Vacuum cleaners can include an agitator for agitating debris on a surface to be cleaned so that the debris is more easily ingested into the vacuum cleaner. In some cases, the agitator comprises a motor-driven brushroll that rotates within a base assembly or floor nozzle. Vacuum cleaners can also include a mechanism for raising or lowering the agitator relative to the surface to be cleaned, which can vary the amount of suction force applied at the surface to be cleaned.
According to one embodiment of the invention, a vacuum cleaner includes a base comprising a suction chamber, wheels rearward of the suction chamber, and a roller chamber forward of the suction chamber, wherein the roller chamber is defined by a curved wall and comprises an open forward portion, a suction source fluidly connected to the suction chamber for generating a working air stream through the suction chamber, a suction nozzle opening in fluid communication with the suction chamber and defining an inlet to the suction chamber, a rotatable brushroll provided in the suction chamber for rotation about a brushroll axis, and a rotatable roller mounted in the roller chamber for rotation about a roller axis, wherein the roller is in engagement with the curved wall of the roller chamber and a portion of the roller protrudes through the open forward portion of the roller chamber, and wherein the roller axis is vertically offset below the brushroll axis.
In the drawings:
The invention relates to vacuum cleaners and in particular to vacuum cleaners having an agitator assembly and a suction nozzle. In one of its aspects, the invention relates to an improved suction nozzle that houses an agitator and further comprises a roller provided outside the suction nozzle and in front of the agitator. For purposes of description related to the figures, the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the invention as oriented in
The upper housing 12 is pivotally mounted to the base 14 for movement between an upright storage position, shown in
The upper housing 12 also has an elongated handle 26 extending upwardly from the main support section 16 that is provided with a hand grip 28 at one end that can be used for maneuvering the vacuum cleaner 10 over a surface to be cleaned. A motor cavity 30 is formed at a lower end of the support section 16 and contains a conventional suction source such as a motor/fan assembly 31 positioned therein in fluid communication with the collection system 18. The vacuum cleaner 10 can also be provided with one or more additional filters upstream or downstream of motor/fan assembly.
In operation, the vacuum cleaner 10 draws in dirt-laden air through the base 14 and into the collection system 18 where the dirt is substantially separated from the working air. The air flow then passes through the motor cavity 30 and past the suction source or motor/fan assembly 31 prior to being exhausted from the vacuum cleaner 10. The collection system 18 can be periodically emptied of dirt.
A suction nozzle opening 54 is formed in the sole plate 36 of the lower housing 34 and is in fluid communication with the suction chamber 38. A duct 56 is coupled at one end to the suction chamber 38 and fluidly communicates the suction nozzle opening 54 with the collection system 18 (
The base 14 can further include an optional suction nozzle height adjustment mechanism comprising a rotatable carriage 62 attached to the lower housing 34 on which a pair of carriage wheels 64 are mounted for maneuvering the vacuum cleaner 10 over a surface to be cleaned. A rotatable knob 66 for actuating the adjustment mechanism can be provided on the exterior of the base 14. In another variation, the suction nozzle height adjustment mechanism can be eliminated.
The vacuum cleaner 10 further comprises a roller 68 provided outside the suction nozzle opening 54 and in front of the agitator 40. The roller 68 is coupled to the base 14 for free rotation about a roller axis Y that is parallel to, but spaced from, the brushroll axis X. In the illustrated embodiment, the roller 68 is coupled to the base 14 via a roller mounting housing 70 provided on the base 14, in front of the suction nozzle opening 54. Alternatively, the roller mounting housing 70 can be formed integrally as part of the lower housing 34 or sole plate 36.
The roller 68 is not coupled with the agitator motor 42 or any other drive source, and is configured to rotate via friction created between the roller 68 and the surface to be cleaned as the base 14 is moved back and forth across the surface to be cleaned. Thus, as the base 14 is moved in a forward direction, the roller 68 rotates forwardly about the axis Y, and as the base 14 is moved in a rearward direction, the roller 68 rotates rearwardly about the axis Y.
The free rotation design of the roller 68 allows the front edge of the lower base 14 to roll over larger debris while maintaining a tight seal between the suction nozzle opening 54 and the surface to be cleaned. This action prevents “plowing” of larger debris while maintaining maximum suction inside the suction chamber 38 that effectively removes small, fine debris from the surface in addition to the larger debris.
