The present invention relates generally to cleaning systems, and more specifically to devices for cleaning floors, fabrics, carpets, clothing, upholstery, curtains, fabric and various other hard and soft surfaces.
Various floor cleaning devices, such as mops, brooms, vacuums, steam cleaners, wet extractors, and the like have been produced in the prior art. These prior art devices are typically provided in canister, upright, hand-held and other portable configurations, and may be powered by an electrical cord or by batteries. In many cases, the device is provided with a handle to facilitate movement and/or use. These handles include, for example, simple straight shaft designs such as the wooden handles on most brooms, somewhat more ergonomic curved handles, pistol-grip type handles, and space-saving molded-in handles such as those formed directly in the housing of many hand-held devices. Examples of various handles are shown in U.S. Pat. Nos. 5,884,358; D334,447; 6,108,862; and D431,335. All of the aforementioned patents are incorporated herein by reference.
While these handles are somewhat useful for manipulating their associated cleaning devices, they suffer from various shortcomings. For example, such handles are generally shaped to provide only one distinct operating position for the user's hand. Such handles are also oftentimes deficient when it comes to manipulating the device during transportation and storage. Still further, these handles may consume excess storage space. As such, there remains a need to provide an improved handle design for cleaning devices.
In one exemplary aspect, there is provided a vacuum cleaner filter assembly having a first cap, a second cap, a filter element extending between the first cap and the second cap, and a vane connected to at least one of the first cap and the second cap and extending along at least a portion of the filter element. The filter assembly is removably mounted in a dirt collection chamber having an air inlet and an air outlet.
In another exemplary aspect, there is provided a vacuum cleaner filter assembly having a dirt collection chamber having a generally circular profile and an air inlet and an air outlet, a first cap, a second cap having a second cap fitting adapted to engage the air outlet, a filter element extending between the first cap and the second cap, and a vane connected to at least one of the first cap and the second cap and extending along at least a portion of the filter element with at least a portion of the vane being positioned between the air inlet and the filter element.
In another exemplary aspect, there is provided a vacuum cleaner filter assembly having a first cap, a second cap, a filter element extending between the first cap and the second cap, and a vane connected to at least one of the first cap and the second cap and extending along at least a portion of the filter element.
Various modifications can, of course, be made to the above exemplary aspects, and other exemplary aspects having fewer, other, or alternative features may be provided and encompassed by the claimed invention. Further embodiments and variations are described herein and encompassed within the scope of the claims.
The present invention provides an improved handle for cleaning devices. The handle generally comprises a grip having multiple gripping positions for handling the device to which the handle is attached. Such a multi-position grip facilitates operating, transporting, storing and otherwise manipulating the device. The handle may be used with any type of cleaning device, such as bag or bagless vacuums, wet extractors, mops, brooms, canister-type cleaners, wet/dry vacuums, accessory tools, and hand-held and other types of portable cleaners. Examples of such devices are shown in U.S. Pat. Nos. 6,558,453; 6,481,048; 6,311,366; 6,308,374; and 5,933,912, which are incorporated herein by reference.
A first exemplary embodiment of a handle 100 of the present invention is shown in
The handle also may be provided with a grip surface 106 that extends partially or entirely around the inner side 108 of the grip structure 102. Any suitable grip surface, such as an overmolded rubber or synthetic material, may be used. The grip surface 106 may include finger indentations and other shapes to improve comfort and grip or add cosmetic value. The grip surface provides a region of greater grip for the user's hand. While it is within the scope of the invention to provide the entire grip structure with a region of highly-tactile material, such as rubber, in one embodiment only the inner side 108 of the grip structure 102 has such a material, while the remainder is constructed of material having a less tactile material, such as hard plastic. In another embodiment, the inner side 108 and the outer side are both covered, in part, by a relatively tactile material. This dual-material grip is expected to allow the user's hand to slide somewhat on the handle 100 to assist with changing hand positions and to prevent chafing. The grip surface 106 may also comprise a system of interchangeable grips that can be removed and replaced so that the user can customize the shape, texture, appearance or diameter of the grip. The handle 100 also may have one or more controls (not shown) integrated therein or attached thereto for controlling the operation of the vacuum or other device to which the handle 100 is attached. Such controls may include vacuum motor power switches, brushroll power switches, fluid deposition system controls (in the case of extractors), and so on.
