This application claims priority to and benefit of CA Serial No. 2,932,814, filed Jun. 14, 2016, the contents of which are incorporated by reference in its entirety for all purposes.
The invention is in the field of pneumatic or vacuum conveyors such as are commonly used to convey grain or other granular material, and in particular to an intake nozzle for a vacuum conveyor with a sleeve to vary the air flow through the intake nozzle.
Agricultural vacuum conveyors for conveying granular material, such as grain, using a vacuum are well known. These vacuum conveyors allow the pickup of the granular material with a flexible hose that allows for considerable freedom of movement. A fan or air pump is used to establish a flow of air from the intake end of the hose through the vacuum conveyor to a discharge. An intake nozzle at the end of the hose is placed in the granular material, and the air being sucked into the intake end picks up and carries the granular material causing there to be a stream of mixed air and granular material that is carried up through the hose. From the hose, this granular material can enter the vacuum intake where it will eventually be deposited in an intake of the conveyor (such as an auger). When the granular material reaches the conveyor, the conveyor can carry the granular material up the length of the conveyor to be discharged into a bin, trailer, truck, etc.
When the intake end of the nozzle is placed in a pile of granular material, the flow of air entering the intake nozzle can be blocked by the granular material and if the suction created by the vacuum conveyor is not great enough to suck up this blockage, the vacuum conveyor could stall out. To address this, vents can be provided on the intake nozzle so that air can enter the nozzle and maintain an air flow entering the vacuum conveyor even if the end of the nozzle is filled with granular material. There are a number of variants of nozzles with these vents, but one version is shown in U.S. Pat. No. 6,979,152.
However, the ideal number and placement of vents is affected by the length of hose used with the vacuum conveyor and in most vacuum conveyors sections of hose can be added or removed depending on the distance between the vacuum conveyor and the granular material to be collected. This means that the vents used in a nozzle will be ideal for one hose length but not as good for others. Some nozzles, such as the one described in U.S. Pat. No. 6,979,152, provide a baffle or sleeve that allows the cross-sectional area of the vents to be varied thereby allowing an operator to restrict the flow of air through these vents, but these systems rely on the operators judgment and the restriction in the size of the vents can affect the air flow passing through these vents making the air flow react in unexpected and less efficient ways.
In a first aspect, a vacuum conveyor for conveying granular material is provided. The vacuum conveyor comprises: a frame; a housing supported by the frame; a vacuum section operative to create a vacuum in the housing; an intake to allow granular material to the housing; a variable length hose section having a distal end and a proximal end, the distal end of the hose section connectable to the intake; and an intake nozzle. The intake nozzle can include: an intake end; an output end connectable to the proximal end of the hose section; a body extending between the intake end the output end; a plurality of apertures passing through the body; a sleeve sized to fit around the body. The sleeve can be positionable in at least two positions relative to the body and can have: a plurality of first vent apertures, each first vent aperture positioned on the sleeve to uncover one of the plurality of apertures in the body when the sleeve is positioned in a first position relative to the body; and a plurality of second vent apertures, each second vent aperture positioned on the sleeve to uncover one of the plurality of apertures in the body when the sleeve is positioned in the first position relative to the body and when the sleeve is positioned in a second position relative to the body.
In a second aspect, an intake nozzle for a vacuum conveyor is provided. The intake nozzle can comprises: an intake end; an output end connectable to a hose section of a vacuum conveyor; a body extending between the intake end the output end; a plurality of apertures passing through the body; a sleeve sized to fit around the body. The can be positionable in at least two positions relative to the body and comprise: a plurality of first vent apertures, each first vent aperture positioned on the sleeve to uncover one of the plurality of apertures in the body when the sleeve is positioned in a first position relative to the body; and a plurality of second vent apertures, each second vent aperture positioned on the sleeve to uncover one of the plurality of apertures in the body when the sleeve is positioned in the first position relative to the body and when the sleeve is positioned in a second position relative to the body.
A preferred embodiment of the present invention is described below with reference to the accompanying drawings, in which:
Inside the vacuum conveyor 10, the air flow carrying the granular material is directed into an inlet of a conveyor section 40 so that the granular material being carried in the air flow drops into the intake of the conveyor section 40 provided inside the vacuum conveyor 10, where the granular material can be carried up the conveyor section 40 to be discharged from a discharge spout 44 on the end of the conveyor section 40.
There are a number of ways to get the granular material to drop out of the air flow and into the inlet of the conveyor section 40, including a rapid change in direction of the air flow, the provision of a nozzle to change the velocity of the air flow, etc. The conveyor section 40 can have a conveyor belt, auger, etc.