In addition, the roller 68 can act as a third wheel set, i.e. in addition to the rear wheels 58 and front carriage wheels 64, that supports the base 14 on the surface to be cleaned for rolling movement. In another configuration (not shown), the front carriage wheels 64 can be eliminated so that the roller 68 serves as the sole front wheel set of the base 14.
The roller 68 can extend across the entire front side of the suction nozzle opening 54, but may not necessarily continuously extend. In the embodiment illustrated herein, the roller 68 can be divided into three individual segments 72 that collectively define the roller 68. Other number of segments 72, including one, two, or more, can also make up the roller 68.
The multiple-segment roller 68 design facilitates easy turning of the base 14. For example, on a right-hand turn, the outboard left-hand segment 72 will rotate faster than the inboard right-hand segment 72. The right-hand segment 72 may even rotate backwards if the base 14 performs a pivoting turn rather than a forwardly rolling turn, thus improving maneuverability.
Forming the roller 68 in multiple segments can also provide structural rigidity. A single, long roller may flex and deflect out of contact with the surface to be cleaned, while multiple, shorter segments 72 are stiffer and will deflect less, thereby better maintaining contact with the surface to be cleaned.
At least the outer or floor-contacting surfaces of the roller 68 can be made from a non-marring polymeric material, such as acrylonitrile butadiene styrene (ABS) or polypropylene. In one example, roller 68 can comprise an inner substrate and an over-molded outer layer made from an elastomer. The over-molded outer layer can be selected from a material having a sufficient durometer such that the paddles 76 do not deflect when subjected to forces normally experienced during a floor cleaning operation, but would also provide sound dampening when the roller 68 is moved across hard surface flooring. In a more specific example, the substrate can be ABS and the over-molded outer layer can be thermoplastic rubber.
The roller mounting housing 70 defines a roller chamber 78 for receiving the roller 68. The roller 68 is rotatably mounted on an axle 80 fixed within the mounting housing 70 and extending through the chamber 78. The roller body 74 can be hollow in order to receive the axle 80, and can act as a hub on which the segments 72 rotate relative to the axle 80. The mounting housing 70 has two end walls 82 in which sockets 84 are provided for mounting the axle 80 in a fixed, i.e. non-rotatable, position. The mounting housing 70 can further have partition walls 86 located between the end walls 82 and dividing the roller chamber 78 into shorter chamber segments 88, each of which can receive one of the roller segments 72. The partition walls 86 can have openings 90 which allow the axle 80 to extend through the partition walls 86. While one axle 80 is used to mount all three segments 72 in the illustrated embodiment, individual axles can be provided for each roller segment 72. The roller chamber 78 can be defined by a top wall 92 and a rear wall 94 of the mounting housing 70. The top and rear walls 92, 94 can be arcuate in shape, such that there is a close fit between the paddles 76 and the walls 92, 94. The rear wall 94 can extend downwardly over a portion of the roller 68.
In the illustrated embodiment, the roller 68 has a fixed vertical orientation relative to the housing 70. In a version of the base 14 with a suction nozzle height adjustment mechanism, the roller 68 is always in contact with the surface to be cleaned. If the base 14 includes the suction nozzle height adjustment mechanism shown in
Optionally, the axle 80 can be mounted to vertical slots (not shown) in the housing 70, such that the roller 68 can adjust vertically with respect to the housing 70, depending on the characteristics (i.e. carpet vs. bare floor) and height variations (i.e. deep pile vs. shallow pile) of the surface to be cleaned, and/or depending on the nozzle height set by the nozzle height adjustment mechanism shown in
A series of wheels 102 can also extend radially from the roller body 74, and also help ensure smooth rolling of the roller 68 over the surface to be cleaned. The wheels 102 can also act as dividers which break up the paddles 76, such that a single chevron is contained between adjacent wheels 102. As illustrated the debris chambers 77 are defined between adjacent wheels 102 and between the slanted blades 96 of adjacent paddles 76. Thus, multiple debris chambers 77 may be provided along the length as well as around the circumference of the roller 68. Absent the wheels 102 or other circumferential dividers, a single debris chamber 77 may be provided along the length the roller 68, and multiple debris chambers 77 may be provided around the circumference of the roller 68.