Referring now to
Another feature of the embodiment of
The telescoping handle post 216 may also have a circular cross-section so that it can pivot about its axis. Alternatively, the handle 100 may be attached to the handle post 216 such that it can rotate approximately about the axis of the handle post 216. In these configurations, or other equivalent configurations, it will be seen that the handle 100 can be pivoted relative to the rest of the device 200 about an axis generally aligned with the long axis of the rear housing 204, which provides even greater flexibility and comfort during use. Such a rotating handle may also be lockable in one or more angular orientations. This also allows the handle 100 to be rotated 90 degrees relative to the device 200 so that the handle is parallel with the back surface of the device 200 and the opening 104 faces forward, so that the handle 100 can be used to hang the device 200 on a hook while the back side of the device remain approximately flush against a wall. This configuration may also reduce the amount of floor space required to store the device 200. In still another variation (not shown), the handle 100 may also be pivotable so that it can fold downward and overlie the canister portion 204 somewhat like a halo, to further reduce storage space requirements. The handle 100 and handle post 216 may also be made to be completely removable from the rest of the device 200, which can assist with packing the device 200 into as small a space as possible for cost savings for shipping and boxed storage.
It will be appreciated that the handle 100 may be gripped from a variety of directions and in a variety of ways, such as by grasping it overhand, underhand, or as a pistol-type grip. This increased flexibility provides ergonomic and technical advantages over known handle configurations. For example, in typical prior art designs, the handle provides a limited grip area that the user is obliged to hold at a certain angle and in a certain way to operate the device. One problem with this typical prior art design is that the user may not find the handle position to be comfortable in the first instance, particularly if the user is taller or shorter than the size of the user that the handle is meant to accommodate, or has a larger or smaller hand size. Another problem with this typical prior art design is that, even if the user finds the handle to be comfortable initially, during use, fatigue may cause the user to experience discomfort caused by keeping his or her hand in the same position for an extended time, but no alternative positions are available for the operator to grasp the device. Unlike the prior art, the handle of the present invention allows the user to firmly grasp it in multiple different positions and at different angles to provide better initial comfort and the option to change grips during use to a virtually unlimited number of alternative positions to help reduce fatigue.
The handle 100 of the present invention may also provide the additional advantage that it can be used to easily grasp and lift the device 200 from the front of the device 200 by gripping the forward portion of the handle 218 (
Other variations may also be used with the present invention. For example, the grip structure 102 may include an inner ring that forms the grip surface 106 that can rotate relative to the grip structure 102. In this embodiment, the grip surface 106 may include finger detents or operating controls that can be pivoted to the user's desired location. Furthermore, in another embodiment, all or a portion of the entire grip structure may rotate around the center of the opening 104 so that the user does not have move his or her hand to change his or her angle of grip. In still another embodiment, shown in
Additional embodiments of the invention may be used with other cleaning devices. Non-limiting examples of such devices are shown in
While the shown embodiments have all generally depicted a circular, elliptical or ovoid handle, it will be appreciated that the present invention also includes other multi-position grips. For example, a handle having a somewhat geometrically-shaped (e.g., triangular, squared, pentagonal, etc.) grip structure would also provide some of the benefits of the invention. Such geometric shapes, however, are expected to provide significantly fewer comfortable gripping positions, and therefore are not favored. However, a grip structure having a mostly circular shape with one or more flat portions is also contemplated by the invention. Other variations will also be readily apparent to those of ordinary skill in the art in light of the disclosures provided herein.
The embodiment of
The base assembly 1100 comprises a lower base housing 1102 and an upper base housing 1104 that form “clamshell” halves to hold the other parts of the base assembly 1100. These parts are preferably formed of a plastic material, but may be formed from metal or other materials. The base housings 1102, 1104 also join to form the working air passage therebetween. More specifically, the base housings 1102, 1104 form a brushroll chamber 1106 at a front end thereof, which extends rearward by way of an air passage 1108 to a hollow T-joint 1110. The lower portion of the brushroll chamber 1106 is open to form an inlet nozzle (not visible), as are known in the art. A rubber wiper skirt 1107 may also be provided in a corresponding laterally-extending slot behind the inlet nozzle to help capture dirt that might otherwise escape from the air rushing into the inlet nozzle. The skirt 1107 comprises a notched, flexible rubber strip that extends downward to contact or nearly contact the surface being cleaned.
