The invention relates generally to a vacuum diverter for use with water jet devices such as water jet cutting tables and, more particularly, to a vacuum diverter assembly having a valve flap that transitions between first and second positions to control the direction of a vacuum flow.
Water jet cutting tables are used across a plurality of industries for their ability to efficiently cut or process a wide variety of materials including stone, metal, cloth, paper, fiber, etc., materials. Such cutting tables commonly include a cutting nozzle, a vacuum table assembly, and a drive and control system configured to effectuate a desired relative translation between the cutting nozzle and the material associated with the table. A vacuum pressure signal is commonly employed to maintain a desired relative orientation or position of the material being worked relative to the bed of the table of the water jet cutting system. As the cutting nozzle translates relative to the material secured to the cutting table by the vacuum signal, a cutting stream is discharged from the cutting nozzle and impinged upon the material being worked to effectuate the cutting operation during the desired translation between the cutting nozzle and the material associated with the cutting table. Although such cutting table assemblies are capable of efficiently working a wide variety of materials, such assemblies present several difficulties associated with maintaining the desired operational condition associated with the water jet cutting table system.
In one aspect, during the cutting operation, any aggregate associated with the cutting fluid flow and the spoils associated with the cutting operation of the working material are carried from the material working areas by rinse solutions and/or the jet fluid flow stream associated with the cutting nozzle to other areas of the water jet cutting table assembly so as to not interfere with continued processing of the working materials. Any aggregate carried on the cutting stream and the spoils associated with cutting operations can undesirably collect in areas of the cutting table assembly and hinder desired operation of the cutting table and operation of the associated vacuum signal flows. Accordingly, a first aspect of the present application is directed to providing a vacuum signal control arrangement that can better withstand and accommodate collection of cut debris and/or aggregate without detracting from desired operability of the vacuum signal control agreement.
Another aspect of the present application is directed to maintaining a desired operational condition associated with the vacuum signal system and vacuum table assembly. Selectively securing and removing blank or bulk materials that have yet to be worked, worked materials, and/or cutouts or scrap materials during or after a cutting operation requires the periodic suspension of communication of the vacuum pressure signal from the cutting table. That is, when the vacuum pressure signal is communicated to the cutting table, it is commonly impossible or impractical to remove the working materials or cutouts generated during the cutting operation from the cutting table.
Whereas some approaches fully suspend operation of the vacuum pressure signal system to effectuate each desired translation of working or worked materials relative to the cutting table, other approaches manipulate the vacuum pressure signal flow paths to allow users to interact with and manipulate the materials associated with the vacuum cutting table. Unfortunately, both approaches suffer from discrete drawbacks. Those approaches that suspend operation of the systems associated with the generation of the vacuum pressure signal inefficiently utilize such vacuum cutting tables due to the dwell times associated with repeatedly generating and suspending the vacuum pressure signal communicated to the table to provide the desired selective securing and releasing of the materials associated with the vacuum pressure cutting table. With each “secure” and “release” cycle associated with the desired generation of the vacuum pressure signal, the various vacuum flow passages and the vacuum table cavities and passages must be evacuated to generate the desired vacuum pressure signal to effectuate the sequential securing and releasing of the working materials relative to the bed of the vacuum cutting table.
Those approaches that rely on only selectively communicating the vacuum pressure generating flow signal to the cutting table suffer from other drawbacks that can also detrimentally affect efficient utilization and long term operating performance of the vacuum cutting table. Such systems commonly include one or more diverter or bypass flow passages, valves, and/or assembles that are configured to maintain operation of the vacuum signal generation unit but reduce or redirect a portion or the entirety of the vacuum pressure signal communicated to the bed of the cutting table such that the working materials associated with the cutting table can be placed, translated, or removed from the cutting table. Unfortunately, any aggregate associated with the cutting fluid flow and the waste materials created during the material cutting operations can dramatically affect operability of such vacuum flow control arrangements. That is, aggregate and cutting debris have a tendency to collect during use of the vacuum cutting table in a manner that inhibits the intended operation of the vacuum flow control structures. Obstruction or inoperability of the vacuum flow control structures can render the waterjet cutting table system inoperable or unusable until the desired operability of the vacuum flow control operability is reestablished. Unfortunately, reestablishing operability of the vacuum flow control system is frequently encumbered by the placement and construction of the vacuum flow control arrangement relative to other structures associated with the waterjet vacuum table cutting system.
The structures associated with the selectively operable vacuum flow control systems are commonly provided in constructions and locations that inhibit any ability to service the vacuum flow control arrangement. Commonly, obstructed, plugged or otherwise damaged selectively operable vacuum flow control arrangements are wholly replaced rather than being serviced as servicing of the same is rendered impractical if not impossible. Still further, replacement even service of such vacuum flow control arrangements can also require at least a partial disassembly or removal of other structures associated with the waterjet vacuum cutting table assembly simply to gain access to the vacuum flow control arrangement. As such, failures or demands for service associated with known selectively operable vacuum flow control arrangements commonly results in extended or protracted periods associated with maintaining operability of such systems.