The paddles 76 create a partial seal between the front passageway 104 and the surface to be cleaned S. The paddles 76 and mounting housing 70 are configured so that, upon the rotation of the roller about a rotational axis, the paddles 76 sequentially form a temporary seal between the passageway 104 and the surface to be cleaned S such that a corresponding debris chamber 77 is fluidly coupled to the suction chamber 38 and debris in the corresponding debris chamber 77 is ingested through the passageway 104. During use, at least one of the paddles 76 always effectively seals against the top wall 92 or rear wall 94 as the roller 68 rotates within the housing 70. The seal limits suction leaks and focuses the working air flow, which is especially helpful in picking up fine dirt and debris (not shown) which may otherwise be left behind on the surface S by the vacuum cleaner 10. In
The vacuum cleaner 10 disclosed herein provides improved cleaning performance and ease of use. One advantage that may be realized in the practice of some embodiments of the described vacuum cleaner 10 is that the vacuum cleaner 10 can be configured to avoid plowing large debris D across the surface to be cleaned S, and will instead walk over and ingest larger debris D into the suction chamber 38 and downstream collection system 18.
Another advantage that may be realized in the practice of some embodiments of the described vacuum cleaner apparatus 10 is that air leaks around the suction nozzle opening 54 are minimized compared to conventional vacuum cleaner suction nozzles. Yet another advantage is that more working air flow is directed adjacent to the surface to be cleaned S to lift and entrain fine debris into the suction chamber 38 and downstream collection system 18 compared to conventional vacuum cleaner suction nozzles. Still another advantage is that some embodiments of the invention are configured to reduce the force required to push the vacuum cleaner 10 across the surface to be cleaned S compared to conventional vacuum cleaners.
Previous nozzle designs attempted to reduce suction leaks by lowering the bottom surface of the suction nozzle towards the cleaning surface and sometimes by resting the suction nozzle on the cleaning surface during use. However, this configuration is prone to plowing debris rather than ingesting it through the suction nozzle. Additionally, when the bottom surface of the suction nozzle contacts the cleaning surface, the nozzle can dig into the cleaning surface, which can increase the force necessary to push the vacuum cleaner, which is undesirable. Raising the suction nozzle away from the cleaning surface to clear larger debris increases suction leaks and hence reduces cleaning performance.
The vacuum cleaner 10 disclosed herein avoids these issues and provides a suction nozzle opening 54 and roller 68 that reduces air leaks by maintaining a seal between the suction chamber 38 and the surface to be cleaned S, focuses working air under the bottom of the roller 68 to enhance cleaning performance, while maintaining ability to walk over and ingest larger debris D into the suction chamber 38.
While the invention has been specifically described in connection with certain specific embodiments thereof, it is to be understood that this is by way of illustration and not of limitation. Reasonable variation and modification are possible with the scope of the foregoing disclosure and drawings without departing from the spirit of the invention which, is defined in the appended claims. Hence, specific dimensions and other physical characteristics relating to the embodiments disclosed herein are not to be considered as limiting, unless the claims expressly state otherwise.
This application is a continuation of U.S. patent application Ser. No. 14/148,939, filed Jan. 7, 2014, now U.S. Pat. No. 9,668,628, issued Jun. 6, 2017, which claims the benefit of U.S. Provisional Patent Application No. 61/751,529, filed Jan. 11, 2013, both of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2482166 | Gage | Sep 1949 | A |
2641015 | Lovick | Jun 1953 | A |
2701892 | Mingus | Feb 1955 | A |
3392418 | Schowalter | Jul 1968 | A |
4138762 | Jost | Feb 1979 | A |
4903369 | Kitamura et al. | Feb 1990 | A |
5481781 | Weber | Jan 1996 | A |
6237188 | Takemoto et al. | May 2001 | B1 |
6311366 | Sepke et al. | Nov 2001 | B1 |
8402600 | Beskow et al. | Mar 2013 | B2 |
20100108098 | Splinter | May 2010 | A1 |
20130145577 | Davidshofer et al. | Jun 2013 | A1 |
Number | Date | Country |
---|---|---|
2476812 | Jul 2011 | GB |
2010029661 | Feb 2010 | JP |
199528121 | Oct 1995 | WO |
199943250 | Sep 1999 | WO |
2007074035 | Jul 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20170231445 A1 | Aug 2017 | US |
Number | Date | Country | |
---|---|---|---|
61751529 | Jan 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14148939 | Jan 2014 | US |
Child | 15583347 | US |