As shown in
A portion of the lower base housing 1102 is open to provide access to the air passage 1108 from the exterior of the base assembly 1100. This access port 1111 is covered by a removable cover 1112. Should the air passage 1108 become obstructed, an operator can remove the cover 1112 to clean out the obstruction. The cover can be held in place by tabs 1113 that fit over a corresponding lip 1114 in the access port, and a resilient tab 1115 that fits into a corresponding notch 1116, but other user-removable constructions may be used. The cover 1112 is also preferably made from a transparent material, such as ABS plastic, to allow a user to visually check for obstructions.
A brushroll 1117 is located in the brushroll chamber 1106, and held in place between the base housings 1102, 1104 by bearing mounts 1118. The bearing mounts 1118 fit into slots 1119 in the lower base housing 1102 to hold them in place, and rotatably hold each end of the brushroll 1117. The bearing mounts 1118 may include typical roller or ball bearing sets to hold the brushroll axle 1124, but more preferably comprise plastic outer casings into which are pressed brass bushings 1142. The inner surfaces of the brass bushings 1142 are cylindrical to receive the brushroll axle 1124, but the outer surfaces of the brass bushings 1142 are spherical so that they can pivot within the plastic casings of the bearing mounts 1118. The use of such bushings accommodates for manufacturing tolerance variations in the straightness of the brushroll 1117 or brushroll axle 1124, or in the alignment of the bearing mount slots 1119, that would otherwise result in premature wear on the bearing mounts 1118. This design also allows some brushroll 1117 flex without the bearings binding.
The brushroll 1117 has a corresponding drive pulley 1120. In the shown embodiment, the drive pulley comprises a toothed pulley 1121 having a hexagonal protrusion 1122 extending axially therefrom. The hexagonal protrusion slidably fits within a corresponding hexagonal opening 1123 in the end of the brushroll 1117, and the drive pulley 1120 is captured in place when the bearing mounts are attached to the brushroll's axle 1124. One or more screws (not shown) may also be used to affix the drive pulley 1120 to the brushroll 1117. The brushroll includes two helical rows of bristles 1125. The helixes reverse direction at or near the center of the air passage 1108, which is offset from the centerline of the base assembly 1100, to help direct debris towards the air passage. The brushroll 1117 is sealed at each end by a pair of wool felt seals 1126, which are fitted into corresponding slots 1127 in the upper and lower base housings 1102, 1104. These seals 1126 help seal the brushroll chamber 1106 from air communication with other interior regions of the base assembly 1100.
The base assembly 1100 also includes a pair of rear wheels 1128 and wheel hubs 1129. The wheels 1128 fit over corresponding stub axles 1130 that protrude laterally from opposite rear sides of the lower base housing 1102. Clips 1131 on the stub axles 1130 snap over a corresponding lip 1157 of each wheel 1128 to hold the wheels 1128 on. A second set of clips 1132, located within a recessed hub portion of each wheel 1128, snap over corresponding lips 1133 on each wheel hub 1129 to hold them in place. The base assembly 1100 also has a pair of front wheels 1134, which are each provided with an axle 1135 that passes through the corresponding wheel and extends from both sides thereof. The front wheels 1134 and axles 1135 are held in the lower base housing 1102 by snapping the protruding ends of the axles 1135 into corresponding slots (not visible) in the lower surface of a front portion of the lower base housing 1102, as is known in the art.
