The invention relates to a vacuum cleaner, particularly of the handheld type of vacuum cleaner being generally compact and lightweight. The invention also relates to a filter for such a vacuum cleaner.
Handheld vacuum cleaners are popular with users due to their light weight and inherent portability, as well as the lack of power cords, which makes such vacuum cleaners particularly convenient for spot cleaning tasks as well as for cleaning larger areas. The cleaning efficiency of handheld vacuum cleaners is improving and it is known to equip a handheld vacuum cleaner with a cyclonic separating apparatus to separate the dirt and dust from the incoming flow of dirt laden air. One such example is disclosed in EP2040599B, which incorporates a first cyclonic separating stage in the form of a relatively large cylindrical cyclone chamber and a second cyclonic separating stage in the form of a plurality of smaller cyclones fluidly downstream from the first cyclonic separating stage. In such an arrangement, the first cyclonic separating stage works to separate relatively large debris from the airflow, whilst the second cyclonic separating stage filters relatively fine dirt and dust from the airflow by virtue of the increased separation efficiency of the smaller cyclones.
Whilst two-stage cyclonic separation is efficient at separating dirt and dust from the incoming airflow, it is still prudent to provide a filter downstream of the cyclonic separating apparatus and upstream of the motor in order to protect the motor from the ingress of fine dust which may still be entrained in the airflow. EP2040599B includes a generally planar filter member that is located in a recess adjacent an outlet duct of the cyclonic separating unit. The plane of the filter member lies generally parallel to the longitudinal axis of the cyclonic separating unit. Although this configuration permits a relatively large filter to be used, the overall size of the vacuum cleaner is increased significantly. It is with this drawback in mind that the invention has been devised.
The invention provides a vacuum cleaner comprising a cyclonic separating apparatus including a dirty air inlet, a main body connected to the cyclonic separating apparatus and a motor and fan unit for generating an airflow through the cyclonic separating apparatus from the dirty air inlet to a clean air outlet, wherein the cyclonic separating apparatus includes at least a first cyclonic cleaning stage and an elongate filter arranged fluidly downstream from the first cyclonic cleaning stage. The elongate filter is housed in a duct at least partially surrounded by the first cleaning stage, and comprises an inlet portion carrying a filter portion defining a filter chamber. The inlet portion includes one or more radial inlets to permit air to flow into the inlet portion in a radial direction, wherein the air flows from the inlet portion to the filter chamber in an axial direction.
Preferably, the filter is a sock filter arranged in the duct and so is generally tubular and defines a filter wall having a longitudinal axis generally parallel with a longitudinal axis of the duct/separating apparatus. Commonly, elongate filters such as sock filters are arranged such that air flow enters the interior or lumen of the filter in a direction along the longitudinal axis of the filter, through the open end of the filter. Such a configuration requires a chamber adjacent the open end of the filter to define the entry zone and allow air to flow in an axial direction in to the filter. Conversely, in the invention, the filter defines one or more radial inlets so that airflow is directed into the interior of the filter in a radial direction, that is to say in a direction normal to the longitudinal axis of the filter, thereby avoiding the need for a chamber adjacent the open end of the sock filter as in conventional arrangements. This enables the housing of the filter i.e. the surrounding part of the duct and the separating apparatus to be more compact, which is beneficial in particular for handheld vacuum cleaners for which important characteristics are compactness and low weight.
Various configuration of radial inlets are possible. For example, the radial inlet may be a single annular opening extending either partly or wholly about the circumference of the inlet portion. Alternatively, the inlet portion may have a plurality of inlets spaced angularly around the periphery of the inlet portion. A plurality of inlet apertures may improve the air flow through the filter and so reduces pressure drop. In the case of a plurality of inlet apertures, each aperture may be aligned with a respective air channel or ‘vortex finger’ defined by a cyclone outlet manifold of the separating apparatus. Once the airflow has entered the interior of the filter, due to the configuration of the filter the air flows radially outwards through the wall of the filter media portion.
