Vacuum cleaners can employ a variety of dirt separators to remove dirt and debris from a working air stream. Some vacuum cleaners employ cyclone separators. Cyclone separators can comprise one or more frusto-conical shaped separators, or use high-speed rotational motion of the air/dirt to separate the dirt by centrifugal force. Some cyclone separators can include more than one separator arranged in series or parallel to provide a plurality of separation stages. Typically, working air enters an upper portion of the cyclone separator through a tangential inlet and dirt is collected in the bottom portion of the cyclone separator. The filtered working air can exit through an upper portion of the cyclone separator or through a lower portion of the cyclone separator via an exhaust pipe. Prior to exiting the cyclone separator, however, the working air may flow through an exhaust grill. The exhaust grill can employ perforations, holes, inlet vanes, or louvers that define inlet openings through which filtered working air may pass. The filtered working air may pass through the inlet openings in the grill into one or more downstream cyclonic separators and/or a fluidly connected exhaust duct and interconnected air path to a downstream a suction source.
According to an aspect of the present disclosure, an upright vacuum cleaner includes an upright handle assembly including an elongated structural support having a handle grip, the upright handle assembly including a module platform having an upper surface and a bottom surface, opposite the upper surface, the upper surface of the module platform extending forwardly from the elongated structural support, a foot assembly adapted to be moved along a surface to be cleaned and having a suction nozzle, and a multi-axis joint swivelably mounting the bottom surface of the module platform of the upright handle assembly to the foot assembly and defining a first axis about which the upright handle assembly twists relative to the foot assembly and a second axis about which the upright handle assembly pivots relative to the foot assembly.
In the drawings:
The present disclosure relates to vacuum cleaners and in particular to vacuum cleaners having cyclonic dirt separation. In one of its aspects, the present disclosure relates to an improved exhaust grill for a cyclone module assembly. For purposes of description related to the figures, the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the present disclosure as oriented in
Referring to the drawings and in particular to
Referring to
Referring to
As shown in
Referring to
Referring to
The module platform 18 is rigidly attached to the elongated structural support 16. A brace 76 on the back of the spine member 52 connects the lower rear portion of the spine member 52 to the back of the module platform 18 and strengthens the junction of the module platform 18 and the elongated structural support 16 to increase the structural rigidity. In addition, the brace 76 defines a front stopping surface 78 that is adapted to guide and support a lower portion of the vacuum module 20 during installation and use. In addition to the air conduit interface 30, an electrical connector 80 is mounted on the top of the module platform 18 and is operably connected to electrical components within the foot assembly 14 such as an agitator drive motor (not shown). The electrical connector 80 is adapted for selective connection to a mating connector (not shown) that is mounted to the bottom of the vacuum module 20 and which is operably connected to the motor/fan assembly 46, power cord 48, power switch 50, and brush motor control switch 82. When the vacuum module 20 is mounted to the module platform 18 and the two connectors are electrically engaged, power can be delivered to the electrical components mounted in the vacuum module 20, foot assembly 14, or handle assembly 12, for example.
A multi-axis joint 84 is mounted to the bottom of the module platform 18 and is configured to rotate the upright handle assembly 12 about two different axes relative to the foot assembly 14. As best shown in
Referring to
The pivot ring 88 comprises a ring-shaped member with an outer bearing surface 104 comprising the annular bearing protrusion 96. The bearing protrusion 96 is configured to nest within the bearing channel 94 in sliding register between the upper and lower annular undulations 98, 100. The annular undulations restrict axial movement of the pivot ring 88 along the first axis Z, while permitting the pivot ring 88 to rotate about the first axis Z. The pivot ring 88 further comprises an upper and lower land 106 at the top and bottom, adjacent the bearing protrusion 96. The upper and lower lands 106 slidingly abut the outer surface of the upper and lower undulations 98, 100 and thereby further restrict axial movement of the pivot ring 88 along the first axis Z.