A brushroll motor 1136 is mounted in a motor chamber 1137 located behind the brushroll chamber 1106. The brushroll motor 1136 is mounted by way of a metal motor mounting plate 1138, which fits into a corresponding slot 1139, to more rigidly locate the drive end of the brushroll motor and prevent it from shifting during use and to minimize misalignment that may occur as a result of plastic deformation of the base housings 1102, 1104. The brushroll motor includes a toothed drive pinion 1140, which drives the brushroll drive pulley 1120 by way of a belt 1141. Of course, non-toothed drive pulleys and/or belts may be used instead, or the belt drive arrangement may be replaced by any other suitable drive system, such as a gear drive system. Heat generated by the brushroll motor 1136 is dissipated through one or more vents 1156 through the lower and/or upper base housing 1102, 1104. Although the base assembly 1100 is described herein as having a brushroll and motor, it will be appreciated that these parts may be omitted to provide a more economical or lighter device.
The brushroll motor 1136 receives power from a main power cord or batteries (not shown) by way of electrical contacts 1143. The electrical contacts 1143 are mounted to the T-joint 1110 under a cover 1146. As described below, these contacts 1143 connect with corresponding electrical contacts 1251 (
The T-joint 1110 is pivotally mounted between the lower and upper base housings 1102, 1104. To this end, the T-joint has a lower portion 1147 formed by a cylindrical shape turned with its axis generally parallel to the floor and perpendicular to a fore-aft direction of the device (preferably parallel to the brushroll 1117). This lower cylindrical portion 1147 has a lip 1148 at or near each end. These lips 1148 fit into corresponding slots 1149 in the base housings 1102, 1104 to capture the T-joint 1110 in place but still allow relative pivotal movement between the T-joint 1110 and the rest of the base assembly 1100. Of course, other pivotal arrangements may be used instead. The lower base housing 1102 is also provided with a T-joint lock 1155, which is a separate plate-like part having a leaf-spring like cantilevered extension 1306 (
The T-joint 1100 has a hollow passage therethrough, and receives the working air flow passing through air passage 1108, and conveys it to an opening through the upper end 1150 of the T-joint 1100, as shown by broken arrow A. The side of the lower T-joint portion 1147 opposite the air passage 1108 is closed off to prevent air from passing therethrough.
The T-joint 1100 is also provided with a push lock 1152, which is riveted or otherwise affixed to an inner surface of the hollow passage through the T-joint 1110. The push lock 1152 comprises a leaf spring 1154 to which a button 1153 is attached. When installed, the button 1153 protrudes through a hole in the T-joint 1110, and extends outward past the side wall of the T-joint 1110 by some distance. The button 1153 can be pushed back so that it is flush or nearly flush with the side wall of the T-joint 1110, but returns to its extended position under the influence of the leaf spring 1154. The use of these parts and the attachment of the T-joint 1110 to the remainder of the vacuum is shown in
Referring, for the moment, to
Referring now to
The first rear housing shell 1203 and motor cover 1205 form a motor chamber 1206 when they are installed together. The motor chamber 1206 contains a fan/motor 1207, which is an electric motor having an air-moving impeller (fan) attached to and driven by the motor. Such devices are well-known in the art, and any suitable fan and motor may be used. The fan and motor may also be provided as separate devices, rather than being conjoined as an assembled unit. The fan/motor 1207 is preferably installed with the fan inlet 1208 directed upwards. In order to isolate vibrations created by the fan/motor 1207, the lower end of the fan/motor 1207 is inserted into a rubber or elastomeric bushing 1209, which is installed in a corresponding bushing slot 1210 in the first rear housing shell 1203 and held in place with a bracket 1211. The upper end of the fan/motor 1207 is surrounded by a rubber or elastomeric ring seal 1212, which abuts a corresponding lip 1213 in the first rear housing shell 1203 and motor cover 1205 to provide an air-tight fit.
Air exhausting from the fan/motor 1207 exits the motor chamber 1206 through vents 1214, which may be located on the motor cover 1205 or the first rear housing shell 1203. A post-motor filter 1215 may also be provided between the fan/motor 1207 and the vents 1214 to reduce emissions from the device or to simply screen the fan/motor 1207 from view. The fan/motor 1207 may also be partially or wholly wrapped in a foam sound and/or vibration reducing material. The motor cover 1205 is also optionally provided with a handle 1216, which can be used to help lift the device. In the embodiment of
The cyclone container assembly 1202 generally comprises a dirt cup 1219, a filter assembly 1220, and a lid 1222. The dirt cup 1219 has an inlet passage 1223 for receiving a dirt-laden working air flow, and an outlet passage 1224 for fluidly connecting to the fan inlet 1208 to receive the vacuum generated by the fan/motor 1207. The inlet and outlet passages 1223, 1224 may be integrally formed with the dirt cup 1219, as shown in U.S. Pat. Nos. 5,779,745 and 5,935,279, which are incorporated herein by reference, or formed separately and joined thereto.
