The present invention relates to vacuum cleaners, and more particularly to vacuum cleaners with a brushroll.
In one aspect, the invention provides a vacuum cleaner including a base having a floor nozzle that defines a suction chamber, a brushroll driven by a brushroll motor, and a brushroll motor sensor configured to measure an electrical current used by the brushroll motor. The vacuum cleaner further includes a pressure sensor configured to measure an internal pressure within the vacuum cleaner, and a controller in communication with the brushroll motor sensor and the pressure sensor. The controller is operable to control an operating speed of the brushroll motor based on feedback received from the pressure sensor and the brushroll motor sensor.
In another aspect, the invention provides a method of controlling a brushroll motor in a vacuum cleaner. The method includes sensing a pressure within the vacuum cleaner, sensing a motor current of the brushroll motor used to drive the brushroll, comparing the sensed pressure with one or more reference pressure values, comparing the motor current with one or more reference current values, and controlling operation of the brushroll motor based on the sensed pressure and motor current. Controlling operation of the brushroll motor includes turning the brushroll motor on based on the sensed pressure.
In another aspect, the invention provides a method of controlling a brushroll motor in a vacuum cleaner. The method includes sensing an electrical current used by the brushroll motor to drive the brushroll at a first speed, sensing the speed of the brushroll motor or the brushroll, varying the electrical current to maintain the first speed of the brushroll, and determining a change in current drawn by the brushroll motor to maintain the first speed of the brushroll. The method also includes comparing the change in current to a threshold current change value, maintaining the first brushroll speed when the change in current is less than the threshold current change value, and maintaining a second brushroll speed different than the first brushroll speed when the change in current is greater than the threshold current change value.
Other aspects of the invention will become apparent by consideration of the detailed description and accompanying drawings.
Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways.
In the illustrated embodiment of the vacuum cleaner 10, the base assembly 14 is movable along a surface to be cleaned, such as a carpeted or hard-surface floor. The handle assembly 18 extends from the base assembly 14 and allows a user to move and manipulate the base assembly 14 along the surface. The handle assembly 18 is also movable relative to the base assembly 14 between an upright position (
The handle assembly 18 includes a maneuvering handle 22 having a grip 26 for a user to grasp and maneuver the vacuum cleaner 10. In the illustrated embodiment, the vacuum cleaner 10 also includes a detachable wand 30. The wand 30 may be used to clean above-floor surfaces (e.g., stairs, drapes, corners, furniture, etc.). An accessory tool 34 (e.g., a crevice tool, an upholstery tool, a pet tool, etc.) is detachably coupled to the handle assembly 18 for storage and may be used with the wand 30 for specialized cleaning.
With continued reference to
The vacuum cleaner 10 further includes a suction motor (not shown) contained within a motor housing 54 (
Now referring to
Optionally, the base assembly 14 includes a pair of rear wheels 86 and a pair of forward supporting elements or wheels 90 spaced from the rear wheels 86 and located generally adjacent the inlet opening 74. The wheels 86, 90 facilitate movement of the base assembly 14 along the surface to be cleaned. In addition, the forward wheels 90 may assist in positioning the inlet 74 of the floor nozzle 58 at a desired height above the surface to be cleaned.
With reference to
With reference to
The illustrated pressure sensor 110 includes a pressure sensor housing 114 (
Referring to
The pressure sensor housing 114 may be integrally formed in the floor nozzle 58. The pressure sensor housing 114 may be integrally formed in the upper portion 62. Alternatively, the pressure sensor housing 114 may be a separate component assembled to the vacuum cleaner 10. Alternatively or additionally, the air inlet 122 of the pressure sensor 110 may be configured as a fitting, optionally with a barb feature at an end of the fitting, or a threaded fitting, or compression fitting, or other fitting, to be in fluid communication with the suction chamber 70 using a duct or a tube connected to the fitting.
