The present disclosure relates to a vacuum cleaner.
In general, vacuum cleaners are devices that suction dusts or foreign substances scattered on a surface to be cleaned by using a suction motor mounted in a main body to filter the dusts or foreign substances in the main body.
Such a vacuum cleaner may be largely classified into an up-right type vacuum cleaner in which a suction nozzle that is a suction hole is integrated with a main body and a canister type vacuum cleaner in which a suction nozzle communicates with a main body through a connection tube.
A vacuum cleaner is disclosed in Korean Patent Registration No. 10-1684072 that is a prior art document.
The vacuum cleaner disclosed in the prior art document includes a cleaner body including a moving unit, a suction device for suctioning air, a detection device for detecting movement of the suction device, and a controller controlling the moving unit on the basis of information detected by the detection device when the cleaner body needs to move.
The detection device includes an ultrasonic wave transmitting unit provided in a handle and an ultrasonic wave receiving unit provided in the cleaner body.
However, according to the prior art document, since the ultrasonic wave transmitting unit is provided in the handle, ultrasonic waves transmitted from the ultrasonic wave may be distorted by or interfere with a user when the user is positioned between the handle and the main body, and thus, the ultrasonic waves may not reach the ultrasonic wave receiving unit. As a result, although the handle is away from the cleaner body, the cleaner body does not move to the handle.
The present disclosure provides a vacuum cleaner in which a sensing error of a sensor is reduced to allow the cleaner body to accurately follow a handle.
The present disclosure provides a vacuum cleaner in which a cleaner body follows a handle while using an inexpensive sensor.
The present disclosure provides a vacuum cleaner in which a cleaner body is prevented from moving to a handle in a state in which the handle is placed on the floor.
The present disclosure provides a vacuum cleaner in which a cleaner body is changeable in direction by detecting a moving direction of a handle.
A vacuum cleaner includes: a cleaner body including a wheel for moving and a wheel motor for driving the wheel; a suction hose connected to the cleaner body; a handle connected to the suction hose; at least one detection sensor disposed at the suction hose to detect an inclination of the suction hose; and a controller controlling the wheel motor on a basis of the inclination of the suction hose detected by the at least one detection sensor.
According to the present disclosure, a sensing error of the sensor is reduced to allow the cleaner body to accurately follow a handle.
The cleaner body can follow the handle while using an inexpensive sensor.
The cleaner body is prevented from moving to the handle in a state in which the handle is placed on the floor since the cleaner can detect a state of the handle seated on the floor.
The cleaner body is changeable in direction by detecting the moving direction of the handle and can follow the cleaner body accurately.
Referring to
A hose made of a flexible material that is deformable in shape may be used as the suction hose 22.
The cleaner body 10 may include a plurality of wheels 11 for moving of the cleaner body 10, a plurality of wheel motors 12 for respectively rotating the plurality of wheels 11, a detection sensor 24 installed in the suction hose 22, and a controller 30 controlling the plurality of wheel motors 12 on the basis of information detected by the detection sensor 24.
The detection sensor 24 may be, for example, an acceleration sensor, a 6-axis sensor, or a 9-axis sensor. In any type of sensor, the detection sensor 24 may detect an inclination (or an inclination of the suction hose with respect to the gravity direction) of the suction hose 22 with respect to the floor.
The detection sensor 24 may communicate with the controller 30 in a wireless or wired manner.
The detection sensor 24 may be disposed closer to the handle 20 than the cleaner body 10 in the suction hose 22.
For example, the length of the suction hose 22 may be divided into three parts to define three sections A to C.
The section A may be close to the cleaner body 10, the section C may be close to the handle 20, and the section B may be defined between the section A and the section C.
The detection sensor 24 may be disposed in the section C of the suction hose 22 so that a variation in inclination detected by the detection sensor 24 increases during a cleaning operation of the vacuum cleaner. As illustrated in
Thus, when the detection sensor 24 is installed in the section C of the suction hose 22, which is adjacent to the handle 20, the variation in inclination of the suction hose 22 detected by the detection sensor 24 may be large to accurately detect a position of the handle 20 of the cleaner body 10.
Particularly, when the length of the section C is divided equally, the detection sensor 24 may be installed at a portion of the section C, which is adjacent to the section B.
In case of a portion of the section C, which is directly connected to the handle 20, since the variation in inclination during the cleaning is relatively small, it is preferable that the detection sensor 24 is disposed at a portion of the section C, which is adjacent to the section B.