In order to improve accessibility of the filter, the inlet portion may define a filter cap that is engageable within a complementary shaped aperture defined by the separating apparatus such that the filter cap defines an outer surface of the cyclonic separating apparatus. In this way, the user is able to grip the top of the filter and remove it from the separating apparatus without removing the separating apparatus from the main body of the vacuum cleaner. The filter may therefore extend along the duct from a point above the cyclonic separating apparatus to a point below the first cyclonic cleaning stage and near to the base of the separating apparatus.
The separating apparatus may include a second cyclonic cleaning stage arranged fluidly downstream of the first cyclonic cleaning stage. In such a configuration, the filter may be configured such that the first cyclonic cleaning stage, the second cyclonic cleaning stage and the filter may be concentric about a common axis.
The invention is applicable to upright and cylinder type vacuum cleaner, but is particularly suited to handheld vacuum cleaners due to the packaging benefits it provides particularly in terms of size and weight of the separating apparatus.
From another aspect, the invention provides a filter for a vacuum cleaner comprising a generally tubular inlet portion carrying a generally tubular filter media portion defining an interior chamber having an axis, the inlet portion including one or more radially facing inlets such that a radial air path is defined for air to flow into the inlet portion and an axial air flow path is defined for air to flow from the inlet portion to the filter chamber.
In a second aspect, the invention resides in a vacuum cleaner comprising a cyclonic separating apparatus including a dirty air inlet, a main body connected to the cyclonic separating apparatus and a motor and fan unit for generating an airflow through the cyclonic separating apparatus from the dirty air inlet to a clean air outlet. The cyclonic separating apparatus includes at least a first cyclonic cleaning stage and an elongate filter arranged fluidly downstream from the first cyclonic cleaning stage, the elongate filter being housed in a duct at least partially surrounded by the first cleaning stage. The filter comprises an inlet portion and a filter portion, the inlet portion including one or more inlets to permit air to flow into the inlet portion, wherein the inlet portion includes a cover portion that is receivable in the separating apparatus such that the cover portion defines at least a part of an outer surface of the separating apparatus.
Such an arrangement improves the accessibility of the filter, since a user can simply grip the top of the filter and remove it from the separating apparatus without removing the separating apparatus from the main body of the vacuum cleaner. The filter may therefore extend along the duct from a point above the cyclonic separating apparatus to a point below the first cyclonic cleaning stage and near to the base of the separating apparatus.
In order to improve the sealing of the filter within the separating apparatus and prevent ambient air from bleeding into the filter duct or unfiltered air from entering the filter duct, the inlet portion may include a first sealing member above the one or more inlets and a second sealing member below the one or more inlets. The first sealing member may be provided about the periphery of the cover portion so as to seal against a complementary shaped aperture in an exhaust manifold of the separating apparatus.
The vacuum cleaner may also include a second cyclonic cleaning stage located downstream of the first cyclonic cleaning stage, the second cyclonic cleaning stage comprising a plurality of cyclones arranged fluidly in parallel about an axis, and wherein the duct is in communication with an outlet passage which extends between two of the cyclones in the second cyclonic cleaning stage and defines an outlet port which is centred on an axis that is orthogonal with the axis of the second cyclonic cleaning stage. Such an arrangement provides a height reduction benefit for the separating apparatus since the outlet extends rearwardly and between a gap defined between two of the cyclones of the second cyclonic separation stage instead of air being exhausted from the top of the apparatus.
It should be noted that preferred and/or optional features of the first aspect of the invention can be combined with second aspect of the invention, and vice versa.
Embodiments of the present invention will now be described, by way of example only, with reference to the accompanying drawings, in which:
Referring firstly to
The main body 4 supports a cyclonic separating apparatus 12 that functions to remove dirt, dust and other debris from a dirt-bearing airflow drawn into the vacuum cleaner by the motor and fan unit. The cyclonic separator 12 is attached to a forward part 4a of the main body 4 and an air inlet nozzle 14 extends from a forward portion of the cyclonic separator that is remote from the main body 4. The air inlet nozzle 14 is configured so that a suitable brush tool can be removably mounted to it and includes a catch 16 for securely holding such a brush tool when the tool is engaged with the inlet. The brush tool is not material to the present invention and so is not shown here.