The pivot ring 88 further comprises opposed, coaxial pivot bosses 112 that protrude outwardly from a rear portion of the pivot ring 88. The pivot bosses 112 define the second axis X. The pivot bosses 112 are pivotally received within bearings 114 in the foot assembly 14 (
The upright handle assembly 12 is swivelably mounted to the foot assembly 14 via the joint 84, which is configured to rotate the upright handle assembly 12 about both of the X and Z axes, relative to the foot assembly 14. The upright handle assembly 12, including the module platform 18 is adapted to pivot about the second axis X. A user can recline the handle 12 by pulling the grip 56 rearwardly, which rotates the entire upright handle assembly 12 about the second axis X, on the pivot bosses 112 that are rotatably received within the associated bearings 114. Furthermore, the upright handle assembly 12 is adapted to twist about the first axis Z on the pivot neck 86, which is configured to rotate around the pivot ring 88. A user can twist the grip 56 relative to the first axis Z to change the rotational orientation of the upright handle assembly 12 relative to the foot assembly 14. The rotational force is transmitted from the grip 56 through the elongated structural support 16 and module platform 18 to the pivot neck 86 associated therewith. The bearing channel 94 and wavy bearing surface 102 can rotate about the first axis Z and slide relative to the bearing protrusion 96 and annular wavy recesses 110 of the pivot ring 88, thus twisting the upright handle assembly 12 relative to the foot assembly 14 about the first axis Z, which can also articulate the foot assembly 14 relative to the handle assembly 12 to maneuver the vacuum cleaner 10 across the surface to be cleaned.
As best seen in
The biasing mechanism 122 as illustrated comprises a right coil spring 126 mounted along the right side of the joint 84, from the perspective of a user behind the vacuum cleaner, and a left coil spring 128 mounted along the left side of the joint 84. Both coil springs 126, 128 are mounted between the pivot ring 88 and the inner surface of the pivot neck 86 within enclosed spring mounting pockets 130. Each spring mounting pocket 130 can be formed between an arcuate spring retention rib 132 provided on the pivot ring and which is offset from the inner diameter of the pivot ring 88, and a corresponding flange rib 134, which is formed inside the pivot neck 86. The ends of the right coil spring 126 are constrained between a vertical stop rib 136 formed along the center line of the pivot ring 88 and a right stop rib 138 inside the pivot neck 86. Likewise, the ends of the left coil spring 128 are constrained between the vertical stop rib 136 and a left stop rib 140. Any suitable biasing mechanism can be used, and opposed coil springs have been illustrated for exemplary purposes only.
Referring to
Accordingly, the biasing mechanism 122 tends to self-center the handle assembly 12 about the first axis Z such that the handle assembly 12 tends to spring back to the neutral position “N.” The biasing mechanism 122 can also reduce the force a user must exert to return the handle assembly 12 to the neutral or position so that the opposed right and left coil springs 126, 128 are at equilibrium.
The materials for the pivot ring 88 and pivot neck 86 can comprise plastic injection molded materials, and can preferably be selected from a group of lubricious plastic materials, such as Acetal or Nylon, for example. The lubricious components can reduce friction between mating bearing surfaces, and can thus reduce the force required by a user to rotate the joint 84. In addition, lubricious components can improve the durability of the joint components.
The joint 84 can optionally comprise a lubricant coating that can be applied to the mating bearing surfaces, such as the bearing channel 94 and bearing protrusion 96, to minimize friction and improve durability. In another configuration (not shown), intermediate components such as ball bearings, needle bearings or a bearing or wear strip can be incorporated in the joint 84 in the bearing channel 94 between the pivot neck 86 and pivot ring 88 to reduce friction, for example. The bearing or wear strip can comprise a thin band or strip of material having a low coefficient of friction such as polytetrafluoroethylene (PTFE), for example, which is commercially available under several brand names, including Teflon®.
Referring to
Referring to
Referring to
The vacuum module 20 further comprises a removable dirt separator and collection module 40 that is configured to be selectively mounted to the module housing 32. As shown in
The top of the outer housing 172 is covered by a crown 184 and a cap 186, which are attached to the outer housing 172. The cap 186 further comprises a carry handle 188 formed on an upper portion thereof for lifting and transporting the dirt separator and collection module 40, the vacuum module 20, or the entire vacuum cleaner 10. A module release latch 190 is pivotally mounted on the carry handle 188 and includes a hook (not shown) for selectively retaining the dirt separator and collection module 40 to the vacuum module 20.
The open bottom 178 is selectively enclosed by a dirt release door 192 that is pivotally mounted to a hinge bracket 194 on the side wall 174 of the outer housing 172. The dirt release door 192 comprises exhaust outlet apertures 196 for fluidly connecting the dirt separator and collection module 40 to the downstream motor/fan assembly 46.