Hereinafter, an operation of the vacuum cleaner will be described.
Referring to
While the cleaning is performed, the distance between the cleaner body 10 and the handle 20 may vary as illustrated in
The controller 30 determines whether the inclination of the suction hose 22 detected by the detection sensor 24 is less than a reference inclination (S2).
If the inclination of the suction hose 22 detected by the detection sensor 24 is less than the reference inclination as the result determined in the operation S2, it is determined that the handle 20 is away from the cleaner body 10 to control the wheel motors 12 (S3).
For example, the controller 30 may control the wheel motors 12 so that the cleaner body 10 moves forward.
Here, the controller 30 may control each of the wheel motors 12 so that the wheel motor 12 is stopped after operating for a predetermined time or after operating at the predetermined number of revolutions. Alternatively, when the inclination of the suction hose 22 detected by the detection sensor 24 is above a motor stopping inclination, the controller 30 may control the wheel motors 12 to be stopped.
According to this embodiment, since the detection sensor is relatively inexpensive when compared to an ultrasonic wave transmitting unit and an ultrasonic wave receiving unit, the cleaner body may follow the handle with an inexpensive cost.
Also, even if the user is positioned between the handle and the cleaner body, a detection error of the detection sensor may not occur, and thus, the cleaner body may accurately follow the handle.
This embodiment is the same as the first embodiment except that an additional detection sensor is provided in an extension tube. Thus, only characterized parts in this embodiment will be described below.
Referring to
The installed position of the detection sensor 24 is the same as that of the detection sensor 24 according to the first embodiment.
The additional detection sensor 25 may be used for detecting a state in which the handle 20 is placed on the floor during the cleaning.
When the cleaning is performed in a state of gripping the handle 20 as illustrated in
In this state, as described above, the wheel motors 12 may be controlled according to the inclination of the suction hose 22 to allow the cleaner body 10 to move to follow the handle 20.
As illustrated in
Thus, in this embodiment, although the suction hose 22 has an inclination less than the reference inclination, when an inclination of the extension tube 21 detected by the additional detection sensor 25 installed in the extension tube 21 is less than the reference inclination, the cleaner body 10 may be maintained in the stopped state without controlling the wheel motors 12.
According to this embodiment, the state in which the handle 20 is placed on the floor may be detected. In this state, the cleaner body 10 may be stopped to prevent the cleaner body 10 from unnecessarily moving.
This embodiment is the same as the first embodiment except for the number of diction sensor. Thus, only characterized parts in this embodiment will be described below.
Referring to
The first detection sensor 41 and the second detection sensor 42 may be disposed to be spaced apart from each other in a longitudinal direction of the suction hose 22.
Particularly, the length of the suction hose 22 may be divided into three parts to define three sections A to C.
The section A may be close to the cleaner body 10, the section C may be close to the handle 20, and the section B may be defined between the section A and the section C.
The first detection sensor 41 may be disposed in the section A, and the second detection sensor 42 may be disposed in the section C.
The position of the second detection sensor 42 in the section C may be the same as that of the detection sensor 24 described in the first embodiment.
When the length of the section A is equally divided into two portions, the first detection sensor 41 may be installed at a portion of the two portions, which is adjacent to the section B.
In case of a portion of the section A, which is directly connected to the cleaner body 10, since a variation in inclination during the cleaning is relatively small, it is preferable that the first detection sensor 41 is disposed at a portion of the section A, which is adjacent to the second B.
An inclination detected by each of the first detection sensor and the second detection sensor in a state in which the handle is away from the cleaner body as illustrated in
Thus, when the inclination detected by the first detection sensor 41 is less than a first reference inclination, and the inclination detected by the second detection sensor 42 is less than a second reference inclination, the controller 30 may control the wheel motors 12 to allow the cleaner body 10 to move to the handle 20.
When the plurality of detection sensors 41 and 42 are provided in the suction hose 22, the controller 30 may determine an inclination of the suction hose 22 by using a pitch value of each of the detection sensors 41 and 42 and determine whether the handle 20 is placed on the floor by using a roll value of each of the detection sensors 41 and 42.
For example, the handle 20 may move upright during the cleaning, and the handle 20 is laid down when placed on the floor.
In this case, since the suction hose 22 connected to the handle 20 is twisted, the roll value of at least one of the detection sensors 41 and 42 when the handle is placed on the floor may be greater than that of at least one of the detection sensors 41 and 42 when the handle 20 is disposed to be spaced a predetermined height from the floor. Thus, whether the handle 20 is placed on the floor may be determined by using the roll value.
