Vacuum cleaners can be embodied as upright units or portable, hand-carriable units. In some instances, a vacuum cleaner can be reconfigurable between an upright cleaning mode and a lift-off mode in which a smaller pod or hand-carriable unit is removed from the vacuum cleaner for use in a cleaning operation.
A vacuum cleaner according to one embodiment of the invention includes a working air path with a dirty air inlet and a clean air outlet, a motor/fan assembly in fluid communication with the dirty air inlet for generating a working airstream through the working air path, and a debris removal assembly for removing and collecting debris from the working airstream for later disposal. The debris removal assembly has a central axis and includes a multi-layer filtration stage having a louvered exhaust grill comprising a plurality of louvers forming air flow openings therebetween, a mesh screen disposed radially outwardly from the louvers relative to the central axis, and a multi-layer filter mounted within the louvered exhaust grill, fluidly downstream of the air flow openings, and comprising multiple layers of filtration material.
In the drawings:
The invention relates to vacuum cleaners. In one of its aspects, the invention relates to air treatment and debris removal assemblies for vacuum cleaners. In another aspect, the invention relates to an upright vacuum cleaner comprising a hand-carriable unit or a detachable pod unit.
With additional reference to
A suction nozzle 28 can be provided on the floor cleaning or base 16 adapted to move over the surface to be cleaned. An agitator 30 can be provided adjacent to the suction nozzle 28 for agitating the surface to be cleaned so that the debris is more easily ingested into the suction nozzle. A portion of the housing of the base 16 is cut away in
The vacuum collection system can include a working air path through the pod body, and may include a dirty air inlet 40 and a clean air outlet 42. The dirty air inlet 40 and a clean air outlet 42 may be provided on the body of the pod 12. The dirty air inlet 40 may be in fluid communication with the suction nozzle 28 in the floor cleaning head 16 when the pod 12 is received on the upright body 14 (
In addition, the vacuum collection system may include one or more of a motor/fan assembly 44 in fluid communication with the dirty air inlet for generating a working airstream through the working air path, and a debris removal assembly 46 for removing and collecting debris from the working airstream for later disposal. Portions of both the motor/fan assembly 44 and the debris removal assembly 46 can define portions of the working air path through the body.
The motor/fan assembly 44 includes a fan/impeller section 52 and a motor section 54 which are housed in a motor housing 56 of the pod 12. The debris removal assembly 46 and motor housing 56 are in fluid communication with each other when coupled, and can be secured together to form a single, hand-carriable unit. Particularly, the debris removal assembly 46 can have an air outlet 58 that is in fluid communication with an inlet 60 of the motor/fan assembly 44 via a duct 62. As shown herein, the duct can extend within the body of the pod 12, including substantially longitudinally through the pod 12 or parallel to an axis of the debris removal assembly 46. The motor/fan assembly 44 can be provided below the debris removal assembly 46, with an axis of the motor being non-parallel to, and more specifically orthogonal to, the axis of the debris removal assembly 46. It is noted that other arrangements for the motor/fan assembly 44, debris removal assembly 46, and 62 are possible.
The body of the pod 12 can include a spine 64 projecting upwardly from the motor housing 56, which together define a receiver 66 (
Referring additionally to FIG, 2, the pod 12 can further include a carry handle 68, a power button 72, and a power source (not shown). The power button 72 can electrically couple the motor/fan assembly 44 to the power source and may be positioned on or adjacent to a portion of the carry handle 68 so that a user can conveniently operate the switch when holding the pod 12 by the carry handle 68. Optionally, a second power button 70 can be provided, and controls operation of the agitator 30—the second power button 70 for the agitator may only be operable to power the agitator when the first power button 72 is on, i.e. when the motor/fan assembly 44 is powered. The power source may be a power cord connected to the body and plugged into a household electrical outlet, or a rechargeable battery. A hose wrap 76 can further be provided on the body for storing at least a portion of the vacuum hose 48, and can be provided at the top of the spine 64 as shown herein.
The carry handle 68 can be provided above or on the top of the debris removal assembly 46, with an axis of the carry handle 68 being non-parallel to, and more specifically orthogonal to, the axis of the debris removal assembly 46. The hose wrap 76 can be provided above and to the rear of the carry handle 68. It is noted that other arrangements for the debris removal assembly 46, carry handle 68, and hose wrap 76 are possible.