The cyclonic separating apparatus 12 is located between the main body 4 and the air inlet nozzle 14 and so also between the handle 6 and the air inlet nozzle 14. The separating apparatus 12 has a longitudinal axis Y which extends in a generally upright direction so that the handle 6 lies at a shallow angle to the axis Y.
The handle 6 is oriented in a pistol-grip formation which is a comfortable interface for a user since it reduces stress on a user's wrist during cleaning. The separating apparatus 12 is positioned close to the handle 6 which also reduces the moment applied to the user's wrist when the handheld vacuum cleaner 2 is in use. The handle 6 carries an on/off switch in the form of a trigger 18 for turning the vacuum cleaner motor on and off. In use, the motor and fan unit draws dust laden air into the vacuum cleaner 12 via the air inlet nozzle 14. Dirt and dust particles entrained within the air flow are separated from the air and retained in the separating apparatus 12. The cleaned air is ejected from the rear of the separating apparatus 12 and conveyed by a short duct to the motor and fan unit located within the main body 4, and is subsequently expelled through the air outlets 10.
The separating apparatus 12 forming part of the handheld vacuum cleaner 2 is shown in more detail in
It should be appreciated that the specific overall shape of the separating apparatus can be varied according to the type of vacuum cleaner in which the separating apparatus is to be used. For example, the overall length of the separating apparatus can be increased or decreased with respect to the diameter of the separating apparatus 12.
The separating apparatus 12 comprises an outer bin 24 defined by an outer wall being substantially cylindrical in shape and which extends about a longitudinal axis Y of the separating apparatus 12. The outer bin 24 is preferably transparent so that components of the separating apparatus 12 are visible through it.
The lower end of the outer bin 24 is closed by a bin base 26 that is pivotably attached to the outer wall 24 by means of a pivot 28 and held in a closed position by a catch 30. Radially inward of and coaxial with the outer wall 24 is a second cylindrical wall 32 so that an annular chamber 34 is defined between the two walls. The second cylindrical wall 32 engages and is sealed against the base 26 when it is closed. The upper portion of the annular chamber 34 forms a cylindrical cyclone of the first cyclonic separating unit 20 and the lower portion of the annular chamber forms a dust collecting bin of the first cyclonic separating unit 20.
A bin inlet 36 is provided at the upper end of the chamber 34 for receiving an air flow from the air inlet nozzle 14. Although not shown in the Figures, the bin inlet 36 is arranged tangentially to the chamber 34 so as to ensure that incoming dirty air is forced to follow a helical path around the chamber 34.
A fluid outlet is provided in the outer bin in the form of a generally cylindrical shroud 38. More specifically, the shroud has an upper frusto-conical wall 38a that tapers towards a lower cylindrical wall 38b that depends downwardly into the chamber 34. A skirt 38c depends from the lower part of the cylindrical wall and tapers outwardly in a direction towards the outer wall 24. The lower wall 38b of the shroud is perforated therefore providing the only fluid outlet from the chamber 34.
A second annular chamber 40 is located behind the shroud 38 and provides a manifold from which airflow passing through the shroud 38 from the first separating unit 20 is fed to the second cyclonic separating unit 22 through a plurality of conduits or channels 74 defined by a centrally positioned cyclone support structure 42. The second cyclonic separating unit 22 comprises a plurality of cyclones 50 arranged fluidically in parallel to receive air from the first cyclonic separating unit 20. In this example, the cyclones 50 are substantially identical in size and shape, each comprising a cylindrical portion 50a and a tapering portion 50b depending downwardly therefrom (only one cyclone is labelled in
As is shown clearly in
Each set of cyclones 70, 72 is arranged in a ring which is centred on a longitudinal axis Y of the separating unit. The first set of cyclones 70 has a greater number so this forms a relatively large ring of cyclones into which the second set of cyclones is partially received or ‘nested’. Note that
Each cyclone 50 of both sets has a longitudinal axis C which is inclined downwardly and towards the longitudinal axis Y of the outer wall 52. However, to enable a greater degree of nesting of the second set of cyclones into the first set of cyclones, the longitudinal axes C2 of the second set of cyclones 72 are all inclined at to the longitudinal axis Y of the outer wall at a shallower angle than the longitudinal axes C1 of the first set of cyclones 70.