The filter assembly 1220 is positioned within the dirt cup 1219 to help remove dirt, dust and other particles from the working air flow. In the shown embodiment, the filter assembly 1220 comprises a pleated filter element 1221 that is affixed between an upper cap 1225 and a lower cap 1226 by any conventional filter manufacturing method. The upper cap 1225 has a vane 1227 that prevents air entering the dirt cup 1219 through the inlet passage 1223 from directly striking the filter element 1221, and may also contribute to generating a cyclonic airflow within the dirt cup 1219. The lower cap 1226 has an upwardly-extending cage 1228 that prevents the filter element 1221 from collapsing inward, and has an opening through it to allow air passing through the filter element 1221 to pass into the outlet passage 1224. A seal 1229 is provided at the bottom of the lower cap 1226 to seal the filter assembly 1220 against the outlet passage 1224. The filter assembly 1220 can be held in place in any suitable manner. In a preferred embodiment, shown in
The lid 1222 is attached to the top of the dirt cup 1219 by a conventional bayonet fitting. One slot 1230 of the bayonet fitting is visible in
The dirt cup 1219 is preferably adapted to generate a cyclonic airflow to assist with separating dirt from the working air flow. One way of doing this is to use a filter vane 1227 that redirects the air entering the cup through the inlet passage 1223 in a tangential manner. Alternatively, or in addition, the inlet passage 1223 may be shaped to impart a tangential component to the entering air. Of course, other devices and methods of imparting cyclonic flow may be used instead. It is also envisioned that the cyclonic dirt cup 1219 can be replaced by a conventional bag filter. It will also be appreciated that, while the present invention shows a “clean air” system in which the dirt-laden air flow is cleaned before it enters the fan/motor 1207, it can instead be replaced by a system in which the dirt-laden air flow enters the fan/motor 1207 and is then pressurized and pushed into the dirt receptacle.
In use, the filter assembly 1220 and lid 1222 are assembled to the dirt cup 1219 to form the cyclone container assembly 1202. The container assembly 1202 is removably positioned in the device so that it rests on the motor cover 1205 with the dirt cup outlet passage 1224 positioned adjacent the fan inlet opening 1217, and the seal 1218 providing a fluid tight airflow passage therebetween. The dirt cup inlet passage 1223 nests within a recess 1231 formed in an upright portion 1232 of the first rear housing shell 1203 that extends above the motor chamber 1206. The upright portion 1232 also includes a dirt cup latch 1233, which is mounted in the upright portion 1232 such that it can be moved downward and biased upward by an associated spring 1234. The dirt cup latch 1233 includes a hook 1235 that protrudes through an opening 1236 through the upright portion 1232 of the first rear housing shell 1203. This hook engages a corresponding protrusion or recess (not shown) in the dirt cup 1219 or lid 1222 to hold the container assembly 1202 in place. The container assembly is released by depressing the dirt cup latch 1233.
The second rear housing shell 1204 is affixed to the back of the first rear housing shell 1203 by way of screws or other fastening devices. The first and second rear housing shells 1203, 1204 contain a valve assembly 1237 and a handle assembly 1238.