The pod 12 can be used to effectively clean a surface by removing debris (which may include dirt, dust, soil, hair, and other debris) from the surface in accordance with the following method. Referring to
Operation in the upright mode can be substantially similar. With the pod 12 secured on the upright body 14, the motor/fan assembly 44 initially draws in debris-laden air through the suction nozzle 28 and working air conduit 32 before entering the hose 48 and the air inlet 40 of the pod 12. The remaining operation is the same.
In one embodiment, the pod release button 82 is always backlit, i.e. the light 86 is on, when the main power switch operated by the power button 72 is on. In an alternate embodiment, the light 86 can be configured to only illuminate when the main power switch is on and the pod 12 is docked on the upright body 14. In this case, the light 86 can turn off upon removing the pod 12 from the upright body 14, and turns on upon re-docking the pod 12 on the upright body 14.
The pod release button assembly 34 further includes one or more pod release latches 94 which are configured to engage the catch 80 on the handle 24. As shown herein, two latches 94 are provided and are pivotally mounted on pivot pins 96 within the pod housing or spine 64 and include molded-in springs 98 that bias the latches 94 towards the catch 80 for retaining the pod 12 on the upright body 14. When the pod 12 is secured, the catch 80 is sandwiched between the two latches 94. The latches 94 can project outwardly from the pod 12 to engage the catch 80, or, as illustrated herein, the spine 64 of the pod 12 can include a window opening 100 in the spine 64 through which the catch 80 is inserted.
The wedge portion 92 mounted to the button 82 selectively opens the pod release latches 94 to release the pod 12 from the mating catch 80 on the upright body 14. The button 82 is pivotally mounted within the spine 64 by a pivot pin 102 on an upper portion of the button 82. Depressing the button 82 causes the button 82 to rotate about the pivot pin 102 and the wedge portion 92, which is provided at a lower portion of the button 82, is moved rearwardly between the latches 94 to force the latches 94 apart, thereby releasing the catch 80.
In this configuration, the LED 86 moves together with the pod release button 82 when the button 82 is depressed. The LED 86 can be connected to a PCB 104 mounted in a power switch mounting chamber 106 which also carries the power buttons 70, 72.
In the embodiment shown herein, a spine cap 108 mounts on the spine 64 of the pod 12 and encloses the pod release button 82. A badge 110 can optionally be provided on the spine cap 108 and can indicate the function of the pod release button 82. The spine cap 108, along with a rear portion of the spine 64, can define the hose wrap 76 above the pod release button 82.
A portion 116 of the telescoping wand 50 can protrude into the hose 48 when the wand 50 is retracted and in the storage position mounted on the pod 12, as shown in
When not in use, the wand 50, crevice tool 118, dust brush 120, and any other accessory tools provided, can optionally be stored on the pod 12 or the upright body 14. For example, in the embodiment illustrated herein, the wand 50 is stored in a wand receiver 122 provided on the pod 12, the crevice tool 118 is stored in a crevice tool receiver 124 provided on the pod 12, and the dust brush 120 is stored in a dust brush receiver 126 (
As shown, in one embodiment, the handle grip 132 can extend upwardly and rearwardly from the handle housing 128 such that one end 130 of the handle grip 132 is free or unconnected to the wand 50. The free end 130 can further extend over a portion of the hose 48. The handle grip 132 can be formed integrally with or separately from the handle housing 128. The handle grip 132 can further include an overmolded soft grip for providing a comfortable hand grip to the user.
As noted above, the wand 50 includes a portion 116 that protrudes into the hose 48 in the retracted position; the retractable portion 116 is an end of the telewand 136, as shown in
In one embodiment of the present disclosure, the debris removal assembly 46 includes at least a body 150 having an air inlet 174 in fluid communication with the dirty air inlet 40 and the air outlet 58 as discussed above, which is fluidly upstream of the clean air outlet 42, and a multi-layer filtration stage 158 within the body 150 between the air inlet 174 and the air outlet 58.
