods and apparati for confining plasma to enable nuclear fusion and for converting energy from fusion products into electricity.
Fusion is the process by which two light nuclei combine to form a heavier one. The fusion process releases a tremendous amount of energy in the form of fast moving particles. Because atomic nuclei are positively charged—due to the protons contained therein—there is a repulsive electrostatic, or Coulomb, force between them. For two nuclei to fuse, this repulsive barrier must be overcome, which occurs when two nuclei are brought close enough together where the short-range nuclear forces become strong enough to overcome the Coulomb force and fuse the nuclei. The energy necessary for the nuclei to overcome the Coulomb barrier is provided by their thermal energies, which must be very high. For example, the fusion rate can be appreciable if the temperature is at least of the order of 104 eV—corresponding roughly to 100 million degrees Kelvin. The rate of a fusion reaction is a function of the temperature, and it is characterized by a quantity called reactivity. The reactivity of a D−T reaction, for example, has a broad peak between 30 keV and 100 keV.
Typical fusion reactions include:
D+D→He3(0.8 MeV)+n(2.5 MeV),
D+T→α(3.6 MeV)+n(14.1 MeV),
D+He3→α(3.7 MeV)+p(14.7 MeV), and
p+B11→3α(8.7 MeV),
where D indicates deuterium, T indicates tritium, α indicates a helium nucleus, n indicates a neutron, p indicates a proton, He indicates helium, and B11 indicates Boron-11. The numbers in parentheses in each equation indicate the kinetic energy of the fusion products.
The first two reactions listed above—the D−D and D−T reactions—are neutronic, which means that most of the energy of their fusion products is carried by fast neutrons. The disadvantages of neutronic reactions are that (1) the flux of fast neutrons creates many problems, including structural damage of the reactor walls and high levels of radioactivity for most construction materials; and (2) the energy of fast neutrons is collected by converting their thermal energy to electric energy, which is very inefficient (less than 30%). The advantages of neutronic reactions are that (1) their reactivity peaks are at a relatively low temperature; and (2) their losses due to radiation are relatively low because the atomic numbers of deuterium and tritium are 1.
The reactants in the other two equations—D−He3 and p−B11—are called advanced fuels. Instead of producing fast neutrons, as in the neutronic reactions, their fusion products are charged particles. One advantage of the advanced fuels is that they create much fewer neutrons and therefore suffer less from the disadvantages associated with them. In the case of D−He3, some fast neutrons are produced by secondary reactions, but these neutrons account for only about 10 per cent of the energy of the fusion products. The p−B11 reaction is free of fast neutrons, although it does produce some slow neutrons that result from secondary reactions but create much fewer problems. Another advantage of the advanced fuels is that their fusion products comprise charged particles whose kinetic energy may be directly convertible to electricity. With an appropriate direct energy conversion process, the energy of advanced fuel fusion products may be collected with a high efficiency, possibly in excess of 90 percent.
The advanced fuels have disadvantages, too. For example, the atomic numbers of the advanced fuels are higher (2 for He3 and 5 for B11). Therefore, their radiation losses are greater than in the neutronic reactions. Also, it is much more difficult to cause the advanced fuels to fuse. Their peak reactivities occur at much higher temperatures and do not reach as high as the reactivity for D−T. Causing a fusion reaction with the advanced fuels thus requires that they be brought to a higher energy state where their reactivity is significant. Accordingly, the advanced fuels must be contained for a longer time period wherein they can be brought to appropriate fusion conditions.
The containment time for a plasma is Δt=r2/D, where r is a minimum plasma dimension and D is a diffusion coefficient. The classical value of the diffusion coefficient is Dc=ai2/τie, where ai is the ion gyroradius and τie is the ion-electron collision time. Diffusion according to the classical diffusion coefficient is called classical transport. The Bohm diffusion coefficient, attributed to short-wavelength instabilities, is DB=(1/16)ai2Ωi, where Ωi is the ion gyrofrequency. Diffusion according to this relationship is called anomalous transport. For fusion conditions, DB/Dc=(1/16)Ωiτie≅108, anomalous transport results in a much shorter containment time than does classical transport. This relation determines how large a plasma must be in a fusion reactor, by the requirement that the containment time for a given amount of plasma must be longer than the time for the plasma to have a nuclear fusion reaction. Therefore, classical transport condition is more desirable in a fusion reactor, allowing for smaller initial plasmas.
In early experiments with toroidal confinement of plasma, a containment time of Δt≅r2/DB was observed. Progress in the last 40 years has increased the containment time to Δt≅1000 r2/DB. One existing fusion reactor concept is the Tokamak. For the past 30 years, fusion efforts have been focussed on the Tokamak reactor using a D−T fuel. These efforts have culminated in the International Thermonuclear Experimental Reactor (ITER). Recent experiments with Tokamaks suggest that classical transport, Δt≅r2/Dc, is possible, in which case the minimum plasma dimension can be reduced from meters to centimeters. These experiments involved the injection of energetic beams (50 to 100 keV), to heat the plasma to temperatures of 10 to 30 keV. See W. Heidbrink & G. J. Sadler, 34 Nuclear Fusion 535 (1994). The energetic beam ions in these experiments were observed to slow down and diffuse classically while the thermal plasma continued to diffuse anomalously fast. The reason for this is that the energetic beam ions have a large gyroradius and, as such, are insensitive to fluctuations with wavelengths shorter than the ion gyroradius (λ<ai). The short-wavelength fluctuations tend to average over a cycle and thus cancel. Electrons, however, have a much smaller gyroradius, so they respond to the fluctuations and transport anomalously.
Because of anomalous transport, the minimum dimension of the plasma must be at least 2.8 meters. Due to this dimension, the ITER was created 30 meters high and 30 meters in diameter. This is the smallest D−T Tokamak-type reactor that is feasible. For advanced fuels, such as D−He3 and p−B11, the Tokamak-type reactor would have to be much larger because the time for a fuel ion to have a nuclear reaction is much longer. A Tokamak reactor using D−T fuel has the additional problem that most of the energy of the fusion products energy is carried by 14 MeV neutrons, which cause radiation damage and induce reactivity in almost all construction materials due to the neutron flux. In addition, the conversion of their energy into electricity must be by a thermal process, which is not more than 30% efficient.
Another proposed reactor configuration is a colliding beam reactor. In a colliding beam reactor, a background plasma is bombarded by beams of ions. The beams comprise ions with an energy that is much larger than the thermal plasma. Producing useful fusion reactions in this type of reactor has been infeasible because the background plasma slows down the ion beams. Various proposals have been made to reduce this problem and maximize the number of nuclear reactions.
For example, U.S. Pat. No. 4,065,351 to Jassby et al. discloses a method of producing counterstreaming colliding beams of deuterons and tritons in a toroidal confinement system. In U.S. Pat. No. 4,057,462 to Jassby et al., electromagnetic energy is injected to counteract the effects of bulk equilibrium plasma drag on one of the ion species. The toroidal confinement system is identified as a Tokamak. In U.S. Pat. No. 4,894,199 to Rostoker, beams of deuterium and tritium are injected and trapped with the same average velocity in a Tokamak, mirror, or field reversed configuration. There is a low density cool background plasma for the sole purpose of trapping the beams. The beams react because they have a high temperature, and slowing down is mainly caused by electrons that accompany the injected ions. The electrons are heated by the ions in which case the slowing down is minimal.
In none of these devices, however, does an equilibrium electric field play any part. Further, there is no attempt to reduce, or even consider, anomalous transport.
Other patents consider electrostatic confinement of ions and, in some cases, magnetic confinement of electrons. These include U.S. Pat. No. 3,258,402 to Farnsworth and U.S. Pat. No. 3,386,883 to Farnsworth, which disclose electrostatic confinement of ions and inertial confinement of electrons; U.S. Pat. No. 3,530,036 to Hirsch et al. and U.S. Pat. No. 3,530,497 to Hirsch et al. are similar to Farnsworth; U.S. Pat. No. 4,233,537 to Limpaecher, which discloses electrostatic confinement of ions and magnetic confinement of electrons with multi-pole cusp reflecting walls; and U.S. Pat. No. 4,826,646 to Bussard, which is similar to Limpaecher and involves point cusps. None of these patents consider electrostatic confinement of electrons and magnetic confinement of ions. Although there have been many research projects on electrostatic confinement of ions, none of them have succeeded in establishing the required electrostatic fields when the ions have the required density for a fusion reactor. Lastly, none of the patents cited above discuss a field reversed configuration magnetic topology.
The field reversed configuration (FRC) was discovered accidentally around 1960 at the Naval Research Laboratory during theta pinch experiments. A typical FRC topology, wherein the internal magnetic field reverses direction, is illustrated in
Thus, it is desirable to provide a fusion system having a containment system that tends to substantially reduce or eliminate anomalous transport of ions and electrons and an energy conversion system that converts the energy of fusion products to electricity with high efficiency.
The present invention is directed to a system that facilitates controlled fusion in a magnetic field having a field-reversed topology and the direct conversion of fusion product energies to electric power. The system, referred to herein as a plasma-electric power generation (PEG) system, preferably includes a fusion reactor having a containment system that tends to substantially reduce or eliminate anomalous transport of ions and electrons. In addition, the PEG system includes an energy conversion system coupled to the reactor that directly converts fusion product energies to electricity with high efficiency.
In one embodiment, anomalous transport for both ions and electrons tends to be substantially reduced or eliminated. The anomalous transport of ions tends to be avoided by magnetically confining the ions in a magnetic field of field reversed configuration (FRC). For electrons, the anomalous transport of energy is avoided by tuning an externally applied magnetic field to develop a strong electric field, which confines the electrons electrostatically in a deep potential well. As a result, fusion fuel plasmas that can be used with the present confinement apparatus and process are not limited to neutronic fuels, but also advantageously include advanced or aneutronic fuels. For aneutronic fuels, fusion reaction energy is almost entirely in the form of charged particles, i.e., energetic ions, that can be manipulated in a magnetic field and, depending on the fuel, cause little or no radioactivity.
In a preferred embodiment, a fusion reactor's plasma containment system comprises a chamber, a magnetic field generator for applying a magnetic field in a direction substantially along a principle axis, and an annular plasma layer that comprises a circulating beam of ions. Ions of the annular plasma beam layer are substantially contained within the chamber magnetically in orbits and the electrons are substantially contained in an electrostatic energy well. In one preferred embodiment the magnetic field generator includes a current coil. Preferably, the magnetic field generator further comprises mirror coils near the ends of the chamber that increase the magnitude of the applied magnetic field at the ends of the chamber. The system also comprises one or more beam injectors for injecting neutralized ion beams into the magnetic field, wherein the beam enters an orbit due to the force caused by the magnetic field. In a preferred embodiment, the system forms a magnetic field having a topology of a field reversed configuration.
In another preferred embodiment, an alternative chamber is provided that prevents the formation of azimuthal image currents in a central region of the chamber wall and enables magnetic flux to penetrate the chamber on a fast timescale. The chamber, which is primarily comprised of stainless steel to provide structural strength and good vacuum properties, includes axial insulating breaks in the chamber wall that run along almost the entire length of the chamber. Preferably, there are three breaks that are about 120 degrees apart from each other. The breaks include a slot or gap formed in the wall. An insert comprising an insulating material, preferably a ceramic or the like, is inserted into the slots or gaps. In the interior of the chamber, a metal shroud covers the insert. On the outside of the chamber, the insert is attached to a sealing panel, preferable formed from fiberglass or the like, that forms a vacuum barrier by means of an O-ring seal with the stainless steel surface of the chamber wall.