With reference to
With reference to
In general operation, the suction motor drives the fan assembly or suction source to generate airflow through the vacuum cleaner 10. The airflow enters the floor nozzle 58 through the inlet opening 74 and flows into the suction chamber 70 (
With reference to
The controller 116 may also or alternatively operate the suction motor based on floor type. For example, the controller 116 may operate the suction motor at a lower power on a hard floor surface to conserve energy or a higher power on a hard floor surface to increase debris pick-up. In some embodiments, the suction motor may be operated at a lower power on certain height carpets to reduce the clamp-down of the nozzle 58 to the carpet so that the vacuum cleaner 10 is easier to push.
By continuously or intermittently monitoring pressure and motor current and/or torque using data from the sensors 110, 133, the controller 116 determines when the vacuum 10 passes from one surface type to another surface type and alters the brushroll speed, and optionally suction, to provide a pre-programmed vacuum cleaner operation in response to the different conditions created by different floor types. Either or both of the pressure sensor 110 and the brushroll motor sensor 133 may be continually used to alter the rotational speed of the brushroll motor 108 in response to the sensed data. If the brushroll motor 108 is off, however, only the pressure sensor 110 is used to determine a change in floor type.
Referring to
While the vacuum cleaner 10 is operated in the “speed control mode,” the pressure sensor 110 and the brushroll motor sensor 133 continuously or intermittently provide sensed data representative of the suction pressure and the motor current and/or torque, as described above. When the sensed data of the pressure sensor 110 and the brushroll motor sensor 133 correspond to the values associated with the vacuum cleaner 10 operating on a carpet surface, or the like, the controller 116 operates the brushroll motor 108 at a first rotational speed, for example, between about 1000 and 5000 revolutions per minute (RPM), or between about 2000 and 4000 RPM. When the sensed data of the pressure sensor 110 and the brushroll motor sensor 133 correspond to the values associated with the vacuum cleaner 10 operating on a hard floor surface, or the like, the controller 116 operates the brushroll motor 108 at a second rotational speed that is lower than the first rotational speed, for example, between about 100 and 1000 RPM, or between about 300 and 600 RPM. Either or both of the pressure sensor 110 and the brushroll motor sensor 133 may be continually or intermittently used to alter the rotational speed of the brushroll motor 108 in response to the sensed data. In alternative embodiments, either the pressure sensor 110 or the brushroll motor sensor 133 may be omitted so that only the other of the pressure sensor 110 or the brushroll motor sensor 133 provides feedback used to alter the rotational speed of the brushroll motor 108.
While the vacuum cleaner 10 is in the “on/off mode,” the pressure sensor 110 continually monitors the nozzle suction pressure; however, the brushroll motor sensor 133 may monitor the motor current and/or torque when the brushroll motor 108 is on. When the brushroll motor 108 is off, the motor current and/or torque will not provide data useful in determining the type of floor surface the floor nozzle 58 is on. When the sensed data of the pressure sensor 110 and the brushroll motor sensor 133 correspond to the values associated with the vacuum cleaner 10 operating on a carpet surface, the controller 116 operates the brushroll motor 108 (and the brushroll 94) at a first rotational speed. When the sensed data of the pressure sensor 110 and the brushroll motor sensor 133 correspond to the values associated with the vacuum cleaner 10 operating on a hard floor surface, or the like, the controller 116 turns the brushroll motor 108 off. While the floor nozzle 58 is operating on the hard floor surface and the brushroll motor 108 is off, the controller 116 relies on the pressure sensor 110 alone to determine whether to turn the brushroll motor 108 on. The controller 116 may use either or both of the sensors 110, 133, to determine whether to turn the brushroll motor 108 off.