The valve assembly 1237 is located at the bottom end of the rear housing 1200, and provides a working air flow path between the base assembly 1100 and the dirt cup inlet passage 1223. The valve assembly 1237 comprises a rear valve housing 1239 and a front valve housing 1240 that are assembled together to form a base assembly inlet (passage 1241), an auxiliary inlet 1242 and a valve outlet 1243. These parts are shown in a partially assembled rear view in
The valve housings 1239, 1240 form a valve chamber 1244 in which a barrel valve 1245 is located such that it can rotate about its cylindrical axis. In a first position, shown in
An accessory hose 212 (
A pair of electrical cord mounting hooks 1252, 1253 are also attached to the second rear housing shell 1204. The upper cord hook 1252 comprises a conventional cordreel hook having a fixed base 1254 and a rotatable hook portion 1255 that can be turned 180 degrees to quickly release a power cord (not shown) wound thereon. The fixed base 1254 is attached to an upper mounting point 1256 located near an upper end of the second rear housing shell 1204. The lower cord hook 1253 comprises a downwardly-projecting hook portion 1257 and an upwardly-projecting tool holder 1258 that is adapted insert into the bore of an optional accessory cleaning tool 1259 and thereby hold the tool 1259 in place for storage on the device. The lower cord hook 1253 is rigidly mounted to a lower mounting point 1260 located near the lower end of the second rear housing shell 1204. The power cord enters through a hole 1265 in the second rear housing shell 1204, and connects with a main power switch 1266 to provide electricity to the device. In a preferred embodiment, the main power switch 1266 comprises a three-position rocker switch having a first position in which the device is not operating, a second position in which only the fan/motor 1207 is operating, and a third position in which the fan/motor 1207 and the brushroll motor 1136 are operating.
A loop-like handle 1261 is attached to the upper end of the rear housing 1200. The handle 1261 has a curved contour that provides an ergonomic handgrip on its bottom surface and a cupped surface on its top side. The cupped surface provides the added benefit of acting as a hose retainer to hold the accessory hose 212 (
The handle assembly 1238 is also housed within the first and second rear housing shells 1203, 1204, and generally fits within a handle recess 1267 in the second rear housing shell 1204. The handle assembly 1238 comprises a handle support bushing 1268 into which a handle post 1269 slidably fits. The handle support bushing is mounted in the second rear housing shell near the top of the handle recess 1267. Attached to the top end of the handle post 1269 are a grip adaptor 1270 and a grip 1271. The grip adapter 1270 is preferably riveted or bonded to the handle post 1269, but may be releasably attached thereto. The grip 1271, which is shaped as described previously herein, is preferably formed of two halves, as shown, that are attached to one another by screws, snap engagement, or other fasteners. The grip 1271 and grip adapter 1270 may be attached, either permanently or removably, by any type of fastening method. For example, these parts may be detachably engaged by a pushbutton release, such as described with respect to the attachment between the base assembly 1100 and the rear housing 1200, and shown in
The handle post 1269 is provided with a pair of pins 1272 that, when assembled, protrude out of corresponding holes 1273 on either side of the handle post 1269 (only one hole 1273 is visible). Each pin 1272 comprises a pin attached to a semi-circular leaf spring that fits within the bore of the handle post 1269. The leaf spring biases the pin 1272 out through the respective hole 1273, but allows it to be pushed back so that it is flush or nearly flush with the outer surface of the handle post 1269 to allow the handle post 1269 to be inserted into the handle support bushing 1268. When the first and second rear housing shells 1203, 1204 are assembled, they form a pair of channels 1274 on either side of the handle recess 1267 (only one half of one channel 1274 is visible). The pins 1272 protrude into these channels and thereby prevent the handle post 1269 from rotating about its axis. In other embodiments, the handle post 1269 may be made to rotate about its axis, either freely or only when desired. Alternatively, the handle post 1269 and handle support bushing 1268 may be made with corresponding non-circular profiles that do not allow relative rotation when the handle post 1269 is inserted in the handle support bushing 1268.
In a preferred embodiment, the handle post 1269 is a telescoping post that may be moved from a collapsed position to an extended position, and optionally to various intermediate positions. A preferred telescoping lock arrangement is shown in
As shown in
While the foregoing telescoping lock mechanism is preferred, other devices may be used instead. Examples of other telescoping devices that may be used with the present invention are shown in U.S. Pat. Nos. 5,332,266; 5,941,575; and 6,474,696, which are incorporated herein by reference.
Referring now to
The switch plate 1804 is attached to or positioned immediately above the inlet tube set 1802 when they are assembled. The switch plate 1804 comprises a plate 1814 or block having a hole 1816 formed therein. The hole 1816 is shaped and sized to fit over and provide fluid communication to both the base assembly inlet tube 1810 and the auxiliary inlet tube 1812. Alternatively, two separate holes may be formed, with one hole corresponding to each of the inlet tubes 1810, 1812. When assembled, the hole 1816 or holes are positioned adjacent the inlet tube set 1802, and may be provided with a seal (not shown) to help prevent air leaks between the plate 1814 and the inlet tube set 1802.