In yet another preferred embodiment, an inductive plasma source is mountable within the chamber and includes a shock coil assembly, preferably a single turn shock coil, that is preferably fed by a high voltage (about 5-15 kV) power source (not shown). Neutral gas, such as Hydrogen (or other appropriate gaseous fusion fuel), is introduced into the source through direct gas feeds via a Laval nozzle. Once the gas emanates from the nozzle and distributes itself over the surface of the coil windings of the shock coil, the windings are energized. The ultra fast current and flux ramp-up in the low inductance shock coil leads to a very high electric field within the gas that causes breakdown, ionization and subsequent ejection of the formed plasma from the surface of the shock coil towards the center or mid-plane of the chamber.
In a further preferred embodiment, a RF drive comprises a quadrupolar cyclotron located within the chamber and having four azimuthally symmetrical electrodes with gaps there between. The quadrupole cyclotron produces an electric potential wave that rotates in the same direction as the azimuthal velocity of ions, but at a greater velocity. Ions of appropriate speed can be trapped in this wave, and reflected periodically. This process increases the momentum and energy of the fuel ions and this increase is conveyed to the fuel ions that are not trapped by collisions.
In another embodiment, a direct energy conversion system is used to convert the kinetic energy of the fusion products directly into electric power by slowing down the charged particles through an electromagnetic field. Advantageously, the direct energy conversion system of the present invention has the efficiencies, particle-energy tolerances and electronic ability to convert the frequency and phase of the fusion output power of about 5 MHz to match the frequency of an external 60 Hertz power grid.
In a preferred embodiment, the energy conversion system comprises inverse cyclotron converters (ICC) coupled to opposing ends of the fusion reactor. The ICC have a hollow cylinder-like geometry formed from multiple, preferably four or more equal, semi-cylindrical electrodes with small, straight gaps extending there between. In operation, an oscillating potential is applied to the electrodes in an alternating fashion. The electric field E within the ICC has a multi-pole structure and vanishes on the symmetry axes and increases linearly with radius; the peak value being at the gap.
In addition, the ICC includes a magnetic field generator for applying a uniform uni-directional magnetic field in a direction substantially opposite to the applied magnetic field of the fusion reactor's containment system. At an end furthest from the fusion reactor power core the ICC includes an ion collector. In between the power core and the ICC is a symmetric magnetic cusp wherein the magnetic field of the containment system merges with the magnetic field of the ICC. An annular shaped electron collector is positioned about the magnetic cusp and electrically coupled to the ion collector.
In yet another preferred embodiment, product nuclei and charge-neutralizing electrons emerge as annular beams from both ends of the reactor power core with a density at which the magnetic cusp separates electrons and ions due to their energy differences. The electrons follow magnetic field lines to the electron collector and the ions pass through the cusp where the ion trajectories are modified to follow a substantially helical path along the length of the ICC. Energy is removed from the ions as they spiral past the electrodes, which are connected to a resonant circuit. The loss of perpendicular energy tends to be greatest for the highest energy ions that initially circulate close to the electrodes, where the electric field is strongest.
Other aspects and features of the present invention will become apparent from consideration of the following description taken in conjunction with the accompanying drawings.
Preferred embodiments are illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings, in which like reference numerals refer to like components.
As illustrated in the figures, a plasma-electric power generation (PEG) system of the present invention preferably includes a colliding beam fusion reactor (CBFR) coupled to a direct energy conversion system. As alluded to above, an ideal fusion reactor solves the problem of anomalous transport for both ions and electrons. The solution to the problem of anomalous transport found herein makes use of a containment system with a magnetic field having a field reversed configuration (FRC). The anomalous transport of ions is avoided by magnetic confinement in the FRC in such a way that the majority of the ions have large, non-adiabatic orbits, making them insensitive to short-wavelength fluctuations that cause anomalous transport of adiabatic ions. In particular, the existence of a region in the FRC where the magnetic field vanishes makes it possible to have a plasma comprising a majority of non-adiabatic ions. For electrons, the anomalous transport of energy is avoided by tuning the externally applied magnetic field to develop a strong electric field, which confines them electrostatically in a deep potential well.
Fusion fuel plasmas that can be used with the present confinement apparatus and process are not limited to neutronic fuels such as D−D (Deuterium-Deuterium) or D−T (Deuterium-Tritium), but also advantageously include advanced or aneutronic fuels such as D−He3 (Deuterium-helium-3) or p−B11 (hydrogen-Boron-11). (For a discussion of advanced fuels, see R. Feldbacher & M. Heindler, Nuclear Instruments and Methods in Physics Research, A271(1988)JJ-64 (North Holland Amsterdam).) For such aneutronic fuels, the fusion reaction energy is almost entirely in the form of charged particles, i.e., energetic ions, that can be manipulated in a magnetic field and, depending on the fuel, cause little or no radioactivity. The D−He3 reaction produces an H ion and an He4 ion with 18.2 MeV energy while the p−B11 reaction produces three He4 ions and 8.7 MeV energy. Based on theoretical modeling for a fusion device utilizing aneutronic fuels, the output energy conversion efficiency may be as high as about 90%, as described by K. Yoshikawa, T. Noma and Y. Yamamoto in Fusion Technology, 19, 870 (1991), for example. Such efficiencies dramatically advance the prospects for aneutronic fusion, in a scalable (1-1000 MW), compact, low-cost configuration.
In a direct energy conversion process of the present invention, the charged particles of fusion products can be slowed down and their kinetic energy converted directly to electricity. Advantageously, the direct energy conversion system of the present invention has the efficiencies, particle-energy tolerances and electronic ability to convert the frequency and phase of the fusion output power of about 5 MHz to match the frequency and phase of an external 60 Hertz power grid.
Fusion Containment System
Around the outside of the chamber wall 305 is an outer coil 325. The outer coil 325 produce a relatively constant magnetic field having flux substantially parallel with principle axis 315. This magnetic field is azimuthally symmetrical. The approximation that the magnetic field due to the outer coil 325 is constant and parallel to axis 315 is most valid away from the ends of the chamber 310. At each end of the chamber 310 is a mirror coil 330. The mirror coils 330 are adapted to produce an increased magnetic field inside the chamber 310 at each end, thus bending the magnetic field lines inward at each end. (See
The outer coil 325 and mirror coils 330 are shown in
The chamber wall 305 may be formed of a material having a high magnetic permeability, such as steel. In such a case, the chamber wall 305, due to induced countercurrents in the material, helps to keep the magnetic flux from escaping the chamber 310, “compressing” it. If the chamber wall were to be made of a material having low magnetic permeability, such as plexiglass, another device for containing the magnetic flux would be necessary. In such a case, a series of closed-loop, flat metal rings could be provided. These rings, known in the art as flux delimiters, would be provided within the outer coils 325 but outside the circulating plasma beam 335. Further, these flux delimiters could be passive or active, wherein the active flux delimiters would be driven with a predetermined current to greater facilitate the containment of magnetic flux within the chamber 310. Alternatively, the outer coils 325 themselves could serve as flux delimiters.
As explained in further detail below, a circulating plasma beam 335, comprising charged particles, may be contained within the chamber 310 by the Lorentz force caused by the magnetic field due to the outer coil 325. As such, the ions in the plasma beam 335 are magnetically contained in large betatron orbits about the flux lines from the outer coil 325, which are parallel to the principle axis 315. One or more beam injection ports 340 are also provided for adding plasma ions to the circulating plasma beam 335 in the chamber 310. In a preferred embodiment, the injector ports 340 are adapted to inject an ion beam at about the same radial position from the principle axis 315 where the circulating plasma beam 335 is contained (i.e., around a null surface described below). Further, the injector ports 340 are adapted to inject ion beams 350 (See
Also provided are one or more background plasma sources 345 for injecting a cloud of non-energetic plasma into the chamber 310. In a preferred embodiment, the background plasma sources 345 are adapted to direct plasma 335 toward the axial center of the chamber 310. It has been found that directing the plasma this way helps to better contain the plasma 335 and leads to a higher density of plasma 335 in the containment region within the chamber 310.
Vacuum Chamber
As described above, application of the containment system of a CBFR, it is necessary to create a vacuum or near vacuum inside the chamber. Since interactions (scattering, charge exchange) between neutrals and plasma fuel always present an energy loss channel, it is critical to limit the residual density in the reactor chamber. Furthermore, impurities resulting from poorly evacuated chambers can lead to contaminating side-reactions during operation and can drain an exorbitant amount of energy during startup as the system has to burn through these residuals.
To achieve a good level vacuum usually involves the use of stainless steel chambers and ports as well as low outgassing materials. In the case of metals, the good vacuum properties are further paired with good structural characteristics. However, conductive materials such as stainless steel and the like, present various problems with regards to their electrical properties. Although these negative effects are all linked, they manifest themselves in different ways. Amongst the most negative characteristics are: Retarded diffusion of magnetic fields through chamber walls, accumulation of electrical charges on the surfaces, drastic alteration of response times of the system to transient signals as well as formation of image currents in the surfaces that impact the desired magnetic topology. Materials that do not have these undesirable characteristics and exhibit good vacuum properties are insulators such as ceramics, glass, quartz and to a lesser degree carbon-fibers. The primary problem with these materials is structural integrity as well as the potential for accidental damage. Fabrication problems such as poor machinability of ceramics are further limitations.
In one embodiment, as depicted in
As depicted in
The inserts or ceramic insulators 1364 inside the slots 1362 preferably prevent current from arching across the gaps 1362 and, thus, prevent the formation of azimuthal image currents in the chamber wall 1311. Image currents are a manifestation of Lenz's Law, which is nature's tendency to counteract any change in flux: for example, the change in flux that occurs in the flux coil 1320 during the formation of a FRC, as described below. Without slots 1362 in the cylindrical wall 1311 of the chamber 1310, the changing flux in the flux coil 1320 causes an equal and opposite inductively induced current to form in the stainless steel wall 1311 such as to cancel the magnetic flux change inside the chamber 1310. While the induced image currents would be weaker (due to inductive losses) than the current applied to the flux coil 1320, the image current tends to strongly reduce the applied or confinement magnetic field within the chamber 1310, which, when not addressed, tends to negatively impact the magnetic field topology and alter the confinement characteristics inside of the chamber 1310. The existence of the slots 1362 prevents azimuthal image currents from forming in the wall 1311 toward the mid-plane of the chamber 1310 away from the ends of the chamber 1310 in the azimuthally continuous portion of the wall 1311. The only image currents that can be carried by the chamber wall 1311 toward the mid-plane away from the ends of the chamber 1310 are very weak currents that flow parallel to the longitudinal axis of the slots 1362. Such currents have no impact on the axial magnetic confinement fields of the FRC as the magnetic image fields produced by the image currents longitudinally traversing the chamber wall 1311 only exhibit radial and azimuthal components. The azimuthal image currents formed in the azimuthally continuous conducting portion of the wall 1311 near the ends of the chamber 1310 tend not to negatively impact and/or alter the confinement characteristics inside of the chamber 1310 as the magnetic topology in this vicinity is not important to confinement of the plasma.
In addition to preventing the formation of azimuthal image currents in the chamber wall 1311, the slots 1362 provide a way for magnetic flux from the field and mirror coils 1325 and 1330 to penetrate the chamber 1310 on a fast timescale. The slots 1362 enable sub-millisecond level fine-tuning and feedback control of the applied magnetic field as a result.
Charged Particles in a FRC
In
The ion beam that forms the plasma layer 106 has a temperature; therefore, the velocities of the ions form a Maxwell distribution in a frame rotating at the average angular velocity of the ion beam. Collisions between ions of different velocities lead to fusion reactions. For this reason, the plasma beam layer or power core 106 is called a colliding beam system.
As shown in
As shown if
A drift orbit, as shown in
Magnetic and Electrostatic Confinement in a FRC
A plasma layer 106 (see
In a plasma layer 106 formed in a FRC and under equilibrium conditions, the conservation of momentum imposes a relation between the angular velocity of ions ωi and the angular velocity of electrons ωe. The relation is
In Eq. 1, Z is the ion atomic number, mi is the ion mass, e is the electron charge, B0 is the magnitude of the applied magnetic field, and c is the speed of light. There are three free parameters in this relation: the applied magnetic field B0, the electron angular velocity ωe, and the ion angular velocity ωi. If two of them are known, the third can be determined from Eq. 1.