In some embodiments, the vacuum cleaner 10 further includes a tachometer 155 that measures a rotational speed of the brushroll motor 108 or the brushroll 94 during operation (
The sensed brushroll speed data from the tachometer 155 can be used by the controller 116 in conjunction with data from the brushroll motor sensor 133 to maintain a relatively constant rotational speed of the brushroll 94. For example, when the brushroll 94 encounters increased resistance, such as when transitioning from a hard floor surface to a carpeted floor surface, the controller 116 may increase the current supplied to the brushroll motor 108 to increase the torque output by the brushroll motor 108. When the brushroll 94 encounters decreased resistance, such as when transitioning from a carpeted floor surface to a hard floor surface, the controller 116 may decrease the current supplied to the brushroll motor 108 to decrease the torque output by the brushroll motor 108. In such embodiments, the controller 116 compares the amount of current increase or decrease needed to maintain the speed of the brushroll 94 and compares the amount to a threshold current change value. If the current increase or decrease exceeds the threshold current value, then the controller 116 operates the brushroll 94 at a second speed instead of the first speed.
As the vacuum cleaner 10 passes from one surface type to another, the controller 116 uses the amount of current change needed to maintain a constant brushroll speed, as well as whether the current change is an increase or decrease to determine the kind of floor type the vacuum cleaner 10 is operating on, and the controller 116 adjusts the current supplied to the brushroll motor 108 to maintain the speed of the brushroll 94 at a speed desired for the particular floor type. In this way, the controller 116 determines the type of floor surface using the change in brushroll motor current needed to maintain a speed compared to predetermined thresholds and automatically operates the brushroll motor 108, and optionally the suction motor, in a manner corresponding to the type of floor surface. In some cases, the controller 116 may turn off the brushroll motor 108 if the current exceeds the threshold current value. The controller 116 may include overload protection programming.
The pressure sensor 110′ includes a base portion 120′ and a cap portion 118′ that cooperate to define a pressure sensor housing 114′. In some embodiments, the base portion 120′ is integrally formed with a wall bounding the airflow path of the vacuum cleaner 10. The housing 114′ contains a diaphragm 123′ holding a magnet 142′ that is movable with respect to the housing 114′ when the diaphragm 123′ flexes (
The air inlet of the pressure sensor 110′ is configured as a fitting 125′, such as a hose barb or nipple, a threaded fitting, compression fitting, or other fitting. In the illustrated embodiment, the fitting 125′ extends from the base portion 120′. The fitting 125′ can be integrally formed with the base portion 120′ as a single piece, or alternatively, the fitting 125′ can be formed separately and attached to the base portion 120′ by threads or another type of suitable airtight connection. The fitting 125′ (i.e. the air inlet for the pressure sensor 110′) is in fluid communication with the suction chamber 70 such that the pressure at the sensor air inlet is representative of the pressure within the suction chamber 70. In some embodiments, the fitting 125′ receives one end of a tube (not shown) that extends to the suction chamber 70 (e.g., to the pressure sensor inlet 122 (
In the illustrated embodiment, a hall-effect sensor 150′ is located on the cap portion 118′ (
In some embodiments, the diaphragm 123′ is a first diaphragm 123′ that is interchangeable with a second diaphragm (not shown) having different deflection characteristics under pressure. In such embodiments, the first and second diaphragms can be interchanged in order to vary the responsiveness or operating pressure range of the pressure sensor 110′. In one embodiment, the first diaphragm 123′ has a first attribute selected from a group consisting of thickness, durometer, shape, and material, and where the first diaphragm is replaceable with a second diaphragm having a second attribute selected from a group consisting of thickness, durometer, shape, and material. For example, the first diaphragm 123′ may be made from a polyurethane material and the second diaphragm may be made from butyl rubber providing different response characteristics. In another example, the first diaphragm 123′ may have a flat shape or uniform thickness and the second diaphragm may have a concave shape that is thicker near its perimeter, or alternatively thinner near its perimeter, providing different response characteristics, or in yet another alternative, the second diaphragm may have a shape having ribs, apertures, protrusions, grooves, or other shapes. In another example, the first diaphragm 123′ may have a durometer of 25 Shore A and the second diaphragm may have a durometer of 40 Shore A, providing different response characteristics. In another example, the second diaphragm may be thinner than the first diaphragm 123′ and therefore experience greater deflection than the first diaphragm 123′ at a particular pressure difference between the base portion 120′ and the cap portion 118′.