The dirt release door 192 is selectively retained in a closed position by a door release latch 198. The door release latch 198 is pivotally mounted to the side wall 174 of the outer housing 172, opposite the hinge bracket 194. As illustrated, the outer housing 172 is preferably shaped so that the side wall 174 tapers outwardly from the top of the housing 172 towards the bottom of the housing 172 so that the open bottom 178 has a larger diameter than the top of the outer housing 172. The larger diameter open bottom 178 relative to the top of the housing allows collected debris to be more easily discharged through the open bottom 178 of the outer housing 172 when the dirt release door 192 is open, and reduces potential for debris clogs while emptying the module 40.
Referring now to
The first stage collection chamber 204 is formed between an outer separator housing 224 and the side wall 174, and a bottom wall 216, which is formed by an outer portion of the dirt release door 192. The dirt release door 192 sealingly mates to a first stage collector outlet opening 218 at the bottom of the first stage collection chamber 204. The dirt release door 192 can be selectively pivoted away from the open bottom 178 about the hinge bracket 194 for simultaneously emptying debris stored in the first stage collection chamber 204 and the second stage collection chamber 208.
The separator grill 210 is formed integrally with an inner separator housing 220, which is connected to the bottom of the grill 210 and is in fluid communication therewith. The top of the separator grill 210 is affixed to an upper separator plate 222, which is detachably secured inside the top 176 of the outer housing 172. The inner separator housing 220 comprises an upper frusto-conical separator portion 242, which defines the second stage separation chamber 206, and a lower debris collector portion 244, which defines the secondary collection chamber 208. The debris collector portion 244 comprises a cylindrical tube at a lower portion of the frusto-conical separator portion 242. The outer separator housing 224 abuts the bottom of the separator grill 210 and surrounds the inner separator housing 220 concentrically to form a working air exhaust channel 226 therebetween.
Referring to
The inlet openings 232 can be formed as elongated passages within the grill 210, and can be further be defined by a top passage wall 248 which can provided in the upper separator plate 222, and a bottom passage wall 250 provided with the inner separator housing 220. Each inlet opening 232 includes an inlet formed in the outer cylindrical wall 230 and an outlet 236 formed at the terminal ends of the associated adjacent vanes 234.
The grill 210 can further comprise a plurality of exhaust conduits 240. The hollow exhaust conduits 240 can be located around the inner perimeter of the cylindrical wall 230 and oriented along vertical axes. As shown herein, the vanes 234 can be at least partially hollow, such that each vane 234 may define one or more exhaust conduits 240. In the illustrated embodiment, one exhaust conduit 240 is defined per vane 234. Alternatively, each exhaust conduit 240 can be formed between adjacent vanes 234, rather than defined by a vane 234.
Each exhaust conduit 240 can be defined by three interconnected sides; an arcuate section 258 of the outer wall 230, which is formed between successive inlet openings 232, a first side wall 252 of one of the vanes 234, and a second side wall 254 of the same vane, both of which are connected to the associated arcuate section 258. Each exhaust conduit 240 can extend downwardly from a corresponding exhaust inlet aperture 260 provided in the upper separator plate 222, and is fluidly connected to an exhaust conduit outlet opening 262 at the bottom of the separator grill 210. The exhaust conduit outlet openings 262 are fluidly connected to the exhaust channel 226 formed between the outer separator housing 224 and the inner separator housing 220. The exhaust channel 226 is fluidly connected to the exhaust outlet apertures 196 formed in the dirt release door 192.
A plurality of vanes 234 and exhaust conduits 240 can be located around the inner circumference of the cylindrical outer wall 230. The trajectory of each vane 234, generally indicated by arrow “B”, is tangent to the upper frusto-conical separator portion 242 for directing a working airstream into the inner separator housing 220 to separate fine dust and debris therefrom for collection in the debris collector portion 244. As best seen in
Referring to
The dirt release door 192 is movable between a first, closed position, shown in
The dirt release door 192 can further comprise an outer annular seal 278 configured to seal the bottom perimeter of the outer housing 172. Additionally, the dirt release door 192 can comprise an inner annular seal 280 and intermediate annular seal 282 for sealing the door 192 to the bottom of the inner separator housing 220 and outer separator housing 224, respectively. In the first, closed position, the dirt release door 192 is located adjacent to the bottom of the outer housing side wall 174 and forms the bottom wall of the first and second stage collection chambers 204, 208. The door 192 is configured to selectively pivot away from the outer housing side wall 174, about the hinge bracket 194 when a user depresses the door release latch 198. Vertical fins 284 protrude upwardly from the door 192 into the first stage collection chamber 204 to prevent re-entrainment of debris into the working airflow when the door 192 is sealingly latched to the bottom of outer housing 172, outer separator housing 224 and inner separator housing 220.