Because the plasma layer 106 is formed by injecting ion beams into the FRC, the angular velocity of ions ωi is determined by the injection kinetic energy of the beam ω1, which is given by
Here, Vi=ωir0, where Vi is the injection velocity of ions, ωi is the cyclotron frequency of ions, and r0 is the radius of the null surface 86. The kinetic energy of electrons in the beam has been ignored because the electron mass me is much smaller than the ion mass mi.
For a fixed injection velocity of the beam (fixed ωi), the applied magnetic field B0 can be tuned so that different values of ωe are obtainable. As will be shown, tuning the external magnetic field B0 also gives rise to different values of the electrostatic field inside the plasma layer. This feature of the invention is illustrated in
The values of ωe in the table above were determined according to Eq. 1. One can appreciate that ωe>0 means that Ω0>ωi in Eq. 1, so that electrons rotate in their counterdiamagnetic direction.
The above results can be explained on simple physical grounds. When the ions rotate in the diamagnetic direction, the ions are confined magnetically by the Lorentz force. This was shown in
The electrostatic field plays an essential role on the transport of both electrons and ions. Accordingly, an important aspect of this invention is that a strong electrostatic field is created inside the plasma layer 106, the magnitude of this electrostatic field is controlled by the value of the applied magnetic field B0 which can be easily adjusted.
As explained, the electrostatic field is confining for electrons if ωe>0. As shown in
Another consequence of the potential well is a strong cooling mechanism for electrons that is similar to evaporative cooling. For example, for water to evaporate, it must be supplied the latent heat of vaporization. This heat is supplied by the remaining liquid water and the surrounding medium, which then thermalize rapidly to a lower temperature faster than the heat transport processes can replace the energy. Similarly, for electrons, the potential well depth is equivalent to water's latent heat of vaporization. The electrons supply the energy required to ascend the potential well by the thermalization process that re-supplies the energy of the Maxwell tail so that the electrons can escape. The thermalization process thus results in a lower electron temperature, as it is much faster than any heating process. Because of the mass difference between electrons and protons, the energy transfer time from protons is about 1800 times less than the electron thermalization time. This cooling mechanism also reduces the radiation loss of electrons. This is particularly important for advanced fuels, where radiation losses are enhanced by fuel ions with an atomic number Z greater than 1; Z>1.
The electrostatic field also affects ion transport. The majority of particle orbits in the plasma layer 106 are betatron orbits 112. Large-angle collisions, that is, collisions with scattering angles between 90° and 180°, can change a betatron orbit to a drift orbit. As described above, the direction of rotation of the drift orbit is determined by a competition between the {right arrow over (E)}×{right arrow over (B)} drift and the gradient drift. If the {right arrow over (E)}×{right arrow over (B)} drift dominates, the drift orbit rotates in the diamagnetic direction. If the gradient drift dominates, the drift orbit rotates in the counterdiamagnetic direction. This is shown in
The direction of rotation of the drift orbit determines whether it is confined or not. A particle moving in a drift orbit will also have a velocity parallel to the FRC axis. The time it takes the particle to go from one end of the FRC to the other, as a result of its parallel motion, is called transit time; thus, the drift orbits reach an end of the FRC in a time of the order of the transit time. As shown in connection with
This phenomenon accounts for a loss mechanism for ions, which is expected to have existed in all FRC experiments. In fact, in these experiments, the ions carried half of the current and the electrons carried the other half. In these conditions the electric field inside the plasma was negligible, and the gradient drift always dominated the {right arrow over (E)}×{right arrow over (B)} drift. Hence, all the drift orbits produced by large-angle collisions were lost after a transit time. These experiments reported ion diffusion rates that were faster than those predicted by classical diffusion estimates.
If there is a strong electrostatic field, the {right arrow over (E)}×{right arrow over (B)} drift dominates the gradient drift, and the drift orbits rotate in the diamagnetic direction. This was shown above in connection with
The electrostatic fields in the colliding beam system may be strong enough, so that the {right arrow over (E)}×{right arrow over (B)} drift dominates the gradient drift. Thus, the electrostatic field of the system would avoid ion transport by eliminating this ion loss mechanism, which is similar to a loss cone in a mirror device.
Another aspect of ion diffusion can be appreciated by considering the effect of small-angle, electron-ion collisions on betatron orbits.
Formation of the FRC
Conventional procedures used to form a FRC primarily employ the theta pinch-field reversal procedure. In this conventional method, a bias magnetic field is applied by external coils surrounding a neutral gas back-filled chamber. Once this has occurred, the gas is ionized and the bias magnetic field is frozen in the plasma. Next, the current in the external coils is rapidly reversed and the oppositely oriented magnetic field lines connect with the previously frozen lines to form the closed topology of the FRC (see
In contrast, the FRC formation methods of the present invention allow for ample control and provide a much more transparent and reproducible process. In fact, the FRC formed by the methods of the present invention can be tuned and its shape as well as other properties can be directly influenced by manipulation of the magnetic field applied by the outer field coils 325. Formation of the FRC by methods of the present inventions also results in the formation of the electric field and potential well in the manner described in detail above. Moreover, the present methods can be easily extended to accelerate the FRC to reactor level parameters and high-energy fuel currents, and advantageously enables the classical confinement of the ions. Furthermore, the technique can be employed in a compact device and is very robust as well as easy to implement—all highly desirable characteristics for reactor systems.
In the present methods, FRC formation relates to the circulating plasma beam 335. It can be appreciated that the circulating plasma beam 335, because it is a current, creates a poloidal magnetic field, as would an electrical current in a circular wire. Inside the circulating plasma beam 335, the magnetic self-field that it induces opposes the externally applied magnetic field due to the outer coil 325. Outside the plasma beam 335, the magnetic self-field is in the same direction as the applied magnetic field. When the plasma ion current is sufficiently large, the self-field overcomes the applied field, and the magnetic field reverses inside the circulating plasma beam 335, thereby forming the FRC topology as shown in
The requirements for field reversal can be estimated with a simple model. Consider an electric current IP carried by a ring of major radius r0 and minor radius a<<r0. The magnetic field at the center of the ring normal to the ring is Bp=2πIp/(cro). Assume that the ring current IP=Npe(Ω0/2π) is carried by Np ions that have an angular velocity Ω0. For a single ion circulating at radius r0=V0/Ω0,Ω0=eB0/mic is the cyclotron frequency for an external magnetic field B0. Assume V0 is the average velocity of the beam ions. Field reversal is defined as
which implies that Np>2r0/αi, and
where αi=e2/mic2=1.57×10−16 cm and the ion beam energy is ½miV02. In the one-dimensional model, the magnetic field from the plasma current is Bp=(2π/c)ip, where ip, is current per unit of length. The field reversal requirement is ip>eV0/πr0αi=0.225 kA/cm, where B0=69.3 G and
For a model with periodic rings and Bz is averaged over the axial coordinate <Bz>=(2π/c)(Ip/s) (s is the ring spacing), if s=r0, this model would have the same average magnetic field as the one dimensional model with ip=Ip/s.
Combined Beam/Betatron Formation Technique
A preferred method of forming a FRC within the confinement system 300 described above is herein termed the combined beam/betatron technique. This approach combines low energy beams of plasma ions with betatron acceleration using the betatron flux coil 320.
The first step in this method is to inject a substantially annular cloud layer of background plasma in the chamber 310 using the background plasma sources 345. Outer coil 325 produces a magnetic field inside the chamber 310, which magnetizes the background plasma. At short intervals, low energy ion beams are injected into the chamber 310 through the injector ports 340 substantially transverse to the externally applied magnetic field within the chamber 310. As explained above, the ion beams are trapped within the chamber 310 in large betatron orbits by this magnetic field. The ion beams may be generated by an ion accelerator, such as an accelerator comprising an ion diode and a Marx generator. (see R. B. Miller, An Introduction to the Physics of Intense Charged Particle Beams, (1982)). As one of skill in the art can appreciate, the applied magnetic field will exert a Lorentz force on the injected ion beam as soon as it enters the chamber 310; however, it is desired that the beam not deflect, and thus not enter a betatron orbit, until the ion beam reaches the circulating plasma beam 335. To solve this problem, the ion beams are neutralized with electrons and, as illustrated in
When the plasma beam 335 travels in its betatron orbit, the moving ions comprise a current, which in turn gives rise to a poloidal magnetic self-field. To produce the FRC topology within the chamber 310, it is necessary to increase the velocity of the plasma beam 335, thus increasing the magnitude of the magnetic self-field that the plasma beam 335 causes. When the magnetic self-field is large enough, the direction of the magnetic field at radial distances from the axis 315 within the plasma beam 335 reverses, giving rise to a FRC. (See
To increase the velocity of the circulating plasma beam 335 in its orbit, the betatron flux coil 320 is provided. Referring to
For field reversal, the circulating plasma beam 335 is preferably accelerated to a rotational energy of about 100 eV, and preferably in a range of about 75 eV to 125 eV. To reach fusion relevant conditions, the circulating plasma beam 335 is preferably accelerated to about 200 keV and preferably to a range of about 100 keV to 3.3 MeV.
FRC formation was successfully demonstrated utilizing the combined beam/betatron formation technique. The combined beam/betatron formation technique was performed experimentally in a chamber 1 m in diameter and 1.5 m in length using an externally applied magnetic field of up to 500 G, a magnetic field from the rotating plasma induced by the betatron flux coil 320 of up to 5 kG, and a vacuum of 1.2×10−5 torr. In the experiment, the background plasma had a density of 1013 cm−3 and the ion beam was a neutralized Hydrogen beam having a density of 1.2×1013 cm−3, a velocity of 2×107 cm/s, and a pulse length of around 20 μs (at half height). Field reversal was observed.
Betatron Formation Technique
Another preferred method of forming a FRC within the confinement system 300 is herein termed the betatron formation technique. This technique is based on driving the betatron induced current directly to accelerate a circulating plasma beam 335 using the betatron flux coil 320. A preferred embodiment of this technique uses the confinement system 300 depicted in
As indicated, the main component in the betatron formation technique is the betatron flux coil 320 mounted in the center and along the axis of the chamber 310. Due to its separate parallel windings construction, the coil 320 exhibits very low inductance and, when coupled to an adequate power source, has a low LC time constant, which enables rapid ramp up of the current in the flux coil 320.
Preferably, formation of the FRC commences by energizing the external field coils 325, 330. This provides an axial guide field as well as radial magnetic field components near the ends to axially confine the plasma injected into the chamber 310. Once sufficient magnetic field is established, the background plasma sources 345 are energized from their own power supplies. Plasma emanating from the guns streams along the axial guide field and spreads slightly due to its temperature. As the plasma reaches the mid-plane of the chamber 310, a continuous, axially extending, annular layer of cold, slowly moving plasma is established.
At this point the betatron flux coil 320 is energized. The rapidly rising current in the coil 320 causes a fast changing axial flux in the coil's interior. By virtue of inductive effects this rapid increase in axial flux causes the generation of an azimuthal electric field E (see
The inductively created electric field E couples to the charged particles in the plasma and causes a ponderomotive force, which accelerates the particles in the annular plasma layer. Electrons, by virtue of their smaller mass, are the first species to experience acceleration. The initial current formed by this process is, thus, primarily due to electrons. However, sufficient acceleration time (around hundreds of micro-seconds) will eventually also lead to ion current. Referring to
As noted above, the current carried by the rotating plasma gives rise to a self magnetic field. The creation of the actual FRC topology sets in when the self magnetic field created by the current in the plasma layer becomes comparable to the applied magnetic field from the external field coils 325, 330. At this point magnetic reconnection occurs and the open field lines of the initial externally produced magnetic field begin to close and form the FRC flux surfaces (see
The base FRC established by this method exhibits modest magnetic field and particle energies that are typically not at reactor relevant operating parameters. However, the inductive electric acceleration field will persist, as long as the current in the betatron flux coil 320 continues to increase at a rapid rate. The effect of this process is that the energy and total magnetic field strength of the FRC continues to grow. The extent of this process is, thus, primarily limited by the flux coil power supply, as continued delivery of current requires a massive energy storage bank. However, it is, in principal, straightforward to accelerate the system to reactor relevant conditions.