The fan assembly 30 used to create the vacuum in the vacuum conveyor 10 is driven off of a PTO of the tow vehicle. A PTO shaft 32 is connected to the fan assembly 30 by a drive mechanism 34 that transfers the rotational motion of the PTO shaft 32 to the fan assembly 30 to turn a fan. The PTO shaft 32 can be connected to the PTO of the tow vehicle.
To transport the vacuum conveyor 10, the vacuum conveyor 10 can be placed in a transport position as shown in
Referring to
To use the vacuum conveyor 10, an operator can place the end of the intake nozzle 100 into a pile of granular material to be conveyed by the vacuum conveyor 10 while the fan assembly 30 is being used to great a vacuum in the vacuum conveyor 10 and thereby creating an air flow being sucked into the hose section 50. The granular material will be sucked into the intake nozzle 100 by this air flow entering the hose section 50 and the granular material will be carried up the hose section 50 in this air flow and into the inlet of the conveyor section 40 provided inside the vacuum conveyor 10. Once in the inlet of the conveyor section 40 the granular material will pass up the conveyor section 40 to be discharged on the discharge spout 44.
A plurality of ramps 112 and corresponding apertures 114 can be provided in the body 101 of the intake nozzle 100 and arranged at intervals along the length of the body 101 of the intake nozzle 100 to improve the flow of granular material into the intake nozzle 100. In one aspect, the plurality of ramps 112 and apertures 114 can be provided in only a bottom half of the body 101 of the intake nozzle 100 as can be seen in
The intake nozzle 100 when in use will usually be horizontal or close to horizontal, such as when it is used to remove granular material from a full bin. Because of gravity, granular material sucked up into the intake nozzle 100 by an air flow created in the intake nozzle 100 and the hose section 50 by the vacuum conveyor 10, will tend to fall towards the bottom of the intake nozzle 100 and this granular material will tend to remain in the bottom of the intake nozzle 100 and hose section 50 as it travels towards the vacuum conveyor 10. The air flow passing through the intake nozzle 100 and hose section 50 will tend to be at its strongest in the middle of the intake nozzle 100 and the hose section 50. The ramps 112 and corresponding apertures 114 can induce the granular material off of the bottom of the intake nozzle 100 and improve the granular materials mixing with the air stream passing through the intake nozzle 100 to improve the performance of the vacuum conveyor 10.
Each ramp 112 in the body 100 of the intake nozzle 100 can slope inward into the interior of the intake nozzle 100 with the upstream end of each ramp 112 starting substantially at an inner surface of the body 101 of the intake nozzle 100 and extending at an angle into the interior of the intake nozzle 100 along its length to the downstream end of the ramp 112. Each corresponding aperture 114 can be provided adjacent to and underneath the downstream end of the ramp 112, between the downstream end of the ramp 112 and the inner surface of the body 101 of the intake nozzle 100, so that air can enter the interior of the intake nozzle 100 through this aperture 114 underneath the downstream end of the ramp 112.
When the intake nozzle 100 is used to suck up granular material, any granular material collecting and moving along the bottom of the intake nozzle 100 can pass over one of these ramps 112. The granular material will be carried along the inward slope formed by the ramp 112 and be directed towards the center of the intake nozzle 100 as the granular material passes the downstream end of the ramp 112. This will cause the granular material to move away from the bottom of the intake nozzle 100 and towards the center of the intake nozzle 110 were the granular material can better mix with the air flow passing through the intake nozzle 100.
The apertures 114 can further improve the operation of the ramps 112. Air will pass into the interior of the intake nozzle 100 through these apertures 114 under the ramps 112. The incoming air flow aids in moving the granular material towards the center of the interior of the intake nozzle 100 as the granular material comes off of the downstream end of the ramp 112 and this incoming air and granular material can mix with the existing air stream, further enhancing the mixing of the air flow through the intake nozzle and the granular material.
The apertures 114 can also prevent the vacuum conveyor 10 from being choked off if the intake nozzle 100 is simply thrust into a pile of granular material and the vacuum created by the vacuum conveyor is not great enough to prevent the granular material from blocking/clogging the intake nozzle 100. If the intake nozzle 100 is blocked by the granular material and the suction being created by the vacuum conveyor 10 is not high enough to pull the granular material through, air flow in the intake nozzle 100 will still occur using air being drawn in through the apertures 114.
Because the intention is to move granular material of the bottom of the intake nozzle 100, in one aspect the ramps 112 and corresponding apertures 114 may only be provided in the bottom half of the intake nozzle 100.
A ramp 112 and corresponding aperture 114 can be conveniently formed by placing a cut substantially perpendicular to an axis of the intake nozzle 100 in the wall of the intake nozzle and pushing a section of the wall with the cut inwards to form a ramp 112 and the cut will form the corresponding aperture 114 below the downstream end of the ramp 112.