In the illustrated embodiment, the debris removal assembly 46 comprises a cyclonic separation module with the body 150 defined by a dirt tank 150 comprising a housing at least partially defining a cyclone chamber 154 for separating contaminants from a dirt-containing working airstream and an associated dirt collection chamber 156 which receives contaminants separated by the cyclone chamber 154. The debris removal assembly 46 can further include the multi-layer filtration stage 158, also referred to herein as a second filtration stage 158. The first cyclone stage and second filtration stage 158 can be centered on a central axis X of the module/assembly 46, which can extend longitudinally through the dirt tank 150. Further, the first and second stages can be concentric, with the second stage positioned within the first stage and both centered on the central axis X. It is noted that while a single stage cyclone separator is illustrated herein, it is also contemplated that embodies of the invention can be configured with additional cyclonic separation stages.
The dirt tank 150 includes a side wall 160, a bottom wall 162, and a cover 164. As shown in
The dirt door 162 is pivotally mounted to the side wall 160 by a hinge 170. A door latch 172 is provided on the side wall 160, opposite the hinge 170, and can be actuated by a user to selectively release the dirt door 162 from engagement with the bottom edge 166 of the side wall 160. The door latch 172 is illustrated herein as comprising a latch that is pivotally mounted to the side wall and spring-biased toward a closed position shown in
The air inlet 174 can comprise an air inlet to the cyclone chamber 154, and can be at least partially defined by an inlet conduit 176. The inlet conduit 176 can extend tangentially from the side wall to define a tangential air inlet 174. The air outlet 58 from the debris removal assembly 46 can be at least partially defined by an outlet conduit 178 extending from the cover 164. The inlet conduit 176 is in fluid communication with the pod air inlet 40 (
The second filtration stage 158 can include several filtration stages or layers. In order from upstream to downstream with respect to the working airflow, the layers are: an outer fine mesh screen 180; a first louvered exhaust grill 182; a cylindrical multi-layer filter 184; and a perforated inner exhaust grill 186 fluidly connected to the air outlet conduit 178. The multi-layer filter 184 is mounted between the first louvered exhaust grill 182 and the perforated inner exhaust grill 186 and can comprise multiple layers of filtration material. Each layer can be distinct, and can comprise a different filtration material. As shown, the multi-layer filter 184 comprises at least: a first filtration layer 188; a second filtration layer 190; and a third filtration layer 192. In one example, multi-layer cylindrical filter 184 can comprise a combination of filtration materials, including, but not limited to, a combination of foam and paper material. In one particular example, the first and second filtration layers 188, 190 can comprise foam, and the third filtration layer 192 can comprise an inner woven fiber filter layer. The multi-layer cylindrical filter 184 can be removed through the top by removing the lid 164.
With additional reference to
The lower end of the body 194 optionally includes tines 200 that protrude longitudinally along the central axis X. The tines 200 are configured to collect and prevent re-entrainment of hair and other debris in the collection chamber 156. The lower free ends of the tines 200 are spaced from the dirt door 162, such that the area below the tines 200 forming the collection chamber 156 is unobstructed. The tines 200 are elongated such that the tines 200 have a length that is greater than their width or thickness, and can have a tapered shape which tends to improve shedding and release of debris when the dirt door 162 is opened.
The outer fine mesh screen 180 can be supported on the cylindrical body 194 forming the louvered exhaust grill 182, and is disposed radially outwardly from the louvers 196. The mesh screen 180 can comprise a fine, air permeable mesh screen material that is fastened or otherwise coupled with to the cylindrical body around the entire perimeter to cover the louvers and air flow openings. The mesh screen 180 is configured to prevent dirt of a certain size from passing through and has a mesh size defined by the number of openings per linear inch of mesh material. In one example, the mesh screen 180 can comprise a 40 sieve mesh, such as, but not limited to, a stainless steel mesh. It is noted that the mesh size of the mesh screen 180 may be exaggerated in the figures for clarity.
The first filtration layer 188 is configured to prevent dirt of a certain size from passing through and has a filtration size defined by the number of pores per linear inch of material. The filtration size can be selected to filter out smaller particles than the outer fine mesh screen 180 is capable of filtering out. In one example, the first filtration layer 188 can comprise a foam having approximately 45 pores per linear inch (PPI), ±5 PPI. One suitable foam layer 188 can further have an apparent density of 22±2 kilograms per cubic meter (kg/m3) as determined in accordance with Chinese Standard GB/T6343, a tensile strength of ≥85 kilopascal (kPa) as determined in accordance with Chinese Standard GB/T6344, and/or an elongation at break of ≥150% as determined in accordance with Chinese Standard GB/T6344.