For field reversal, the circulating plasma beam 335 is preferably accelerated to a rotational energy of about 100 eV, and preferably in a range of about 75 eV to 125 eV. To reach fusion relevant conditions, the circulating plasma beam 335 is preferably accelerated to about 200 keV and preferably to a range of about 100 keV to 3.3 MeV. When ion beams are added to the circulating plasma beam 335, as described above, the plasma beam 335 depolarizes the ion beams.
FRC formation utilizing the betatron formation technique was successfully demonstrated at the following parameter levels:
The lifetime of the configuration was limited by the total energy stored in the experiment and generally was around 30 μs.
The experiments proceeded by first injecting a background plasma layer by two sets of coaxial cable guns mounted in a circular fashion inside the chamber. Each collection of 8 guns was mounted on one of the two mirror coil assemblies. The guns were azimuthally spaced in an equidistant fashion and offset relative to the other set. This arrangement allowed for the guns to be fired simultaneously and thereby created an annular plasma layer.
Upon establishment of this layer, the betatron flux coil was energized. Rising current in the betatron coil windings caused an increase in flux inside the coil, which gave rise to an azimuthal electric field curling around the betatron coil. Quick ramp-up and high current in the betatron flux coil produced a strong electric field, which accelerated the annular plasma layer and thereby induced a sizeable current. Sufficiently strong plasma current produced a magnetic self-field that altered the externally supplied field and caused the creation of the field reversed configuration. Detailed measurements with B-dot loops identified the extent, strength and duration of the FRC.
An example of typical data is shown by the traces of B-dot probe signals in
Overall, this technique not only produces a compact FRC, but it is also robust and straightforward to implement. Most importantly, the base FRC created by this method can be easily accelerated to any desired level of rotational energy and magnetic field strength. This is crucial for fusion applications and classical confinement of high-energy fuel beams.
Inductive Plasma Source
The betatron and beam/betatron FRC formation techniques describe above, both rely on imparting energy to a background plasma via the flux coil 320. Analogous to a transformer, the flux coil performs the duties of the primary windings of the transformer, while the plasma acts as the secondary windings. For this inductive system to work efficiently, it is imperative that the plasma is a good conductor.
Counter to typical conductors, such as metals, a plasma becomes less resistive and, thus, more conductive as its temperature increases. The temperature of plasma electrons, in particular, plays an important role and, to a large degree, determines dissipation, which is a function of electron-ion collisions. In essence, dissipation is due to resistance, which is caused by electron-ion collisions: the higher the collision frequency, the higher the resistivity. This is due to the collective phenomena in a plasma, where the coulomb collision cross-section is screened. The collision frequency (the rate at which successive collisions occur) is essentially a function of density, screened coulomb scattering cross-section and thermal (or average) velocity of the colliding/scattering charges, i.e.: vc=nσv. By definition v scales with T1/2, σ is proportional to v−4 or, thus, T−2. The collision frequency vc is, therefore, proportional to nT−3/2. The resistivity is related to the collision frequency by η=vcm/ne2. Hence, the resistivity is proportional to T−3/2 and, notably, independent of density—a direct result of the fact that even though the number of charge carriers increases with density, the number of scattering centers increases as well. Thus, higher temperature leads to higher plasma conductivity and less dissipative losses.
To achieve better performance with regard to confinement in an FRC, a hot plasma is, therefore, highly desirable. In the case of the PEG system, enhanced electron temperature leads to improved FRC startup (the better a conductor the plasma becomes, the better the inductive coupling between the plasma and flux coil), better current sustainment (reduced plasma resistivity leads to less frictional/dissipative losses and hence less current loss) and higher magnetic field strength (the stronger the current, the more self-field). Adequate electron temperature during initial plasma formation and before the flux coil is engaged will lead to better coupling of the flux coil to the plasma (which advantageously tends to reduce the formation of azimuthal image currents in the chamber wall). This in turn will result in enhanced betatron acceleration (less resistivity leads to better inductive transfer of energy from flux coil to plasma) and plasma heating (some of the imparted directional energy as represented by the rotating current flow will thermalize and turn to random energy—ultimately leading to heating of the plasma by the flux coil), which will consequently increase the ion-electron collision time (due to higher temperature), reduce dissipation (less resistivity) and allow ultimately for the attainment of higher FRC fields (higher currents lead to stronger fields).
To achieve better initial plasma temperature, an inductive plasma source is provided. As depicted in
In a preferred embodiment, the shock coil 1030 comprises an annular disc shaped body 1032 bounded by an outer ring 1034 formed about its outer periphery and an annular hub 1036 formed about its inner periphery. The ring 1034 and hub 1036 extend axially beyond the surface of the body 1032 forming the edges of a open top annular channel 1035. The body 1032, ring 1034 and hub 1036 are preferably formed through unitary molded construction of an appropriate non-conductive material with good vacuum properties and low outgassing properties such as glass, plexiglass, pirex, quartz, ceramics or the like.
A multi-sectioned shroud 1012 is preferably coupled to the ring 1034 of the shock coil 1030 to limit the produced plasma from drifting radially. Each section 1014 of the shroud 1012 includes a plurality of axially extending fingers 1016. The ends of each section 1014 include a mounting bracket 1015.
The coil windings 1040 are preferably affixed to the face of the coil body 1032 in the channel 1035 using epoxy or some other appropriate adhesive. To obtain fast electro-magnetic characteristics of the shock coil 1030, it is important to keep its inductance as low as possible. This is achieved by using as few turns in the coil 1040 as possible, as well as building the coil 1040 up of multiple strands of wire 1042 that are wound in parallel. In an exemplary embodiment, the coil 1040 comprised 24 parallel strands of wire 1042, each of which executed one loop. The wires 1042 each begin at entry points 1044 that are located preferably about 15 degrees apart on the outer perimeter of the body 1032 and end after only one axis encircling turn at exit points 1046 on the inner radius of the body 1032. The coil windings 1040, therefore, cover the entire area between the inner and outer edges of channel 1035. Preferably, groups of strands 1042 are connected to the same capacitive storage bank. In general, power can be fed to all strands 1042 from the same capacitive storage bank or, as in an exemplary embodiment, 8 groups of 3 strands 1042 each are connected together and commonly fed by one of 2 separate capacitive storage banks.
An annular disc-shaped nozzle body 1022 is coupled about its inner perimeter to the hub 1036 to form the Laval nozzle 1020. The surface 1024 of the nozzle body 1022 facing the hub 1036 has an expanding midsection profile defining an annular gas plenun 1025 between the surface 1024 and the face 1037 of the hub 1036. Adjacent the outer periphery of the nozzle body 1022, the surface 1024 has a contracting-to-expanding profile defining an azimuthally extending Laval-type nozzle outlet 1023 between the surface 1024 and the face 1037 of the hub 1036.
Attached to the opposite side of the hub 1036 is a valve seat ring 1050 with several valve seats 1054 formed in the outer face of the ring 1050. The valve seats 1054 are aligned with gas feed channels 1052 formed through the hub 1036.
In operation, neutral gas is feed through ultra fast puff valves in the valve seats 1054 to the gas channels 1052 extending through the hub 1036. Because of the constricting portion of the nozzle outlet 1023, the gas tends to feed into and fill the annular plenum 1025 prior to emanating from the nozzle 1020. Once the gas emanates from the nozzle 1020 and distributes itself over the surface of the coil windings 1040 of the shock coil 1030, the windings 1040 are energized. The ultra fast current and flux ramp-up in the low inductance shock coil 1030 leads to a very high electric field within the gas that causes breakdown, ionization and subsequent ejection of the formed plasma from the surface of the shock coil 1030 towards the center of the chamber 310.
The current ramp-up is preferably well synchronized in all strands 1042 or groups of strands 1042 that are intended to be fired together. Another option that is possible and potentially advantageous, is to fire different groups of strands at different times. A delay can be deliberately instituted between engaging different groups of strands 1042 to fire different groups of strands at different times. When firing different groups of strands at different times it is important to group strands in a way so that the arrangement is azimuthally symmetric and provides sufficient coverage of the surface of the coil 1040 with current carrying wires 1042 at any given power pulse. In this fashion it is possible to create at least two consecutive but distinct plasma pulses. The delay between pulses is limited by how much neutral gas is available. In practice, it is possible to fire such pulses between about 5 and 600 micro-seconds apart.
In practice, the input operating parameters are preferably as follows:
Charging Voltage: about 10 to 25 kV split supply
Current: up to about 50 kA total current through all windings combined
Pulse/Rise Time: up to about 2 microseconds
Gas Pressure: about −20 to 50 psi
Plenum size: about 0.5 to 1 cm3 per valve—i.e.: about 4 to 8 cm3 total gas volume per shot
In an exemplary embodiment, the input operating parameters were as follows:
Charging Voltage: 12 to 17 kV split supply, i.e.: from −12 kV to +12 kV
Current: 2 to 4.5 kA per group of 3 strands, i.e.: 16 to 36 kA total current through all windings combined
Pulse/Rise Time: 1 to 1.5 microseconds
Gas Pressure: −15 to 30 psi
Plenum size: 0.5 to 1 cm3 per valve—i.e.: 4 to 8 cm3 total gas volume per shot
The plasma created by this operational method of the inductive plasma source 1010 using the parameters noted above has the following advantageous characteristics:
Density ˜4×1013 cm−3
Temperature ˜10-20 eV
Annular scale ˜40-50 cm diameter
Axial drift velocity ˜5-10 eV.
Due to the shape and orientation of the source 1010, the shape of the emerging plasma is annular and has a diameter tending to equal the rotating plasma annulus of the to be formed FRC. In a PEG present system two such inductive plasma sources 1010 are preferably placed on either axial end of the chamber 310 and preferably fired in parallel. The two formed plasma distributions drift axially towards the center of the chamber 310 where they form the annular layer of plasma that is then accelerated by the flux coil 320 as described above.
RF Drive For Ions and Electrons in FRC
A RF current drive, called a rotomak, has been employed for FRCs in which the current is carried mainly by electrons. It involves a rotating radial magnetic field produced by two phased antennas. The electrons are magnetized and frozen to the rotating magnetic field lines. This maintains the current until Coulomb collisions of the ions with electrons cause the ions to be accelerated and reduce the current. The rotomak, however, is not suitable for maintaining the current indefinitely, but it has been successful for milliseconds.
In the FRCs of the present system the current is mainly carried by ions that are in betatron orbits which would not be frozen to rotating magnetic field lines. The large orbit ions are important for stability and classical diffusion. Instead of antennas, electrodes are employed as in cyclotrons and the ions are driven by an electrostatic wave. The problem is completely electrostatic because the frequency of the RF is less than 10 Megacycles so that the wavelength (30 m) is much longer than any dimension of the plasma. Electrostatic fields can penetrate the FRC plasma much more easily than electromagnetic waves.
The electrostatic wave produced by the electrodes is designed to travel at a speed that is close to the average azimuthal velocity of the ions, or of the electrons. If the wave travels faster than the average speed of the ions, it will accelerate them and thereby compensate for the drag due to the ion-electron collisions. Electrons, however, are accelerated by Coulomb collisions with the ions. In this case the wave must have a speed slower than the electron average velocity and the electrons will accelerate the wave. The average electron velocity is less than the average ion velocity so that the electrons must be driven at two different frequencies. The higher frequency will be for ions and energy is preferably supplied by the external circuit. For electrons, energy can be extracted at the lower frequency.