However, the vacuum conveyor 10 will not always use the same length of hose section 50. In one aspect, the hose storage rack 52 can be provided with a number of sections of hose allowing an operator to connect these sections together as desired so that the operator can choose the number of sections to be connected, resulting in the hose section 50 used being longer in some circumstances and shorter in others because the operator has tailored the hose section 50 to the necessary length depending on where the granular material is relative to the vacuum conveyor 10. In one situation, the vacuum conveyor 10 might be positioned very close to the granular material and the operator may decide to only use a small section of hose for the hose section 50, for example, making the hose section 50 only 3.5 feet long. However, in other situations, the granular material may be further away from the vacuum conveyor 10 or the operator may desire more maneuverability, resulting in the operator connecting more sections of hose together to make a longer hose section 50. For example, this longer hose section 50 may be 20 feet long. In still further situations, an operator may desire the hose section 50 to be as long as possible. This longest hose section 50 will depend on the amount of vacuum the vacuum conveyor 10 can create, etc., however, in one example, an operator might make a 40 foot long hose section 50.
The longer the hose section 50 the lower the suction will be at the intake end 102 of the intake nozzle 100; with the 3.5 foot hose section 50 having the most suction at the intake nozzle 100 and the 40 foot hose section 50 having the least (assuming the fan assembly 30 operates at the same level for both lengths of hose section 50). Longer hose sections 50 will increase the chance that the suction in the intake nozzle 100 is not enough to prevent the granular material from clogging the intake nozzle 100 and stall out the fan assembly 30, while shorter hose sections 50 will not be as susceptible to this same problem with the greater suction that is achieved at the intake nozzle 100 using shorter hose sections 50. The apertures 114 can help maintain an air flow in the intake nozzle 100 and hose section 50 to prevent the granular material from clogging up the intake nozzle 100. More apertures 114 are typically beneficial for longer hose sections 40 while fewer apertures 114 are typically beneficial for shorter hose sections 50.
A sleeve 150 can be provided that is sized to encircle the body 101 of the intake nozzle 100 and can be slidably and/or rotatably positionable with respect to the body 101 of the intake nozzle 100. The sleeve 150 can have a handle 152 to help an operator position the sleeve 150 in a desired position. The sleeve 150 can contain a plurality of first vent apertures 160, a plurality of second vent apertures 162 and a plurality of unperforated cover sections 164 that can be used to selectively block off various apertures 114 in the intake nozzle 100. Referring to
The sleeve 150 can also contain a plurality of second vent apertures 162. These second vent apertures 162 will be larger than the first vent apertures 160 because they will be designed to leave a corresponding ramp 112 and aperture 114 completely uncovered while the sleeve 150 is in more than a single position. The second vent apertures 162 will typically be longer than the first vent apertures 160 so that the sleeve 150 can be moved for some distance relative to the body 101 of the intake nozzle 100 while the second vent apertures 162 leave their corresponding ramps 112 and apertures 114 uncovered so that the corresponding apertures 114 are not even partially covered by the sleeve 150 in these positions.
A plurality of unperforated cover sections 164 can also be provided on the sleeve 150 adjacent to the first vent apertures 160 and the second vent apertures 162 so that when the sleeve 150 is moved into a specific position relative to the body 101 of the intake nozzle 100, the cover sections 164 cover the ramps 112 and apertures 114.
In one aspect, all or most of the second vent apertures 162 can be positioned closer to the intake end 102 of the intake nozzle 100 so that the second vent aperture 162 can be used to uncover apertures 114 in the body 101 of the intake nozzle 100 closer to the intake end 102 while the apertures 114 in the body 101 of the intake nozzle 100 closer to the output end 104 can remain covered by the sleeve 150.
By using the first vent apertures 160, the second vent apertures 162 and the cover sections 164, the sleeve 150 can be positioned in a number of positions relative to the body 101 of the intake nozzle 100 where in each position a different number of the plurality of ramps 112 and apertures 114 are completely uncovered or covered by the sleeve 150. By having some ramps 112 and apertures 114 completely uncovered while others are completely covered, the cross sectional areas of the uncovered apertures 114 are not altered and therefore the air flow through these uncovered apertures 114 into the interior of the intake nozzle 100 is not restricted while the total air flow into the intake nozzle 100 through the apertures 114 is reduced because of the covered apertures 114. The placement of the first vent apertures 160, second vent apertures 162 and cover section 164 can allow the sleeve 150 to: completely cover all of the ramps 112 and apertures 114; completely uncover some of the ramps 112 and apertures 114 while the other ramps 112 and apertures 114 remain completely covered by cover sections 164 of the sleeve 150; or completely uncover all of the ramps 112 and apertures 114. In this manner, instead of only partially covering some of the apertures 114 and reducing the air flow through all of the apertures 114, the sleeve 150 can completely uncover some of the apertures 114 therefore not restricting the air flow through these uncovered apertures 114, while at the same time completely covering other apertures 114 so that the air flow entering through these uncovered apertures 114 is not restricted by the sleeve 150 but the air flow entering the intake nozzle 100 overall through all of the apertures 114 is reduced.