Also, although the inclination detected by each of the plurality of detection sensors 41 and 42 is less than the reference inclination, if it is determined that the handle 20 is placed on the floor, the controller 30 may control the wheel motors 12 so that the cleaner body 10 does not move to the handle 20, but is maintained in the stopped state.
This embodiment is the same as the third embodiment except for the number of diction sensor. Thus, only characterized parts in this embodiment will be described below.
Referring to
That is, in this embodiment, when the length of the suction hose 22 is divided into three parts, the detection sensors 41, 42, and 43 may be respectively disposed in the sections A, B, and C.
This embodiment is the same as the first embodiment except that a magnetic sensor is additionally provided in each of the suction hose and the cleaner body. Thus, a characterized part according to the current embodiment will be principally described.
Referring to
Since the position of the detection sensor 50 in the suction hose 22 is the same that of the detection sensor 24 according to the first embodiment, its detailed description will be omitted.
A pair of wheels 11a and 11b are provided in the cleaner body 10. The pair of wheels 11a and 11b may be rotated by a pair of wheel motors 12a and 12b that are independently driven.
A first magnetic sensor 51 may be provided in the cleaner body 10, and a second magnetic sensor 52 and a third magnetic sensor 53 may be provided in the suction hose 22. Here, the third magnetic sensor 53 may be omitted.
Although not limited, the second magnetic sensor 52 may be disposed at a central portion of the suction hose 22, and the third magnetic sensor 53 may be disposed at a position adjacent to the handle 20.
On the other hand, the second magnetic sensor 52 may be disposed at any position of the suction hose 22, and the third magnetic sensor 52 may be disposed in the handle 20, the extension tube 21, or the nozzle.
The first magnetic sensor 51 may serve as a reference sensor.
The controller may determine a moving direction of the handle 20 on the basis of a first difference value between an angle detected by the first magnetic sensor 51 and an angle detected by the second magnetic sensor 52 and/or a second difference value between an angle detected by the first magnetic sensor 51 and an angle detected by the third magnetic sensor 53 by using an angle detected by the first magnetic sensor as a reference angle.
When the handle 20 moves in a left direction as illustrated in
Thus, when the handle 20 moves in the left direction as illustrated in
Thus, according to this embodiment, the cleaner body 10 may move forward toward the handle 20 and also rotate, and thus, the cleaner body 10 may accurately follow the handle 20.
This embodiment is the same as the first embodiment except that a distance sensor is additionally provided. Thus, a characterized part according to the current embodiment will be principally described.
Referring to
Since the position of the detection sensor 71 in the suction hose 22 is the same that of the detection sensor 24 according to the first embodiment, its detailed description will be omitted.
The vacuum cleaner according to this embodiment may further include distance sensors 72 and 73 for detecting a distance between the handle 20 and the cleaner body 10.
The distance sensors 72 and 73 may include a first sensor 72 provided in the cleaner body 10 and a second sensor 73 provided in the handle 20.
The distance sensors 72 and 73 may be an ultrasonic sensor using ultrasonic waves or an RF sensor. Alternatively, each of the distance sensors 72 and 73 may be an ultra wide band (UWB) sensor.
In this embodiment, when an inclination of the suction hose 22 detected by the detection sensor 71 is less than a reference inclination, and a distance between the cleaner body 10 and the handle 20 is greater than a reference distance, the controller may control the wheel motor 12 so that the cleaner body 10 moves to the handle 20.
The user may perform cleaning on an area having a high height such as a ceiling by using the handle 20. Here, as illustrated in
In the state as illustrated in
On the other hand, when the handle 20 is away from the cleaner body 10 during the cleaning as illustrated in
Although embodiments have been described with reference to a number of illustrative embodiments thereof, it should be understood that numerous other modifications and embodiments can be devised by those skilled in the art that will fall within the spirit and scope of the principles of this disclosure. More particularly, various variations and modifications are possible in the component parts and/or arrangements of the subject combination arrangement within the scope of the disclosure, the drawings and the appended claims. In addition to variations and modifications in the component parts and/or arrangements, alternative uses will also be apparent to those skilled in the art.
Number | Date | Country | Kind |
---|---|---|---|
10-2017-0075120 | Jun 2017 | KR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/KR2018/004500 | 4/18/2018 | WO | 00 |