Electrode Systems
A quadrupole RF drive system is shown in
An alternative and supplemental method to drive current is to augment the electrode system with additional magnetic field coils 1116 positioned about the flux coil 325 and quadrupole cyclotron 1110, and that are driven at half the frequency of the cyclotron electrodes 1112. The following discussion presented here, however, is dedicated to illustrate the electrode only version (without magnetic field coils 1116).
In
The potential created by the electrodes with the indicated applied voltages are noted in
with appropriate boundary conditions. For example for the dipole cyclotron
Since Φ(r,θ;t ) is periodic in θ with a period 2π, it can be expanded in a Fourier series, i.e.:
and un satisfies the equation
The lowest harmonic is
Higher harmonics are
The wave speed in the azimuthal direction is {dot over (θ)}=±ω/(2l−1) so that the higher harmonics have a smaller phase velocity and amplitude. These comments apply to both cases in
Plasma Effect
The response of the plasma can be described by a dielectric tensor. The electric field produces plasma currents which produce charge separation according to the charge conservation equation
where {right arrow over (J)} is current density and ρ is charge density. The appropriate equation is
∇·{right arrow over (E)}=4πρ=4π·{right arrow over (E)} (14)
or
∇··{right arrow over (E)}=−∇··∇Φ=0
where =+4π is the dielectric tensor and χ is the polarizability. If only the contribution of the electrons is included the tensor is diagonal with one component
where n is the density and B is the FRC magnetic field. n and B vary rapidly with r and B=0 on a surface at r=ro within the plasma. The expression for ε⊥ is derived assuming electrons have a small gyroradius and the electric field changes slowly compared to Ωe=eB/mc, the gyrofrequency. This approximation breaks down near the null surface. The characteristic orbits change from drift orbits to betatron orbits which have a much smaller response to the electric field, i.e. ε⊥≅1 near the null surface at r=ro. The ions mainly have betatron orbits and for the drift orbits the response to the electric field is small because the electric field changes at the rate ε≅εi.
The net result is that the Laplace equation is replaced by
which must be solved numerically. The additional term vanishes near r=ro. The potential for the lowest harmonic of the quadrupole case has the form
and a similar form for the dipole case. Waves traveling in the opposite direction to the ions (or electrons) will be neglected.
Acceleration Due to Ions Trapped in an Electrostatic Wave
We assume that ω=2ωi+Δω so that the wave {dot over (θ)}=ω/2=ωi+Δω/2 is a little faster than the ions. The standard rigid rotor distribution function is assumed for the ions
The reduced distribution function of interest is
The wave velocity of the electrostatic wave produced by the quadrupole cyclotron is vw=rω/2=rωi+Δvw. Ions moving faster than the wave reflect if
This increases the wave energy, i.e.,
Ions moving slower than the wave reflect if
and the wave loses energy at the rate
The net results is simplified with the change of variable v′θ=vθ−vw, i.e.,
This has a form similar to Landau damping, but it is not physically the same because Landau damping (growth) is a linear phenomena and this is clearly non-linear.
Since
If vw=rωi there is no change in the wave energy. If ww>rωi or Δvw>0, the wave energy decreases; for Δvw<0 the wave energy increases. This is similar to the interpretation of Landau damping. In the first case Δvw>0, there are more ions going slower than the wave than faster. Therefore, the wave energy decreases. In the opposite case Δvw<0, the wave energy increases. The former case applies to maintaining the ion energy and momentum with a quadrupole cyclotron. This is current drive. The latter case provides the basis for a converter. Eqs. (22) and (24) can be used to evaluate the applicability to fusion reactor conditions.
The power transferred to the ions when vw−rωi=Δvw≅vi, the ion thermal velocity, is
where dW/dt is determined by Eqs. (24) and (25).
To simplify the integration Φo(r) is replaced by Φo(ro), the value at the peak density which is a lower bound of the wave amplitude.
Ni is the line density of ions. i=1,2 accommodates two types of ions which is usually the case in a reactor.
Detailed calculations of F(r) indicate that the wave amplitude Φo(ro) is about a factor of 10 less than the maximum gap voltage which is 2Vo. This will determine the limitations of this method of RF drive. Vo will be limited by the maximum gap voltage that can be sustained which is probably about 10 kVolts for a 1 cm gap.
Reactor Requirements
For current drive a power Pi is preferably transferred to the ions at frequency ωi and a power Pe is preferably transferred to the electrons at frequency ωe. This will compensate for the Coulomb interactions between electrons and ions, which reduces the ion velocity and increases the electron velocity. (In the absence of the power transfers, Coulomb collisions would lead to the same velocity for electrons and ions and no current). The average electric field to maintain the equilibrium of electrons and ions is given by
is the current/unit length and
is the resistance/unit length. Ne, N1, N2 are line densities of electrons and ions Ne=N1Z1+N2Z2 where Z1, Z2 are atomic numbers of the ions; t1e and t2e are momentum transfer times from ions to electrons. The average electric field is the same for ions or electrons because Ne≅Ni for quasi-neutrality and the charge is opposite. The power that must be transferred to the ions is
Pi≅2πr0Iiθ<Eθ> (28)
and the power that can be extracted from electrons is
Pe=−|2πr0Ieθ<Eθ>| (29)
where Iiθ=Neeωi/2π and Ieθ=Neeωe/2π.
For refueling with the RF drive the fuel may be replaced at any energy at rates given by the fusion times tF1=1/n1<σv>1 and tF2=1/n2<σv>2; n1 and n2 are plasma ion densities and <σv> are reactivities. The magnitude will be seconds. The injected neutrals (to replace the fuel ions that burn and disappear) will ionize rapidly and accelerate due to Coulomb collisions up to the average ion velocity in a time of the order of milliseconds (for reactor densities of order 1015 cm−3). However this requires an addition to <Eθ> and an addition to transfer of power to maintain a steady state. The addition is
which will increase the required power transfer by about a factor of two (2).
The power can be provided for current drive and refueling without exceeding the maximum gap voltage amplitude of 10 kVolts/cm. Considering that the frequency will be 1-10 Mega-Hertz and the magnetic field will be of order 100 kGauss no breakdown would be expected. The power that must be transferred for current drive and refueling is similar for any current drive method. However RF technology at 1-10 Mega-Hertz has been an established high-efficiency technology for many years. The method described that uses electrodes instead of antennas has a considerable advantage because the conditions for field penetration are much more relaxed than for electromagnetic waves. Therefore this method would have advantages with respect to circulating power and efficiency.
Fusion
Significantly, these two techniques for forming a FRC inside of a containment system 300 described above, or the like, can result in plasmas having properties suitable for causing nuclear fusion therein. More particularly, the FRC formed by these methods can be accelerated to any desired level of rotational energy and magnetic field strength. This is crucial for fusion applications and classical confinement of high-energy fuel beams. In the confinement system 300, therefore, it becomes possible to trap and confine high-energy plasma beams for sufficient periods of time to cause a fusion reaction therewith.
To accommodate fusion, the FRC formed by these methods is preferably accelerated to appropriate levels of rotational energy and magnetic field strength by betatron acceleration. Fusion, however, tends to require a particular set of physical conditions for any reaction to take place. In addition, to achieve efficient burn-up of the fuel and obtain a positive energy balance, the fuel has to be kept in this state substantially unchanged for prolonged periods of time. This is important, as high kinetic temperature and/or energy characterize a fusion relevant state. Creation of this state, therefore, requires sizeable input of energy, which can only be recovered if most of the fuel undergoes fusion. As a consequence, the confinement time of the fuel has to be longer than its burn time. This leads to a positive energy balance and consequently net energy output.
A significant advantage of the present invention is that the confinement system and plasma described herein are capable of long confinement times, i.e., confinement times that exceed fuel burn times. A typical state for fusion is, thus, characterized by the following physical conditions (which tend to vary based on fuel and operating mode):
Average ion temperature: in a range of about 30 to 230 keV and preferably in a range of about 80 keV to 230 keV
Average electron temperature: in a range of about 30 to 100 keV and preferably in a range of about 80 to 100 keV
Coherent energy of the fuel beams (injected ion beams and circulating plasma beam): in a range of about 100 keV to 3.3 MeV and preferably in a range of about 300 keV to 3.3 MeV.
Total magnetic field: in a range of about 47.5 to 120 kG and preferably in a range of about 95 to 120 kG (with the externally applied field in a range of about 2.5 to 15 kG and preferably in a range of about 5 to 15 kG).
Classical Confinement time: greater than the fuel burn time and preferably in a range of about 10 to 100 seconds.
Fuel ion density: in a range of about 1014 to less than 1016 cm−3 and preferably in a range of about 1014 to 1015 cm−3.
Total Fusion Power: preferably in a range of about 50 to 450 kW/cm (power per cm of chamber length)
To accommodate the fusion state illustrated above, the FRC is preferably accelerated to a level of coherent rotational energy preferably in a range of about 100 keV to 3.3 MeV, and more preferably in a range of about 300 keV to 3.3 MeV, and a level of magnetic field strength preferably in a range of about 45 to 120 kG, and more preferably in a range of about 90 to 115 kG. At these levels, high energy ion beams, which are neutralized and polarized as described above, can be injected into the FRC and trapped to form a plasma beam layer wherein the plasma beam ions are magnetically confined and the plasma beam electrons are electrostatically confined.
Preferably, the electron temperature is kept as low as practically possible to reduce the amount of bremsstrahlung radiation, which can, otherwise, lead to radiative energy losses. The electrostatic energy well of the present invention provides an effective means of accomplishing this.
The ion temperature is preferably kept at a level that provides for efficient burn-up since the fusion cross-section is a function of ion temperature. High direct energy of the fuel ion beams is essential to provide classical transport as discussed in this application. It also minimizes the effects of instabilities on the fuel plasma. The magnetic field is consistent with the beam rotation energy. It is partially created by the plasma beam (self-field) and in turn provides the support and force to keep the plasma beam on the desired orbit.
Fusion Products
The fusion products are born in the power core predominantly near the null surface 86 from where they emerge by diffusion towards the separatrix 84 (see
Initially the product ions have longitudinal as well as rotational energy characterized by ½M(vpar)2 and ½M(vperp)2. vperp is the azimuthal velocity associated with rotation around a field line as the orbital center. Since the field lines spread out after leaving the vicinity of the FRC topology, the rotational energy tends to decrease while the total energy remains constant. This is a consequence of the adiabatic invariance of the magnetic moment of the product ions. It is well known in the art that charged particles orbiting in a magnetic field have a magnetic moment associated with their motion. In the case of particles moving along a slow changing magnetic field, there also-exists an adiabatic invariant of the motion described by ½M(vperp)2/B. The product ions orbiting around their respective field lines have a magnetic moment and such an adiabatic invariant associated with their motion. Since B decreases by a factor of about 10 (indicated by the spreading of the field lines), it follows that vperp will likewise decrease by about 3.2. Thus, by the time the product ions arrive at the uniform field region their rotational energy would be less than 5% of their total energy; in other words almost all the energy is in the longitudinal component.
Energy Conversion
The direct energy conversion system of the present invention comprises an inverse cyclotron converter (ICC) 420 shown in
Before describing the ICC 420 and its operation in detail, a review of a typical cyclotron accelerator is provided. In conventional cyclotron accelerators, energetic ions with velocities perpendicular to a magnetic field rotate in circles. The orbit radius of the energetic ions is determined by the magnetic field strength and their charge-to-mass ratio, and increases with energy. However, the rotation frequency of the ions is independent of their energy. This fact has been exploited in the design of cyclotron accelerators.
Referring to
In principle, a cyclotron could be used to extract kinetic energy from a pencil beam of identical energetic ions. Deceleration of ions with a cyclotron, but without energy extraction has been observed for protons, as described by Bloch and Jeffries in Phys. Rev. 80, 305 (1950). The ions could be injected into the cavity such that they are brought into a decelerating phase relative to the oscillating field. All of the ions would then reverse the trajectory T of the accelerating ion shown in
In practice, the ions of an ion beam would enter the cyclotron with all possible phases. Unless the varying phases are compensated for in the design of the cyclotron, half of the ions would be accelerated and the other half decelerated. As a result, the maximum conversion efficiency would effectively be 50%. Moreover the annular fusion product ion beams discussed above are of an unsuitable geometry for the conventional cyclotron.