As can be seen in
The foregoing is considered as illustrative only of the principles of the invention. Further, since numerous changes and modifications will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described, and accordingly, all such suitable changes or modifications in structure or operation which may be resorted to are intended to fall within the scope of the claimed invention.
Number | Date | Country | Kind |
---|---|---|---|
2932814 | Jun 2016 | CA | national |
Number | Name | Date | Kind |
---|---|---|---|
530829 | Duckham | Dec 1894 | A |
1053665 | Spencer | Feb 1913 | A |
1508521 | Kreuser | Sep 1924 | A |
1810981 | Noble | Jun 1931 | A |
2176139 | Lofgren | Oct 1939 | A |
3117459 | Schweitzer | Jan 1964 | A |
4028009 | Gudzenko | Jun 1977 | A |
4261672 | Marbach | Apr 1981 | A |
4352251 | Sloan | Oct 1982 | A |
4662800 | Anderson et al. | May 1987 | A |
4881855 | Rempel | Nov 1989 | A |
4913597 | Christianson et al. | Apr 1990 | A |
5037246 | Okano | Aug 1991 | A |
5673779 | Spickelmire | Oct 1997 | A |
6923601 | Goth | Aug 2005 | B2 |
6955506 | Kuhnau | Oct 2005 | B2 |
6974279 | Morohashi | Dec 2005 | B2 |
6979152 | Bodie | Dec 2005 | B2 |
7278804 | Deal | Oct 2007 | B2 |
7431537 | Francis | Oct 2008 | B2 |
7547162 | Rempel | Jun 2009 | B2 |
7552817 | Noble et al. | Jun 2009 | B2 |
7794589 | Kozey | Sep 2010 | B2 |
7862260 | Rempel | Jan 2011 | B2 |
7959697 | Francis | Jun 2011 | B2 |
8029605 | Bodie | Oct 2011 | B2 |
8322951 | Kvalheim | Dec 2012 | B2 |
8534961 | Yoder | Sep 2013 | B1 |
8622660 | Gore | Jan 2014 | B1 |
8673063 | Kerr | Mar 2014 | B2 |
8764400 | Kerr | Jul 2014 | B2 |
8911182 | Bodie | Dec 2014 | B2 |
9205999 | Woods | Dec 2015 | B2 |
9555980 | Woods | Jan 2017 | B2 |
9688485 | Sorensen | Jun 2017 | B2 |
9702101 | Ficks | Jul 2017 | B1 |
20040265071 | Bodie | Dec 2004 | A1 |
20060272927 | Baber | Dec 2006 | A1 |
20090035073 | Rempel | Feb 2009 | A1 |
20090133369 | Coward et al. | May 2009 | A1 |
20090252562 | Rempel | Oct 2009 | A1 |
20100018536 | Hershey | Jan 2010 | A1 |
20110016664 | Kerr et al. | Jan 2011 | A1 |
20120121343 | Kerr et al. | May 2012 | A1 |
20120121399 | Kerr | May 2012 | A1 |
20130025453 | Kerr | Jan 2013 | A1 |
20130084138 | Kerr | Apr 2013 | A1 |
20140343723 | Meier | Nov 2014 | A1 |
20150147124 | Woods | May 2015 | A1 |
20150147125 | Woods | May 2015 | A1 |
20170355535 | Carteri | Dec 2017 | A1 |
Number | Date | Country |
---|---|---|
2236645 | Nov 1999 | CA |
2249539 | Apr 2000 | CA |
2533244 | Jul 2007 | CA |
2546816 | Nov 2007 | CA |
2547163 | Nov 2007 | CA |
2585731 | Oct 2008 | CA |
2612046 | May 2009 | CA |
2674163 | Jan 2011 | CA |
2703855 | Jan 2011 | CA |
2766568 | Feb 2011 | CA |
2766584 | Feb 2011 | CA |
2707408 | Dec 2011 | CA |
2747444 | Jan 2013 | CA |
2834121 | May 2015 | CA |
2932814 | Dec 2017 | CA |
2 458 962 | Jun 2012 | EP |
2 485 963 | Jun 2012 | EP |
WO 2011011860 | Feb 2011 | WO |
WO 2011011863 | Feb 2011 | WO |
WO 2011156898 | Dec 2011 | WO |
WO 2011156898 | Feb 2012 | WO |
Number | Date | Country | |
---|---|---|---|
20170355536 A1 | Dec 2017 | US |