For particular embodiments, the diaphragm 123′ may be made from materials such as butyl rubber, polyurethane, silicone rubber, and other synthetic rubbers, thermoplastic elastomer (TPE), rubber, thermoplastic vulcanizates (TPV), thermoplastics, and other materials to provide response characteristics under pressure as desired for the application. The diaphragm 123′ may have a durometer between about 15 and 80 Shore A, or for particular embodiments between about 20 and 40 Shore A, or other hardnesses as desired to provide response characteristics under pressure as desired for the application. In one embodiment, the diaphragm 123′ is a thermoplastic elastomer having a durometer between 20 and 30 Shore A.
It was found that the pressure sensor 110, 110′ positioned in the air flow path of the vacuum cleaner 10 can be used indicate more than one system condition, as shown in
Another common condition occurs when the dirt cup 46 is filled with debris and needs to be emptied. The pressure reading at the sensor 110, 110′ decreases as the dirt cup 46 fills, and when the pressure reaches a predetermined value, the controller 116 may illuminate a signal to the user indicating that the dirt cup 46 is full, and/or may turn off the suction motor. When the sensor 110, 110′ indicates a normal operating pressure, the controller 116 may provide a signal, such as a light or other display, to the user to indicate that the vacuum 10 is operating normally.
In certain conditions, the vacuum cleaner 10 may pick up a large object or enough debris to form a blockage in the air path, or a filter or filter bag in the vacuum may become clogged (i.e. may contain enough debris that vacuum cleaner performance is reduced). When a clog occurs, the system pressure, as measured by the sensor 110, 110′, drops. When the pressure drops to a predetermined level, the controller 116 may provide a signal such as a light or other display to the user indicating that a clog has developed, and/or may turn off the suction motor.
Accordingly, one pressure sensor 110, 110′ may be positioned in fluid communication with the air path of the vacuum cleaner 10 to provide system information for a variety of operating conditions. In one embodiment, one pressure sensor 110, 110′ may be positioned in fluid communication with the air path of the vacuum cleaner 10 to provide two or more indications of system performance selected from a group consisting of system clogged, filter bag full, dirt bin full, no filter present, no filter bag present, dirt bin empty, filter bag empty, and normal operation. Alternatively, one pressure sensor 110, 110′ may be positioned in fluid communication with the air path of the vacuum cleaner 10 to provide three or more indications of system performance selected from a group consisting of system clogged, filter bag full, dirt bin full, no filter present, no filter bag present, dirt bin empty, filter bag empty, and normal operation. In yet another alternative, one pressure sensor 110, 110′ may be positioned in fluid communication with the air path of the vacuum cleaner 10 to provide four or more indications of system performance selected from a group consisting of system clogged, filter bag full, dirt bin full, no filter present, no filter bag present, dirt bin empty, filter bag empty, and normal operation. In such embodiments, the controller 116 continuously or periodically monitors the pressure sensor and provides a signal such as a light or other display to the user indicating a system condition, and/or may turn off the suction motor.
Various features and advantages of the invention are set forth in the following claims.
This application is a continuation of co-pending U.S. patent application Ser. No. 15/196,412, filed Jun. 29, 2016, which claims priority to U.S. Provisional Patent Application No. 62/186,998, filed Jun. 30, 2015 and claims priority to U.S. Provisional Patent Application No. 62/187,001, filed Jun. 30, 2015, the entire contents all of which are hereby incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
62186998 | Jun 2015 | US | |
62187001 | Jun 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15196412 | Jun 2016 | US |
Child | 16544662 | US |