The switch plate 1804 also has a recessed track 1818 formed therein to receive a corresponding flow diverter 1820 on the switch 1806. The flow diverter 1820 comprises a plate-like structure that fits within the track 1818 such that it can be slid into a first position to block the auxiliary inlet tube 1812, and a second position to block the base assembly inlet tube 1810. These positions correspond to the floor cleaning and auxiliary cleaning positions, respectively. The switch plate 1804, switch 1806 and/or the vacuum housing in which the parts are contained may also include detents or other movement inhibitors to firmly hold the switch 1806 in each of the two positions to prevent the switch 1806 from sliding out of place when it is not desired to change the cleaning mode. A switch handle 1822 (
The outlet tube 1808 is positioned immediately above the flow diverter 1820. The lower portion 1824 of the outlet tube 1808 is adapted to fit against the top of the switch plate 1804 and provide a fluid-tight fit to prevent vacuum leaks at this junction. A seal (not shown) may be provided to help seal the parts together, or a seal may be provided by simply abutting the parts. The outlet tube 1808 comprises a relatively large bell mouth 1826 that is shaped to cover both the base assembly inlet tube 1810 and the auxiliary inlet tube 1812, and thus can receive the working air from either of the inlet tubes 1810, 1812, depending on which is exposed by the flow diverter 1820. The outlet tube 1808 narrows to a smaller diameter portion 1828 above the bell mouth 1826, which is fluidly connected to the dirt receptacle (not shown).
Referring now to
The switch member 2004 comprises a block-like structure having a first passage 2010 that extends entirely through the switch member 2004 in the vertical direction (note that the use of directional indications is used solely for clarity of explanation, and it will be appreciated that the device can be reoriented in any direction). A second passage 2012, located next to the first passage 2010, extends vertically through the top of the switch member 2004, but turns laterally through a side opening 2014 through the end of the switch member 2004. The bottom of the second passage 2012 is blocked. An auxiliary hose 2016 (or auxiliary hose mounting cuff) is attached to switch member 2004 to communicate with the side opening 2014.
When assembled, the switch member 2004 slides on the tracks 2008 between the inlet and outlet tubes 2002, 2006 and is provided with a switch handle 2018 that can be actuated by a user. The switch member 2004 can be placed in a first position in which the first passage 2010 is located to provide a fluid communication path between the tubes 2002, 2006, thereby placing the device in the floor cleaning mode of operation. The switch member 2004 can also be slid into a second position in which the second passage 2012 is located below, and in fluid communication with, the outlet tube 2006, to thereby place the device in the auxiliary cleaning mode. Like the switch assemblies described with reference to
While the embodiments of the invention described above are preferred, it will be recognized and understood that these embodiments are not intended to limit the invention, which is limited only be the appended claims. Various modifications may be made to these embodiments without departing from the spirit of the invention and the scope of the claims.
The present invention claims priority to U.S. Provisional Application No. 60/554,406, filed Mar. 19, 2004, and is a continuation of U.S. patent application Ser. No. 12/121,321, which in turn is a continuation of Ser. No. 11/692,483, which in turn is a continuation of U.S. patent application Ser. No. 11/084,513. All of these applications are incorporated herein by reference. The following applications are related by subject matter and are incorporated herein by reference in their entirety: Design application No. 29/225,780, which issued as U.S. Design Pat. No. D525,400; Design application No. 29/225,781, filed Mar. 21, 2005; Design application No. 29/225,783, which issued as U.S. Design Pat. No. D524,498; and Design application No. 29/225,753, which issued as U.S. Design Pat. No. D533,976.
Number | Date | Country | |
---|---|---|---|
60554406 | Mar 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12121321 | May 2008 | US |
Child | 12389985 | US | |
Parent | 11692483 | Mar 2007 | US |
Child | 12121321 | US | |
Parent | 11084513 | Mar 2005 | US |
Child | 11692483 | US |