Referring now to
In this example, each subset of cyclones 70a, 70b is arranged to receive air from a respective one of the plurality of channels 74 defined by the cyclone support structure 42 which channel airflow from the annular chamber 40 located behind the shroud 38 to the air inlets 50c of respective cyclones.
It will also be noted from
Turning once again to
The third cylindrical wall 90 is located radially inwardly of the second cylindrical wall 32 and is spaced from it so as to define a third annular chamber 92. An upper region of the cyclone support structure 42 provides a cyclone mounting arrangement 93 to which the cone openings 52 of the cyclones of the second cyclonic separating 22 are mounted so that they communicate with the interior of the support structure 42. In this way, in use, dust separated by the cyclones 50 of the second cyclonic separating unit 22 is ejected through the cone openings 52 and collects in the third annular chamber 92. The chamber 92 therefore forms a dust collecting bin of the second cyclonic separating unit 22 that can be emptied simultaneously with the dust collecting bin of the first cyclonic separating unit 20 when the base 26 is moved to an open position.
During use of the vacuum cleaner, dust laden air enters the separating apparatus 12 via the bin inlet 36. Due to the tangential arrangement of the bin inlet 36, the dust laden air follows a helical path around the outer wall 24. Larger dirt and dust particles are deposited by cyclonic action in the first annular chamber 34 and collect at the bottom of the chamber 34 in the dust collecting bin. The partially-cleaned dust laden air exits the first annular chamber 34 via the perforated shroud 38 and enters the second annular chamber 40. The partially-cleaned air then passes into the air channels 74 of the cyclone support structure 42 and is conveyed to the air inlets 50c of the first and second sets of cyclones 70, 72. Cyclonic separation is set up inside the two sets of cyclones 70, 72 in order to separate the relatively fine dust particles still entrained within the airflow.
The dust particles separated from the airflow by the first and second set of cyclones 70, 72 are deposited in the third annular chamber 92, also known as a fine dust collector. The further cleaned air then exits the cyclones via the vortex finders 60 and passes into the manifold 82, from which the air enters the sock filter 86 in the central duct 88 and from there passes into the exhaust duct 94 of the cyclone separator whereby the cleaned air is able to exit the separating apparatus.
As can be seen in
The mounting portion 86a also includes an annular upper section provided with apertures or windows 100 distributed around its circumference, the apertures 100 providing an airflow path for air to enter the interior of the filter member 86. The sealing member 96 prevents airflow from entering into the region of the filter from outside of the separating apparatus. Beneficially, the apertures 100 are distributed angularly around the periphery of the mounting portion 86a and are arranged so as to be in line with a respect one of the radially distributed vortex fingers 80 of the manifold 82 which means that air can flow substantially uninterrupted from the ends of the vortex fingers 80 into a neighbouring one of the inlet apertures 100 of the filter 86. Air therefore flows into the filter 86 in a radial direction through the apertures 100, following which the air flows down the interior of the filter 86 and then exits through the cylindrical filter media in a radial direction. A second sealing element 97, also in the form of an o-ring, is located in an annular groove on the exterior of the mounting portion 86a thus extending circumferentially about the mounting portion thereby preventing air from flowing down the side of the filter from the inlet section.
After flowing out of the filter 86, the cleaned air then travels up the outlet passage 94 and exhausts the separating apparatus 12 via an exit port 101 located at the rear of the separating unit. It should be noted that the outlet passage 94 is shaped so as have a generally inclined orientation relative to the central axis Y of the duct 88 and rises to a position so that it lies between the two rearmost cyclones on the first set of cyclones 70. The exit port 101 of the outlet passage 94 is oriented generally horizontally and rearwardly from the separating apparatus 12 and is aligned on an axis 103 that is substantially orthogonal to the longitudinal axis Y of the separating apparatus 12.