As discussed in greater detail below, the ICC of the present invention accommodates the annular character of the fusion product beams exiting the FRC of fusion reactor power core, and the random relative phase of the ions within the beam and the spread of their energies.
Referring back to
The geometry of the ICC 420 is like a hollow cylinder with a length of about five meters. Preferably, four or more equal, semi-cylindrical electrodes 494 with small, straight gaps 497 make up the cylinder surface. In operation, an oscillating potential is applied to the electrodes 494 in an alternating fashion. The electric field E within the converter has a quadrupole structure as indicated in the end view illustrated in
In addition, the ICC 420 includes outside field coils 488 to form a uniform magnetic field within the ICC's hollow cylinder geometry. Because the current runs through the ICC field coils 488 in a direction opposite to the direction of the current running through the CBFR field coils 425, the field lines 496 in the ICC 420 run in a direction opposite to the direction of the open field lines 480 of the CBFR 410. At an end furthest from the power core 436 of the CBFR 410, the ICC 420 includes an ion collector 492.
In between the CBFR 410 and the ICC 420 is a symmetric magnetic cusp 486 wherein the open field lines 480 of the CBFR 410 merge with the field lines 496 of the ICC 420. An annular shaped electron collector 490 is position about the magnetic cusp 486 and electrically coupled to the ion collector 498. As discussed below, the magnetic field of the magnetic cusps 486 converts the axial velocity of the beam 437 to a rotational velocity with high efficiency.
The CBFR 410 has a cylindrical symmetry. At its center is the fusion power core 436 with a fusion plasma core 435 contained in a FRC 470 magnetic field topology in which the fusion reactions take place. As noted, the product nuclei and charge-neutralizing electrons emerge as annular beams 437 from both ends of the fuel plasma 435. For example for a 50 MW design of a p−B11 reaction, these beams will have a radius of about 50 cm and a thickness of about 10 cm. The annular beam has a density n≅107−108 cm3. For such a density, the magnetic cusp 486 separates the electrons and ions. The electrons follow the magnetic field lines to the electron collector 490 and the ions pass through the cusp 486 where the ion trajectories are modified to follow a substantially helical path along the length of the ICC 420. Energy is removed from the ions as they spiral past the electrodes 494 connected to a resonant circuit (not shown). The loss of perpendicular energy is greatest for the highest energy ions that initially circulate close to the electrodes 494, where the electric field is strongest.
The ions arrive at the magnetic cusp 486 with the rotational energy approximately equal to the initial total energy, i.e., ½Mvp2≅½Mv02. There is a distribution of ion energies and ion initial radii r0 when the ions reach the magnetic cusp 486. However, the initial radii r0 tends to be approximately proportional to the initial velocity v0. The radial magnetic field and the radial beam velocity produce a Lorentz force in the azimuthal direction. The magnetic field at the cusp 486 does not change the particle energy but converts the initial axial velocity vp≅vo to a residual axial velocity vz and an azimuthal velocity v195 , where v02=vz2+v⊥2. The value of the azimuthal velocity v⊥ can be determined from the conservation of canonical momentum
A beam ion enters the left hand side of the cusp 486 with Bz=B0, vz=v0, v⊥=0 and r=r0. It emerges on the right hand side of the cusp 486 with r=r0, Bz=−B0, v⊥=qBor0/Mc and vz=√{square root over (v02−v⊥2)}
is the cyclotron frequency. The rotation frequency of the ions is in a range of about 1-10 MHz, and preferably in a range of about 5-10 MHz, which is the frequency at which power generation takes place.
In order for the ions to pass through the cusp 486, the effective ion gyro-radius must be greater than the width of the cusp 486 at the radius r0. It is quite feasible experimentally to reduce the axial velocity by a factor of 10 so that the residual axial energy will be reduced by a factor of 100. Then 99% of the ion energy will be converted to rotational energy. The ion beam has a distribution of values for v0 and r0. However, because r0 is proportional to v0 as previously indicated by the properties of the FRC based reactor, the conversion efficiency to rotational energy tends to be 99% for all ions.
As depicted in
The process by which ions are always decelerated is similar to the principle of strong focusing that is an essential feature of modern accelerators as described in U.S. Pat. No. 2,736,799. The combination of a positive (focusing) and negative lens (defocusing) is positive if the magnetic field has a positive gradient. A strong focusing quadrupole doublet lens is illustrated in
Similar results have been reported for a beam passing through a resonant cavity containing a strong axial magnetic field and operating in the TE111 mode (see Yoshikawa et al.). This device is called a peniotron. In the TE111 mode the resonant cavity has standing waves in which the electric field has quadrupole symmetry. The results are qualitatively similar to some of the results described herein. There are quantitative differences in that the resonance cavity is much larger in size (10 meter length), and operates at a much higher frequency (155 MHz) and magnetic field (10 T). Energy extraction from the high frequency waves requires a rectenna. The energy spectrum of the beam reduces the efficiency of conversion. The existence of two kinds of ions is a more serious problem, but the efficiency of conversion is adequate for a D−He3 reactor that produces 15 MeV protons.
A single particle orbit 422 for a particle within the ICC 420 is illustrated in
As shown in
Adjustments to the ion dynamics inside the main magnetic field of the ICC 420 may be implemented using two auxiliary coil sets 500 and 510, as shown in
Reactor
Propulsion System
Exploration of the solar system (and beyond) requires propulsion capabilities that far exceed the best available chemical or electric propulsion systems. For advanced propulsion applications, the present invention holds the most promise: design simplicity, high-thrust, high specific impulse, high specific power-density, low system mass, and fuels that produce little or no radio-activity.
A plasma-thrust propulsion system, in accordance with the present invention, utilizes the high kinetic energy embedded in the fusion products as they are expelled axially out of the fusion plasma core. The system 800 is illustrated schematically in
Bremsstrahlung radiation is converted into electric energy by a thermoelectric-energy converter (TEC) 870. Bremsstrahlung energy that is not converted by the TEC 870 is passed to a Brayton-cycle heat engine 880. Waste heat is rejected to space. A power-control subsystem (810, see
The performance of the plasma-thrust propulsion system 800 is characterized by the following kinetic parameters for a 100 MW p−B11 fusion core example having a design as depicted in
The system 800 exhibits a very high specific impulse, which allows for high terminal velocities of a space craft utilizing the plasma-thrust propulsion system.
A key mission performance/limitation metric for all space vehicles is system mass. The principal mass components in the plasma-thrust propulsion system 800 are illustrated in
The principal source of heat in the plasma-thruster propulsion system 880 is due to Bremsstrahlung radiation. The TEC 870 recovers approximately 20% of the radiation, or 4.6 MW, transferring approximately 18.2 MW to the closed-cycle, Brayton-heat engine 880. The Brayton-heat engine 880 comprises a heat exchanger 860, turbo-alternator 884, compressor 882, and radiators 886, as shown in
A closed-cycle, a Brayton-heat engine is a mature and efficient option to convert excess heat rejected by the TEC 870. In Brayton engines the maximum-cycle temperature is constrained by material considerations, which limits the maximum thermodynamic-cycle efficiency. Based on a standard performance map for the Brayton engine, several design points can be extracted. Typical efficiencies can reach up to 60%. For the present case, 7 MW is needed to be recovered, hence, only a 40% efficiency in converting waste heat is acceptable and well within currently attainable limits of conventional Brayton engines.
The component mass for the entire Brayton engine (less the heat radiators) is calculated based on specific-mass parameters typical of advanced industrial technologies, i.e. in the range of 3 kg/kWe. Turbomachines, including compressors, power turbines, and heat exchangers, are combined for a total subsystem mass of 18 MT.
The radiator mass is estimated to be 6 MT, preferably using heat-pipe panels with state-of-the-art high thermal conductivity.
Significant system weight also comes from the magnets 825 confining the plasma core 835. The superconducting magnetic coils 825 are preferably made of Nb3Sn, which operates stably at 4.5K and at a field of 12.5-13.5 T. The cryogenic requirements for Nb3 Sn are less stringent than other materials considered. With a magnetic field requirement of 7 Tesla and a device length of approximately 7.5 meters, the coil needs about 1500 turns of wire carrying 56 kA of current. Using 0.5-cm radius wires, the total mass of this coil is about 3097 kg. The liquid helium cooling system is comprised of two pumps, one at each end of the main coil. The total mass of these pumps is approximately 60 kg. The outer structural shell is used to support the magnets and all internal components from outside. It is made of 0.01-m thick kevlar/carbon-carbon composite with a total mass of about 772 kg. The outermost layer is the insulation jacket to shield the interior from the large temperature variation in space is estimated at 643 kg. The total mass for the magnet subsystem 825 is, therefore, about 4.8 MT.
At present, the ion injection system 840 most appropriate for space applications would be an induction linac or RFQ. Approximately 15 years ago an RFQ was flown on a scientific rocket and successfully demonstrated the use of high voltage power and the injection of ion beams into space. In a preferred embodiment, six injectors 840 distributed along the length of the CBFR, three for each species of ion. Each injector 840 is preferably a 30 beamlet RFQ with an overall dimension of 0.3 meters long and a 0.020-m radius. Each injector requires an ion source, preferaby 0.02-meters long and 0.020-meters radius, that supplies ionized hydrogen or boron. One source is needed for each accelerator. Both the injector and the source are well within currently attainable limits; with design refinements for space their total mass, including the sources and the accelerators, should be about 60 kg.
The cone-shaped ICC direct energy converter 820 is located at one end of the reactor 836, which is preferably made of stainless steel. With a base radius of 0.5 meters and a length of 2 meters, the ICC mass is approximately 1690 kg. An RF power supply 820 (inverter/converter) recovers the directed-ion flow, converting it into electric power. The power supply mass is about 30 kg. A storage battery 812 is used to start/re-start the CBFR. The stored capacity is about 30 MJ. Its mass is about 500 kg. Alternately, a fuel cell could also be used. Additional control units coordinate operation of all the components. The control-subsystem mass is estimated to be 30 kg. The total energy converter/starter subsystem mass is, therefore, estimated at about 2.25 MT.
A magnetic nozzle 850 is located at the other end of the fusion core 835. The nozzle 850 focuses the fusion product stream as a directed particle flow. It is estimated that the mass of the magnetic nozzle and the ICC are about equal; since both are comprised of superconducting magnets and relatively low-mass, structural components.
The TEC 870 recovers energy from the electromagnetic emissions of the fusion core. It is preferably a thin-film structure made of 0.02-cm thick boron-carbide/silicon-germanium, which has a mass density of about 5 g/cm3. The TEC 870 is located at the first wall and preferably completely lines the inner surface of the reactor core; the mass of the TEC 870 is estimated at about 400 kg. The radiant flux onto the TEC 870 is 1.2 MW/m2 and its peak operating temperature is assumed to be less than 1800° K.
The total plasma-thruster propulsion system mass is thus estimated at about 33 MT. This defines the remaining mission-critical parameters for the presently discussed 100 MW unit:
While the invention is susceptible to various modifications and alternative forms, a specific example thereof has been shown in the drawings and is herein described in detail. It should be understood, however, that the invention is not to be limited to the particular form disclosed, but to the contrary, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the appended claims.