The operation of the dirt separator and collection module 40 will now be described with reference to
The dirt-laden working airflow swirls around the first stage separation chamber 202 in a clockwise direction indicated by arrows “A”. Larger debris is separated from the working airflow and falls through the first stage debris outlet 212 and is collected in the first stage collection chamber 204. The vertical fins 284 on the dirt release door 192 help retain the debris in the first stage collection chamber 204 and impede re-entrainment of that debris back into the working airflow.
As indicated by arrows “B”, the working airflow must change direction to enter the elongate inlet openings 232 of the separator grill 210. As best seen in
Next, as indicated by arrows “D”, the separated working air flows upwardly and over the top passage walls 248, between the inside top wall of the outer housing 172, and continues to flow downwardly into the exhaust inlet apertures 260. The working air continues to flow downwardly through the exhaust conduits 240 and exits through the exhaust conduit outlet openings 262 at the bottom of the grill 210 into the exhaust channel 226, which is fluidly connected thereto. The exhaust channel 226 is formed in the concentric volume between the outer separator housing 224 and the inner separator housing 220. The working air continues to flow downwardly through the concentric exhaust channel 226 and eventually exits the dirt separator and collection module 40 through the plurality of exhaust outlet apertures 196 in the intermediate ring-shaped area 276 of the.
The working airflow then flows through the pre-motor filter assembly 158 into vacuum motor/fan assembly 46 and is exhausted into the atmosphere through the exhaust filter 294 and exhaust vents 296 in the vacuum motor/fan cavity 154.
The vacuum module 20 can optionally be removed from the upright handle assembly 12 by releasing the vacuum module locking mechanism. A user can depress the button latch 68, which releases the catch 70 from the spine member 52, and then lift the vacuum module 20 away from the spine member 52 and off of the module platform 18. When the vacuum motor/fan assembly 46 is energized, working air is drawn into the hose inlet 42 (or through the suction nozzle inlet opening of various accessory tools 298 when mounted to the hose inlet 42). The function of the dirt separator and collection module 40 is the same regardless of whether the vacuum module 20 is used independently from the upright handle assembly 12 and foot assembly 14 or in conjunction therewith.
To empty debris from the dirt separator and collection module 40, a user first must release the dirt separator and collection module 40 from the vacuum module 20 by depressing the module release latch 190 to release the dirt separator and collection module 40 from the vacuum module 20. Next, the user can depress the dirt door release latch 198 to release the dirt release door 192. The dirt release door 192 pivots downwardly about the hinge bracket 194 under the force of gravity, away from the bottom of the outer housing 172, and exposes the open bottoms of the first stage collection chamber 204 and second stage collection chamber 208. The debris collected in the first and second stage collection chambers 204, 208 falls freely therethrough and can be disposed in a waste receptacle in a facile manner.
In the second embodiment, the debris separator and collection module 300 comprises an outer housing 332 that surrounds an outer separator housing 306. The outer separator housing 306 comprises an upper portion 308 that surrounds an inner separator housing 310 and a lower portion 312 that is joined to the upper portion 308 along a horizontal wall 314 (
The lower portion 312 of the outer separator housing 306 comprises a tube 304 defining an exhaust channel 302 and a second stage debris collection chamber 324 located below the debris outlet 322 for collecting debris separated from the working airflow swirling around the inner separator housing 310. The tube 304 is illustrated as comprising a generally “D”-shaped profile for exemplary purposes, and includes an inner partition wall 328 that separates the exhaust channel 302 from the second stage debris collection chamber 324.
Similar to the previous embodiment, the debris separator and collection module 300 further comprises a separator grill 334 mounted below the top wall of the outer housing 332. The separator grill 334 comprises a plurality of inlet passages 336 for directing working airflow inwardly from a first stage separation chamber 338 into a second stage separation chamber 340 within the separator grill 334 and inner separator housing 310, which is mounted to the bottom of the grill 334.