This configuration of airflow inlet enables the housing of the filter to be more compact since the alternative of allowing air to flow into the filter 86 in an axial direction requires a chamber above the inlet end of the filter to direct air into the top of the filter. The filter of the invention therefore avoids the need for such a chamber which enables the filter housing to be reduced in height.
Having described the general function of the separating apparatus 12, the skilled reader will appreciate it includes two distinct stages of cyclonic separation. First, the first cyclonic separating unit 12 comprises a single cylindrical cyclone 20 having a relatively large diameter to cause comparatively large particles of dirt and debris to be separated from the air by virtue of the relatively small centrifugal forces. A large proportion of the larger debris will reliably be deposited in the dust collecting bin 34.
Second, the second cyclonic separating unit 22 comprises fifteen cyclones 50, each of which has a significantly smaller diameter than the cylindrical first cyclone unit 20 and so is capable of separating finer dirt and dust particles due to the increased speed of the airflow therein. The separation efficiency of the cyclones is therefore considerably higher than that of the cylindrical first cyclone unit 20.
Reference will now be made also to
In more detail, the vortex finder plate 62 of the invention comprises upper and lower vortex finder portions 62a, 62b, each of the portions providing vortex finders 60 for respective cyclones in the first and second sets of cyclones 70, 72. The first, upper, vortex finder portion 62a includes five planar segments 102 configured into a ring so as to define a central aperture 104 matching the central aperture 84 of the exhaust manifold 82. Each of the upper segments 102 defines a central opening 106 (only two of which are labelled for clarity) from which the cylindrical vortex finders 60 depend. As can be seen clearly in
The lower vortex finder portion 62b comprises ten segments 110 in total (only three of which are labelled for clarity), corresponding to the number of cyclones in the first set of cyclones 70. Once again, each segment 110 includes a central opening 112 from which depends a respective one of the vortex finders 60. With reference to
It will be appreciated from the above that each of the vortex finders for the stacked sets of cyclones is provided by a common vortex finder plate. Such an arrangement improves the sealing of the cyclone outlets since a single vortex finder plate can be assembled on both upper and lower sets of cyclones which reduces the possibility of air leaks which may occur if the vortex finders for each set of cyclones were provided by an individual vortex finder plate.
In order to secure the vortex finder plate 62 to the second cyclonic separating unit 22, lugs 111 are provided on the lower vortex finder portion 62b. Screw fasteners may then pass through the lugs 111 to engage with corresponding bosses 113 (shown in
In this embodiment, each vortex finder segment in both the lower and upper portions 62a, 62b is demarcated from its neighbouring segment by a line of weakness to allow a degree of relative movement between them. The lines of weakness allow the segments 102, 110 an element of ‘play’ so that they may find a natural position on top of the cyclones when separator is assembled. However, it should be noted that these lines of weakness are not essential to the invention and the vortex finder member could instead be made rigid with limited or no flexibility between the segments. A suitable material for the vortex finder member is any suitably rigid plastics, for example acrylonitrile butadiene styrene (ABS).
The skilled will appreciated that various modifications may be made to the inventive concept without departing from the scope of the invention, as defined by the claims.
For example, although the vortex finder plate has been described here as being defined by a plurality of interconnected, and integral, segments, optionally demarcated by lines of weakness, the vortex finder plate could also be formed from continuous ring elements with no differentiating features.