This application claims the benefit of U.S. Provisional Application No. 60/659,549 filed Mar. 7, 2005, which application is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3036963 | Christofilos | May 1962 | A |
3071525 | Christofilos | Jan 1963 | A |
3120470 | Imhoff et al. | Feb 1964 | A |
3132996 | Baker et al. | May 1964 | A |
3170841 | Post | Feb 1965 | A |
3182213 | Rosa | May 1965 | A |
3258402 | Farnsworth | Jun 1966 | A |
3386883 | Farnsworth | Jun 1968 | A |
3527977 | Ruark | Sep 1970 | A |
3530036 | Hirsch | Sep 1970 | A |
3530497 | Hirsch et al. | Sep 1970 | A |
3577317 | Woods | May 1971 | A |
3621310 | Takeuchi et al. | Nov 1971 | A |
3663362 | Stix | May 1972 | A |
3664921 | Christofilos | May 1972 | A |
3668065 | Moir | Jun 1972 | A |
3859164 | Nowak | Jan 1975 | A |
4010396 | Ress et al. | Mar 1977 | A |
4054846 | Smith et al. | Oct 1977 | A |
4057462 | Jassby et al. | Nov 1977 | A |
4065351 | Jassby et al. | Dec 1977 | A |
4098643 | Brown | Jul 1978 | A |
4182650 | Fischer | Jan 1980 | A |
4189346 | Jarnagin | Feb 1980 | A |
4202725 | Jarnagin | May 1980 | A |
4233537 | Limpaecher | Nov 1980 | A |
4246067 | Linlor | Jan 1981 | A |
4267488 | Wells | May 1981 | A |
4274919 | Jensen et al. | Jun 1981 | A |
4303467 | Scornavacca et al. | Dec 1981 | A |
4314879 | Hartman et al. | Feb 1982 | A |
4317057 | Bazarov et al. | Feb 1982 | A |
4347621 | Dow | Aug 1982 | A |
4350927 | Maschke | Sep 1982 | A |
4371808 | Urano et al. | Feb 1983 | A |
4390494 | Salisbury | Jun 1983 | A |
4397810 | Salisbury | Aug 1983 | A |
4416845 | Salisbury | Nov 1983 | A |
4434130 | Salisbury | Feb 1984 | A |
4483737 | Mantei | Nov 1984 | A |
4543231 | Ohkawa | Sep 1985 | A |
4543465 | Sakudo et al. | Sep 1985 | A |
4548782 | Manheimer et al. | Oct 1985 | A |
4560528 | Ohkawa | Dec 1985 | A |
4584160 | Kageyama | Apr 1986 | A |
4584473 | Hashimoto et al. | Apr 1986 | A |
4601871 | Turner | Jul 1986 | A |
4615755 | Tracy et al. | Oct 1986 | A |
4618470 | Salisbury | Oct 1986 | A |
4630939 | Mayes | Dec 1986 | A |
4639348 | Jarnagin | Jan 1987 | A |
4650631 | Knorr | Mar 1987 | A |
4687616 | Moeller | Aug 1987 | A |
4826646 | Bussard | May 1989 | A |
4853173 | Stenbacka | Aug 1989 | A |
4894199 | Rostoker | Jan 1990 | A |
4904441 | Sorensen et al. | Feb 1990 | A |
5015432 | Koloc | May 1991 | A |
5041760 | Koloc | Aug 1991 | A |
5160694 | Steudtner | Nov 1992 | A |
5160695 | Bussard | Nov 1992 | A |
5206516 | Keller et al. | Apr 1993 | A |
5207760 | Dailey et al. | May 1993 | A |
5339336 | Sudan | Aug 1994 | A |
5355399 | Golovanisvsky et al. | Oct 1994 | A |
5420425 | Bier et al. | May 1995 | A |
5422481 | Louvet | Jun 1995 | A |
5473165 | Stinnett et al. | Dec 1995 | A |
5483077 | Glavish | Jan 1996 | A |
5502354 | Correa et al. | Mar 1996 | A |
5537005 | Goebel et al. | Jul 1996 | A |
5557172 | Tanaka | Sep 1996 | A |
5656519 | Mogami | Aug 1997 | A |
5677597 | Tanaka | Oct 1997 | A |
5747800 | Yano et al. | May 1998 | A |
5764715 | Maenchen et al. | Jun 1998 | A |
5811201 | Skowronski | Sep 1998 | A |
5846329 | Hori et al. | Dec 1998 | A |
5848110 | Maenchen et al. | Dec 1998 | A |
5923716 | Meacham | Jul 1999 | A |
6084356 | Seki et al. | Jul 2000 | A |
6248251 | Sill | Jun 2001 | B1 |
6255648 | Littlejohn et al. | Jul 2001 | B1 |
6271529 | Farley et al. | Aug 2001 | B1 |
6322706 | Ohkawa | Nov 2001 | B1 |
6335535 | Miyake et al. | Jan 2002 | B1 |
6345537 | Salamitou | Feb 2002 | B1 |
6390019 | Grimbergen et al. | May 2002 | B1 |
6396213 | Koloc | May 2002 | B1 |
6408052 | McGeoch | Jun 2002 | B1 |
6452168 | McLucky et al. | Sep 2002 | B1 |
6477216 | Koloc | Nov 2002 | B2 |
6488807 | Collins et al. | Dec 2002 | B1 |
6593539 | Miley et al. | Jul 2003 | B1 |
6611106 | Monkhorst et al. | Aug 2003 | B2 |
6628740 | Monkhorst et al. | Sep 2003 | B2 |
6632324 | Chan | Oct 2003 | B2 |
6664740 | Rostoker et al. | Dec 2003 | B2 |
6712927 | Grimbergen et al. | Mar 2004 | B1 |
6755086 | Salamitou et al. | Jun 2004 | B2 |
6850011 | Monkhorst et al. | Feb 2005 | B2 |
6852942 | Monkhorst et al. | Feb 2005 | B2 |
6888907 | Monkhorst et al. | May 2005 | B2 |
6891911 | Rostoker et al. | May 2005 | B2 |
6894446 | Monkhorst et al. | May 2005 | B2 |
6995515 | Rostoker et al. | Feb 2006 | B2 |
7002148 | Monkhorst et al. | Feb 2006 | B2 |
7015646 | Rostoker et al. | Mar 2006 | B2 |
7026763 | Rostoker et al. | Apr 2006 | B2 |
7115887 | Hassanein et al. | Oct 2006 | B1 |
7126284 | Rostoker et al. | Oct 2006 | B2 |
7129656 | Rostoker et al. | Oct 2006 | B2 |
7439678 | Rostoker et al. | Oct 2008 | B2 |
20010006093 | Tabuchi et al. | Jul 2001 | A1 |
20010035498 | Li | Nov 2001 | A1 |
20030150710 | Evans et al. | Aug 2003 | A1 |
20030197129 | Murrell et al. | Oct 2003 | A1 |
20030230240 | Rostoker et al. | Dec 2003 | A1 |
20030230241 | Rostoker et al. | Dec 2003 | A1 |
20040047442 | Monkhorst et al. | Mar 2004 | A1 |
Number | Date | Country |
---|---|---|
825258 | May 1975 | BE |
0143693 | Jun 1985 | EP |
1 387 098 | Mar 1975 | GB |
62-112093 | May 1987 | JP |
11-074098 | Mar 1999 | JP |
2002-043235 | Feb 2002 | JP |
2 056 649 | Mar 1996 | RU |
WO 9710605 | Mar 1997 | WO |
WO 9965056 | Dec 1999 | WO |
WO 0049638 | Aug 2000 | WO |
WO0137313 | May 2001 | WO |
WO 02062112 | Aug 2002 | WO |
WO 02082873 | Oct 2002 | WO |
Entry |
---|
Wessel et al., “D-T Beam Fusion Reactor”, Journal of Fusion Energy, 17 (3), 209-211, 1998. |
Rostoker et al., “Colliding Beam Fusion Reactor”, Science, V. 278,No. 5342, p. 1419-1422, 1997. |
Bystritskii et al. “Generation and Transport of a Low-Energy Intense Ion Beam”, IEE Transaction on Plasma Science, V. 32, No. 5, pp. 1986, 1992. |
Anderson et al. “Plasma and ion beam injection into an FRC”, Plasma Physics Reports, vol. 31, No. 10, Oct. 2005 , pp. 809-817(9). |
Speth “RF Source Overview” ,CCNB, Padua, Jun. 2003; slide 5. |
Webster's II Dictionary, third edition, Houghton Mifflin Company, 2005, p. 374. |
Speth “RF Source Overview” ,CCNB, Padua, Jun. 2003. |
“Tevatron beam separator”, Drawing FNAL Batavia, 2002. |
Rostoker, N. et al., Self-colliding beams as an alternative fusion system for D-He/sup 3/reactors, Current trends in International fusion research. Proceedings of the first International Symposium of Evaluation of Current Trends in Fusion Research, Washington, D.C., Nov. 14-18, 1997, pp. 33-41. |
Rostoker, N. et al., Colliding Beam Fusion Reactor, University of California, Irvine, and University of Florida, Gainesville, FL, pp. 1-26 (1997). |
Ware, A. et al., Electrostatic plugging of open-ended magnetic containment systems, Nuclear Fusion, Dec. 1969, Austria, vol. 9, No. 4, pp. 353-361. |
Ruggiero, Alessandro G., Proton-Boron Colliding Beams for Nuclear Fusion, Proceedings if ICONE 8 8th Int'l. Conference on Nuclear Engineering (Apr. 2-6, 2000, Baltimore, MD), pp. 1-11). |
Rostoker, N. et al., Self-colliding beams as an alternative fusion system, Proceedings of the International Conference on High Power Particle Beams (10th), San Diego, CA (Jun. 20-24, 1994), pp. 195-201). |
Rostoker, N. et al., Comments on Plasma Phys. Controlled Fusion, Self-Colliding Systems for Aneutronic Fusion, vol. 15, No. 2, pp. 105-120, 1992 Gordon and Breach, Science Publishers S.A., U.K. |
Binderbauer et al., Turbulent transport in magnetic confinement: how to avoid it, Dept. of Physics, University of California, Irvine, CA (Apr. 8, 1996), pp. 1-15. |
Rostoker, Norman, Advanced Fusion Energy and Future Energy Mix Scenarios, Abstracts with Programs from 1999 Annual Meeting and Exposition, The Geological Society of America (Oct. 25-28, 1999), Denver, CO). |
Dawson, John M., Advanced Fuels for CTR, Four Workshops in Alternate Concepts in Controlled Fusion, Electric Power Research Institute, Palo Alto, CA (May 1977), pp. 143-147. |
Rostoker, Norman, Alternate Fusion Concepts, Current Trends in International Fusion Research, edited by Panarella, Plenum Press, New York and London, pp. 489-495 (1997). |
Rostoker, N. et al., Classical Scattering in a High Beta Self-Collider/FRC, AIP Conference Proceedings 311 (Irvine, CA 1993), Physics of High Energy Particles in Toroidal Systems, American Institute of Physics, New York. |
Rostoker, N. et al., Colliding Beam Fusion Reactor, 12th Inter'l. Conference on High-Power Particle Beams, Beans '98, Haifa, Israel (Jun. 7-12, 1998), vol. 1, 8 pages. |
Rostoker, N. et al., Colliding Beam Fusion Reactor, American Association for the Advancement of Science (Nov. 21, 1997), vol. 278, pp. 1419-1422. |
Wessel et al., Colliding Beam Fusion Reactor Space Propulsion System, Space Tech. and Applications International Forum-2000, edited by M.S. El-Genk (2000 American Institute of Physics, pp. 1425-1430. |
Wessel et al., D-T Beam Fusion Reactor, Journal of Fusion Energy, vol. 17, No. 3 (Sep. 1998), pp. 209-211. |
Rostoker et al.,Fusion Reactors Based on Colliding Beams in a Field Reversed Configuration Plasma, Comments Plasma Phys. Controlled Fusion (1997), vol. 18, No. 1, No. 1, pp. 11-23. |
Rostoker, Large Orbit Magnetic Confinement Systems for Advanced Fusion Fuels, Final Technical Report, U.S. Department of Commerce, National Technical Information Service (Apr. 1, 1990-Feb. 29, 1992). |
Tusczewski, M., “Field Reversed Configurations,” Nuclear Fusion, vol. 28, No. 11, pp. 2033-2092 (1988). |