Likewise, as in the previous embodiment, vertical exhaust conduits 342 are formed between the horizontally oriented inlet passages 336 and are configured to guide working air from the second stage separation chamber 340, through exhaust conduit inlets 344 at the top of the grill 334 and downwardly through the associated exhaust conduits 342 located around the perimeter of the grill 334, to corresponding exhaust conduit outlets 346 at the bottom of the grill 334. In the second embodiment, the exhaust conduit outlets 346 are fluidly connected to corresponding exhaust apertures 347 at the top of the inner separator housing 310, which abuts the bottom of the separator grill 334. The exhaust conduit outlets 346 are fluidly connected to a downstream working air exhaust chamber 348, which is defined between the cylindrical side wall 320 of the outer separator housing 306 and the frusto-conical outer wall of the inner separator housing 310, above the exhaust channel inlet 318.
The exhaust chamber 348 is fluidly connected to the exhaust channel 302 via the exhaust channel inlet aperture 318. The exhaust channel 302 further comprises an exhaust channel outlet 350 at the bottom thereof. The exhaust channel outlet 350 is fluidly connected to an exhaust aperture 352 in the dirt release door 353. A seal 354 can be fitted between the exhaust channel outlet 350 and the exhaust aperture 352 for minimizing leakage when the door is in a closed position. The exhaust aperture 352 is further configured to be fluidly connected to the motor/fan assembly 46 as described in the previous embodiment.
A D-shaped, raised portion 358 on the dirt release door 353 defines the bottom of the second stage collector chamber 324, and is configured to selectively close the bottom of the second stage collection chamber 324 when the door 353 is in the closed position, as shown in
As best seen in
In operation, the dirt separator and collection module 300 can be fluidly connected to the motor/fan assembly 46 so that the exhaust aperture 352 in the dirt release door 353 is fluidly connected to the inlet 160 of the motor/fan assembly 46. Upon energizing the motor/fan assembly 46, a working airflow is drawn through the upstream working air path and hose assembly as previously described and into a tangential inlet 360 of the dirt separator and collection module 300. The dirt-laden working air swirls around the first stage separation chamber 338 in a clockwise direction indicated by arrows “A1” (
The working airflow then changes direction and enters inlet openings 362 of the separator grill 334 and passes through the inlet passages 336 into the second stage separator chamber 340 as indicated by arrows “B1”. Then, the working airflow swirls around the second stage separation chamber 340 in a counter-clockwise direction as indicated by arrows “C1” to filter out any remaining debris in the working airflow. The remaining entrained debris is separated from the working airflow and falls into the second stage collection chamber 324, within the tube 304.
Next, as indicated by arrows “D1”, the separated working air flows upwardly and over the top vane walls of the inlet passages 336, between the inside top wall of the outer housing 332, and continues to flow downwardly into the exhaust conduit inlets 344. The working air continues to flow downwardly through the exhaust conduits 342 and exits through the exhaust conduit outlets 346 at the bottom of the grill 334 into the exhaust chamber 348, which guides the working air through the exhaust channel inlet aperture 318. The working air continues to flow downwardly through the exhaust channel 302, which is positioned in front of the second stage debris collection chamber 324 and through the exhaust channel outlet 350. The working air exits the dirt separator and collection module 300 through the aligned exhaust aperture 352 in the dirt release door 353 and continues on through the downstream pre-motor filter 158 and motor/fan assembly 46, whereupon it is exhausted into the atmosphere through an exhaust filter 294 and exhaust vents 296 in the vacuum motor/fan cavity.
In the configuration illustrated herein, the separator and collection module 40, 300 includes a separation portion having multiple separation stages for separating contaminants from a working airstream and an integral dirt collection portion for receiving and collecting the separated contaminants from the separation portion. In another configuration, the module 40, 300 can have a single separation stage. Alternatively, a separate stage of the module 40, 300 can have multiple, parallel separation chambers. With respect to any of these configurations of the separation portion, the dirt collection portion can be integral with the separation portion, or can be formed as a removable dirt cup.
While the present disclosure has been specifically described in connection with certain specific embodiments thereof, it is to be understood that this is by way of illustration and not of limitation, and the scope of the appended claims should be construed as broadly as the prior art will permit.