With reference to the filter member 86, it should be noted that in the specific embodiment described above the filter member 86 is provided with a plurality of apertures 100 distributed around its circumference to provide a radial airflow path for air to enter the interior of the filter, the apertures 100 being aligned with a respective one of the radially distributed vortex fingers 80 of the manifold 82. However, it should be appreciated that the alignment is not essential, and the number of apertures in the filter 86 need not coincide with the number of the vortex fingers 80. One possibility, for example, is that a single aperture could extend circumferentially about the inlet portion of the filter. It should be noted for example that airflow benefits may be attained by reducing the number of apertures, whilst increasing the aperture area. The important feature is that air is able to flow radially inward into the filter member to access the interior of the filter and then to flow axially inside the tubular structure defined by the filter media before passing through the wall of the filter media. This avoids the need for a chamber to be provided above the filter.
Furthermore, although the filter portion 86b has been described as cylindrical, it may also be conical or frusto-conical such that the filter portion 86b tapers towards its lower end 86c which has a smaller diameter compared to its upper, or inlet, end. A tapered filter portion 86b may be beneficial in resisting deformation due to the comparatively reduced pressure region in the outlet duct 94 which may tend to impart a ‘curved’ shape to the filer portion 86b in use.
This application is a continuation of U.S. patent application Ser. No. 13/724,775, filed Dec. 21, 2012, which claims the priority of United Kingdom Application No. 1122162.9, filed Dec. 22, 2011, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
RE39473 | Salo | Jan 2007 | E |
7160346 | Park | Jan 2007 | B2 |
7297172 | Lee | Nov 2007 | B2 |
7341611 | Greene | Mar 2008 | B2 |
7552506 | Lee | Jun 2009 | B2 |
7582129 | Kim et al. | Sep 2009 | B2 |
7779506 | Kang | Aug 2010 | B2 |
7857878 | Park et al. | Dec 2010 | B2 |
8152878 | McLeod | Apr 2012 | B2 |
8657904 | Smith | Feb 2014 | B2 |
8739358 | Stephens et al. | Jun 2014 | B2 |
9211046 | Peace | Dec 2015 | B2 |
20050198768 | Jung et al. | Sep 2005 | A1 |
20090265877 | Dyson | Oct 2009 | A1 |
20090307863 | Milne | Dec 2009 | A1 |
20100242216 | MacNaughton | Sep 2010 | A1 |
20110016660 | Horne | Jan 2011 | A1 |
20120266576 | Gomiciaga-Pereda et al. | Oct 2012 | A1 |
20130160233 | Peace et al. | Jun 2013 | A1 |
20140053368 | Gammack | Feb 2014 | A1 |
Number | Date | Country |
---|---|---|
1 938 733 | Jul 2008 | EP |
2 040 599 | Apr 2009 | EP |
2 314 193 | Apr 2011 | EP |
2 385 808 | Sep 2003 | GB |
2 440 125 | Jan 2008 | GB |
2468150 | Sep 2010 | GB |
2469050 | Oct 2010 | GB |
2472095 | Jan 2011 | GB |
2475313 | May 2011 | GB |
2478155 | Aug 2011 | GB |
2483885 | Mar 2012 | GB |
2003-230516 | Aug 2003 | JP |
2009-543636 | Dec 2009 | JP |
2009-543642 | Dec 2009 | JP |
2010-201167 | Sep 2010 | JP |
2010-240446 | Oct 2010 | JP |
10-2009-0026209 | Mar 2009 | KR |
WO-2010097612 | Sep 2010 | WO |
WO-2010112897 | Oct 2010 | WO |
WO-2011058365 | May 2011 | WO |
Entry |
---|
Search Report dated Mar. 29, 2012, directed towards GB Application No. 1122162.9; 1 page. |
Search Report dated Jul. 31, 2012, directed towards GB Application No. 1122162.9; 1 page. |
International Search Report and Written Opinion mailed Jul. 16, 2013, directed to International Application No. PCT/GB2012/053007; 15 pages. |
Peace, U.S. Office Action dated Jul. 23, 2014, directed to U.S. Appl. No. 13/724,775; 8 pages. |
Peace, U.S. Office Action dated May 12, 2015, directed to U.S. Appl. No. 13/724,775; 9 pages. |
Number | Date | Country | |
---|---|---|---|
20160051106 A1 | Feb 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13724775 | Dec 2012 | US |
Child | 14932734 | US |