The second filtration layer 190 is configured to prevent dirt of a certain size from passing through and can have a filtration size selected to filter out smaller particles than the first filtration layer 188 is capable of filtering out. In one example, the second filtration layer 190 can comprise a foam having approximately 60 PPI, ±5 PPI. One suitable foam layer 190 can further have an apparent density of 22±2 kg/m3 as determined in accordance with Chinese Standard GB/T6343, a tensile strength of ≥85 kPa as determined in accordance with Chinese Standard GB/T6344, and/or an elongation at break of ≥130% as determined in accordance with Chinese Standard GB/T6344.
The third filtration layer 192 is configured to prevent dirt of a certain size from passing through and can have a filtration size selected to filter out smaller particles than the second filtration layer 190 is capable of filtering out. In one example, the third filtration layer 192 can comprise a woven fibrous layer, such as, but not limited to, a fibrous layer having a fiber composition of 95% polyethylene terephthalate (PET) and 5% bonding fiber. One suitable fibrous layer 192 can further have a surface density of 300±5 grams per square meter (g/m2), a tensile strength of ≥100% in the machine direction (MD) and ≥30% in the cross direction (CD) as determined in accordance with Chinese Standard GB/T 3923.1-1997, and/or an elongation at break of ≥100% in the machine direction (MD) and ≥110% in the cross direction (CD) as determined in accordance with Chinese Standard GB/T 3923.1-1997.
The perforated inner exhaust grill 186 includes a generally cylindrical body 202 having a perforated side wall 204 extending longitudinally between upper and lower ends of the body 202. The perforated side wall 204 includes a plurality of perforations or holes 206 forming air flow openings through which working air can pass. In one example, the holes 206 can comprise an opening diameter of about 1 mm-3 mm. As illustrated, the side wall 204 extends longitudinally and is oriented parallel to the central axis X. The perforations or holes 206 can extend orthogonally through the side wall 204 or at an angle through the side wall 204, and in either case are transverse to the central axis X. The upper and lower ends of the body 202 meet the cylindrical body 194 of the louvered exhaust grill 182 at air-tight joints to ensure that working air is forced through the perforations. A plate 210 is provided at the upper end of the body 202 and extends radially outwardly with respect to the side wall 204. An outlet opening 212 through the plate 210 opens to an air passage between the interior of the grill 186 and the air outlet 58 that passes through the cover 164.
The vent knob 222 can be oriented co-axially with the vent inlet 226, and is fixed with the vent insert 226 using any suitable joining method, such as using a mechanical fastener or screw. The valve insert 226 further includes a threaded sleeve 232 that is threaded with the port 228 for rotation of the valve insert 226 relative to the port 228. Manipulation of the knob 222 causes rotation of the valve insert 226 within the port 228.
To the extent not already described, the different features and structures of the various embodiments of the invention, may be used in combination with each other as desired, or may be used separately. That one vacuum cleaner 10 is illustrated herein as having all of these features does not mean that all of these features must be used in combination, but rather done so here for brevity of description. Furthermore, while the vacuum cleaner 10 shown herein includes a detachable pod 12 such that the vacuum cleaner 10 has an upright mode of operation and a hand-carried mode of operation, at least some embodiments of the invention, not illustrated herein, can be used in a vacuum cleaner configured as a conventional upright or stick vacuum cleaner without a pod module, a canister vacuum cleaner, an autonomous vacuum cleaner, or a hand-held vacuum cleaner. Still further, the vacuum cleaner 10 can additionally have fluid delivery capability, including applying liquid or steam to the surface to be cleaned, and/or fluid extraction capability. Thus, the various features of the different embodiments may be mixed and matched in various vacuum cleaner configurations as desired to form new embodiments, whether or not the new embodiments are expressly described.
While the invention has been specifically described in connection with certain specific embodiments thereof, it is to be understood that this is by way of illustration and not of limitation. Reasonable variation and modification are possible with the scope of the foregoing disclosure and drawings without departing from the spirit of the invention which, is defined in the appended claims. Hence, specific dimensions and other physical characteristics relating to the embodiments disclosed herein are not to be considered as limiting, unless the claims expressly state otherwise.
This application claims the benefit of U.S. Provisional Patent Application No. 62/438,180, filed Dec. 22, 2016, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62438180 | Dec 2016 | US |