This application is a continuation of U.S. patent application Ser. No. 15/212,700, filed Jul. 18, 2016, now U.S. Pat. No. 10/986,968, issued Apr. 27, 2021, which is a continuation of U.S. patent application Ser. No. 13/938,317, filed Jul. 10, 2013, now U.S. Pat. No. 9,392,919, issued Jul. 19, 2016, which claims the benefit of U.S. Provisional Patent Application No. 61/671,252, filed Jul. 13, 2012, all of which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3969096 | Richard | Jul 1976 | A |
4571772 | Dyson | Feb 1986 | A |
4660246 | Duncan et al. | Apr 1987 | A |
4853008 | Dyson | Aug 1989 | A |
5230722 | Yonkers | Jul 1993 | A |
5267371 | Soler et al. | Dec 1993 | A |
5309600 | Weaver et al. | May 1994 | A |
5524321 | Weaver et al. | Jun 1996 | A |
5715566 | Weaver et al. | Feb 1998 | A |
6094775 | Behmer | Aug 2000 | A |
6345408 | Nagai et al. | Feb 2002 | B1 |
6374453 | Kim | Apr 2002 | B1 |
6428589 | Bair et al. | Aug 2002 | B1 |
6578230 | Park et al. | Jun 2003 | B2 |
6607572 | Gammack et al. | Aug 2003 | B2 |
6766557 | Park et al. | Jul 2004 | B2 |
6829804 | Sepke | Dec 2004 | B2 |
6896719 | Coates et al. | May 2005 | B2 |
6961975 | Park et al. | Nov 2005 | B2 |
6994740 | Gammack et al. | Feb 2006 | B2 |
7065826 | Arnold | Jun 2006 | B1 |
7162770 | Davidshofer | Jan 2007 | B2 |
7247181 | Hansen et al. | Jul 2007 | B2 |
7297172 | Lee | Nov 2007 | B2 |
7360274 | Park et al. | Apr 2008 | B2 |
7361200 | Oh et al. | Apr 2008 | B2 |
7377007 | Best | May 2008 | B2 |
7377008 | Park et al. | May 2008 | B2 |
7395579 | Oh | Jul 2008 | B2 |
7517377 | Yoshida et al. | Apr 2009 | B2 |
7600291 | Choi | Oct 2009 | B2 |
7662201 | Lee | Feb 2010 | B2 |
7780753 | Lang | Aug 2010 | B2 |
7857878 | Park et al. | Dec 2010 | B2 |
7951218 | Oh | May 2011 | B2 |
7996956 | Wood et al. | Aug 2011 | B2 |
8667643 | Simonelli | Mar 2014 | B2 |
8869348 | Conrad | Oct 2014 | B2 |
8869349 | Henderson | Oct 2014 | B2 |
9107558 | Lenkiewicz et al. | Aug 2015 | B2 |
9125537 | Seo | Sep 2015 | B2 |
9138114 | Conrad | Sep 2015 | B2 |
20060207054 | Loebig | Sep 2006 | A1 |
20060213024 | Lee et al. | Sep 2006 | A1 |
20070039292 | Oh et al. | Feb 2007 | A1 |
20070079586 | Kim | Apr 2007 | A1 |
20070234687 | Ni | Oct 2007 | A1 |
20090056059 | Mersmann et al. | Mar 2009 | A1 |
20090133370 | Yoo et al. | May 2009 | A1 |
20090282791 | Lang | Nov 2009 | A1 |
20110023256 | Conrad | Feb 2011 | A1 |
20110107553 | Myers | May 2011 | A1 |
20120060322 | Simonelli et al. | Mar 2012 | A1 |
20120079679 | Seo | Apr 2012 | A1 |
Number | Date | Country |
---|---|---|
0923992 | Jun 1999 | EP |
2471429 | Jul 2012 | EP |
2375980 | Dec 2002 | GB |
H08322769 | Dec 1996 | JP |
2002069778 | Dec 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20210244245 A1 | Aug 2021 | US |
Number | Date | Country | |
---|---|---|---|
61671252 | Jul 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15212700 | Jul 2016 | US |
Child | 17240368 | US | |
Parent | 13938317 | Jul 2013 | US |
Child | 15212700 | US |