Tuszewski, M., “Status of the Field-Reversed Configuration as an Alternate Confinement Concept”, Fusion Technology, vol. 15, (Mar. 1989). |
Rider, Todd H., “Fundamental limitations on plasma fusion systems not in thermodynamic equilibrium,” Phys, Plasmas 4 (4), pp. 1039-1046, Apr. 1997. |
Avanzini et al., “Feasibility of Fusion Power Generation by Accelerated Ion Beams,” ICENES, pp. 305-309, Jun. 30-Jul. 4, 1986. |
Dawson, John M., “Advanced Fuels fo CTR,” Four Workshops in Alternate Concepts in Controlled Fusion, EPRI ER-429-SR Special Report, Part B: Extended Summaries, pp. 143-147, May 1977. |
Dawson, John M., “Alternate Concepts in Controlled Fuison,” EPRI ER-429-SR Special Report, Part C: CTR Using the p-11B Reaction, pp. iii-30, May 1977. |
“Letters,” ISSN 0036-8075, Science, vol. 278, pp. 2024, 2032-2034, No. 5346, Dec. 19, 1997. |
Finn et al., “Field-Reversed Configurations with a Component of Energetic Particles,” Nuclear Fusion, vol. 22, pp. 1443-1458, No. 11, (1982). |
Tamdem Energy Corporation Presentation, Dec. 12, 1997. |
Post, Richard F., “Nuclear Fusion,” McGraw-Hill Encyclopedia of Science & Tehcnology, 6th Ed., pp. 142-153, 12 NIO-OZO. |
Rider, Todd H., “A general critique of inertial-electrostatic confinement fusion systems,” Phys. Plasmas, vol. 2, No. 6, Pt. 1, pp. 1853-1870, Jun. 1995. |
Dobrott, D., “Alternate Fuels in Fusion Reactors,” Nuclear Technology/Fusion, pp. 339-347, vol. 4, Sep. 1983. |
Miley et al., “A Possible Route to Small, Flexible Fusion Units,” Energy, vol. 4, pp. 163-170, Special Issue: 1978 Midwest Energy Conference. |
Heidbrink et al., “The diffusion of fast ions in Ohmic TFTR discharges,” Phys. Fluids B, vol. 3, No. 11, pp. 3167-3170, Nov. 1991. |
Heidbrink et al., “Comparison of Experimental and Theoretical Fast Ion Slowing-Down Times in DIII-D,” Nuclear Fusion, vol. 28, No. 10, pp. 1897-1900, plus letters page, (1988). |
Becker et al., “Low-Energy Cross Sections for 11B(p,2α)*,” Atomic Nuclei 327, pp. 341-355, (1987). |
Rosenbluth et al., “Fokker-Planck Equation for an Inverse-Square Force,” The Physical Review, vol. 107, No. 1, pp. 1-6, Jul. 1957. |
Feldbacher et al., “Basic Cross Section Data for Aneutronc Reactor,” Nucl. Inst. and Methods in Phys. Res., A271, pp. 55-64, (1988). |
Naitou et al., “Kinetic Effects on the Connective Plasma Diffusion and the Heat Transport,” J. of the Phys. Soc. of Jap., vol. 46, No. 1, pp. 258-264, (1979). |
Zweben et al., “Radial Diffusion Coefficient for Counter-Passing MeV Ions in the TFTR Tokamak,” Nuclear Fusion, vol. 13, No. 12, pp. 2219-2245, (1991). |
Song et al., “Electron trapping and acceleration in a modified elongated betatron,” Phys. Fluids B, vol. 4, No. 11, pp. 3771-3780, Nov. 1992. |
Wong et al., “Stability of annular equilibrium of energetic large orbit ion beam,” Phys. Fluids B., vol. 3, No. 11, pp. 2973-2966, Nov. 1991. |
Davis et al., “Generation of Field-Reversing E Layers with Millisecond Lifetimes,” Phys. Review Let., vol. 37, No. 9, pp. 542-545, Aug. 30, 1976. |
Phelps, et al., “Observations of the stable equilibrium and classical diffusion of field reversing relativistic electron coils,” The Phys. of Fluids, vol. 17, No. 12, pp. 2226-2235, Dec. 1974. |
Weaver et al., “Exotic CTR Fuels: Non-Thermal Effects and Laser Fusion Applications,” Paper presented at 1973 Annual Meeting of the Amer. Phys. Soc. Div. of Plasma Physics, Philadelphia, PA, Oct. 30, 1973. |
Weaver et al., “Fusion Microexplosions, Exotic Fusion Fuels, Direct conversion: Advanced Technology Options for CTR,” UCID-16309, Apr. 27, 1973. |
Weaver et al., “Exotic CTR Fuels for Direct Conversion-Utilizing Fusion Reactors,” UCID-16230, Mar. 16, 1973. |
Heidbrink, W.W., “Measurements of classical deceleration of beam ions in the DIII-D tokamak,” Phys. Fluids B, vol. 2, No. 1, pp. 4-5, Jan. 1990. |
Cox, et al., “Thermonuclear Reaction Listing with Cross-Section Data for Four Advanced Reactions,”,Fusion Technology, vol. 18, pp. 325-339. |
Rostoker et al., “Colliding Beam Fusion Reactor,” Science, vol. 278, pp. 1419-1422, Nov. 1997. |
Rostoker et al., “Large Orbit Confinement for Aneutronic Systems,” Non-Linear and Relativistic Effects in Plasmids, Ed. V. Stefan, Am. Inst. of Phys., New York, pp. 116-135, (1992). |
Rostoker et al., “Magnetic Fusion with High Energy Self-Colliding Ion Beams,” Phys. Rev. Let., vol. 27, No. 12, pp. 1818-1821 (1993). |
Nevins, et al. “Feasibility of a Colliding Beam Fusion Reactor,” online available: wysiwyg://66/http://intl.sciencemag.org/cgi/content/full/281/5375/307a. |
Carlson (dated Aug. 1998) “Annotated Bibliography of p-B11 Fusion,” online available: http://www/ipp.mpg.de/˜Arthur.carlson/p-B11-bib.html. |
Carlson, (dated Nov. 28, 1997) “Re: Boron/Proton Colliding Beam Fusion Reactor?” online available: http://groups.google.com/groups?q=rostok...opuo.fsf%40s4awc.aug.ipp-garching.mpg.de. |
Carlson (dated Jan. 4, 1997) “Fundamental Limitation on Plasma Fusion Systems no in Thermodynamic Equilibrium,” Online available: http://www.ipp.mpg.de/˜Arthur.Carlson/rider.html. |
Carlson (dated Sep. 14, 2000), “Re: Lithium Fission—Why Not?”, online available: http://groups.google.com/groups?q=rostok...v35u.fsi%40suawc.aug.ipp-garching.mpg.de. |
Carlson (dated May 10, 2000), “Home Page of Dr. A. Carlson” online available: http://www/rzg.mpg.de/˜awc/home.html. |
W.W. Heidbrink, et al. “The Behaviour of Fast Ions in Tokamak Experiments,” Nuclear Fusion, vol. 34, No. 4 (1994). |
L.C. Steinhauer, et al. “FRC 2001: A White Paper on FRC Development in the Next Five Years,” Fusion Technology vol. 30, Sep. 1996. |
Miley, G.H. et al, “On Design and Development issues for the FRC and Related Alternate Confinement Concepts,” 6th IAEA Technical Committee Meeting and Workshop on Fusion Power Plant Design and Technology, Culham, UK, Mar. 24-27, 1998, vol. 48, No. 3-4, pp. 327-337. |
Kalinowsky, H., “Deceleration of Antiprotons from MeV to keV Energies” Antihydrogen Workshop, Munich, Germany, Jul. 30-31, 1992, vol. 79, No. 1-4, pp. 73-80. |
Lampe et al., “Comments on the Colliding Beam Fusion reactor Proposed by Rostoker et al. for Use with the p-11B Fusion Reaction”, Naval Research Lab., Plasma Physics Div. (Oct. 30, 1998), title page, i, iii, pp. 1-37. |
“A White Paper on FRC Development”, Apr. 1998, from http:/depts.washington.edu/ppl/programs/wpr98.pdf, pp. 1-26. |
Iwanenko et al., “On the Maximal Energy Attainable in a Betatron”, Physical Review, vol. 65, No. 11 and 12, Jun. 1 and 15, 1944, p. 343. |
Jeffries, C.D., “A Direct Determination of the Magnetic Moment of the Protons in Units of the Nuclera Magnetron”, Physical Review, vol. 81, No. 6, Mar. 15, 1951, pp. 1040-1055, plus Figure 8 (one page). |
Tomita et al., “Direct Energy Conversion System for D-3He Fusion”, Seventh International Conference on Emerging Nuclear Energy Systems, ICENES '93, 1994, pp. 522-526. |
Robinson, “Army Pushes New Weapon Effort”, Aviation Week & Technology, Oct. 16, 1978, pp. 42-53. |
A. V. Shishlov et al., “Long time implosion experiments with double gas puffs”, Physics of Plasmas, vol. 7, No. 4, pp. 1252-1262 (Apr. 2000). |
Lawson, J.D., Proc. Soc. B70, pp. 6-10 (1957). |
Artsimovich, L.A., “Controlled Thermonuclear Reactions”, Gordon and Breach Science Publishers, New York (English Edition first Published 1964), pp. 1-9. |
Goldston et al, Science vol. 278, No. 5346, pp. 2031-2037 (Dec. 19, 1997). |
Rider, T.H., Physics of plasmas 4(4), Apr. 1997, pp. 1039-1046. |
Bohm, D., “Quantum Theory”, Dover Publications, Inc., New York (copyright 1951) (ISBN 0-486-65969-0), Ch. 12, pp. 277-283. |
Nevins, Carlson and Rostoker, Binderbauer and Monkhorst, Science, vol. 281, No. 5375, p. 307 (1998). |
Wessel et al, J. Fusion Energy, vol. 17, No. 3, pp. 209-211 (1998). |
“Summary, Plasma Science, Advancing Knowledge in the National Interest”, National Research Council of the National Academies, The National Academies Press, Washington D.C. (May 2007) (www.nap.edu). |
“Laval Nozzle”, www.answers.com/topic/de-laval-nozzle, 2008. |
Arsenin at al., “Suppression of plasma instabilities by the feedback method”, Soviet Physics Uspekhi, v. 20, No. 9, pp. 736-745. |
Alexander Wu Chao et al., Handbook of Accelerator Physics and Engineering (2nd Printing), World Scientific (1998), Chapter 2, pp. 53, 119-120. |
Dolan, “Fusion Research”, vol. II, pp. 277-309, Pergamon Press, NY (1982). |
U.S. Appl. No. 11/709,995—Office Action, Sep. 16, 2009. |
U.S. Appl. No. 11/371,207—Office Action, Sep. 18, 2009. |
U.S. Appl. No. 11/371,196—Office Action, Oct. 14, 2009. |
Anderson et al., “Plasma and Ion Beams Injection into an FRC”, Plasmay Physics Reports, vol. 31, No. 10, pp. 809-817 (9) (Oct. 2005). |
EP, Search Report, Oct. 17, 2009. |
Japan, Official Action, Aug. 17, 2011. |
AU, Office Action, Oct. 13, 2011 |
Dawson et al., “Isotope separation in Plasma by Use Ion Cyclotron Resonance”, Phys. Rev. Letters, 37(23) pp. 1547-1550. |
MX, Office Action, Apr. 1, 2011. |
Research Council of the National Academies, The National Academies Press, Washington D.C. (May 2007) (ww.nap.edu). |
Number | Date | Country | |
---|---|---|---|
20060267504 A1 | Nov 2006 | US |
Number | Date | Country | |
---|---|---|---|
60659549 | Mar 2005 | US |