Therefore, there is a need for a water jet cutting table vacuum flow control assembly that provides selective communication of the vacuum pressure signal to the cutting table and can withstand the rigors associated with a harsh operating environment. There is a further need for a cutting table vacuum flow control assembly having a robust construction but is more readily capable of inspection, accessible, and serviceable to maintain the desired operating condition of the vacuum flow control arrangement and a waterjet cutting table associated therewith.
The present invention is directed to a vacuum diverter for use with a water jet device and discloses a vacuum flow diverter assembly and waterjet cutting table system and assembly that resolves or overcomes one or more of the drawbacks disclosed above.
According to one aspect of the application, a vacuum diverter includes a housing or hollow body that is generally defined by a first end, a second end, a plurality of sides, and an opening or window formed in one of the plurality of sides. A flap valve is disposed within the hollow body and operable or moveable between a first position and a second position. A plurality of bearings are disposed on generally opposite sides of the hollow body and support a shaft that is rotatably or rotatively supported by the plurality of bearings and which extends between the respective bearings. The valve flap is secured to the shaft. When the valve flap is oriented in the first position, the second end and the opening of the housing are fluidly connected to one another via the housing. When the flap valve is oriented in the second position, the first end and second end of the housing are fluidly connected to one another.
In accordance with another aspect of the application, a linear actuator, such as a hydraulic, pneumatic, electric, or electro-mechanical cylinder, is coupled to the shaft and transitions between extended and retracted positions to transition the valve flap from the first position to the second position.
In accordance with yet another aspect of the application, the window includes a window frame that is removably coupled to one of the plurality of sidewalls of the hollow body. A gasket is disposed between the hollow body and the window frame. Further, a mesh grill is preferably disposed within an opening of the window and/or window frame.
In accordance with another aspect of the application, a service plate is removably coupled to a sidewall of the hollow body along a portion of the sidewall associated with the shaft. A gasket is preferably disposed between the hollow body and the service plate. In addition, a top end of the valve flap may engage with a gasket underneath the service plate when the valve flap is oriented in the first position relative to the housing.
According to another aspect of the application, a water jet device includes a frame, a buck plate disposed atop the frame, a tub disposed underneath the buck plate, and a vacuum diverter disposed adjacent the tub. The vacuum diverter includes a hollow body having a first end, a second end, a plurality of sides, and a window formed in one of the plurality of sides. A bearing is associated with each of a respective one of a pair of laterally spaced apart opposite sides of the hollow body and a shaft is rotatably associated with each of the respective bearings and extends therebetween. A valve flap is disposed within the hollow body and coupled to the shaft. The valve flap is operable between a first position and a second position. When the valve flap is oriented in the first position, the second end and the opening of the housing are fluidly connected to one another and when the valve flap is oriented in the second position, the first end and second end of the housing are fluidly connected to one another.
In accordance with another aspect of the application, a linear actuator, such as a pneumatic, hydraulic, electric, or electromechanical cylinder is coupled to a first end of the shaft and is operable between a retracted position and an extended position. The transition of the linear actuator between an extended position and a retracted position causes the shaft to rotate and the valve flap to transition between the first position to the second position relative to the housing. In a preferred aspect, a crank arm is disposed between the linear actuator and the shaft associated with the valve flap to provide a mechanical advantage associated with the operation therebetween.
In accordance with yet another aspect of the application, the window includes a window frame removably coupled to one of the plurality of sidewalls of the hollow body. A gasket is disposed between the hollow body and the window frame. Further, a mesh grill is disposed within an opening of the window.
In accordance with another aspect of the application, a service plate is removably coupled to a sidewall of the hollow body along a portion of the sidewall associated with the shaft. A gasket is disposed between the hollow body and the service plate. In addition, a top end of the valve plate may engage with the gasket underneath the service plate when the valve plate is oriented in the first position relative to the housing.
According to yet another aspect of the application, a method of manufacturing a vacuum diverter is disclosed that includes providing a hollow body having a first end, a second end, a plurality of sides, and a window formed in one of the plurality of sides. A shaft extends across a cavity defined by the hollow body and includes opposing ends that are rotationally supported by the hollow body. In a preferred aspect, a bearing is associated with each of the respective opposing ends of the shaft and the hollow body. A valve flap is coupled to the shaft such that the valve flap is disposed within the hollow body and moveable between a first position and a second position relative to the cavity defined by the hollow body. When the valve flap is oriented in the first position, the second end and the opening of the housing are fluidly connected and when the valve flap is oriented in the second position, the first end and second end of the housing are fluidly connected to one another.
In accordance with another aspect of the application, the method includes coupling a linear actuator, such as a pneumatic cylinder, to a first end of the shaft. The pneumatic cylinder transitions between an extended position and a retracted position, which causes rotation of the shaft, which causes the valve flap to transition between the first position to the second position as a function of the operation of the linear actuator. In a preferred aspect, a crank arm is disposed between the linear actuator and the shaft.
In accordance with yet another aspect of the application, the hollow body is provided with a window and includes removably coupling a window frame to at least one of the plurality of sides of the hollow body. In preferred aspect, a gasket can be disposed between the window frame and the hollow body. In addition, a mesh grill may be disposed within an opening of the window frame.
In accordance with another aspect of the application, the method includes removably coupling a service plate to a sidewall of the hollow body along a portion of the sidewall adjacent the shaft. An opening is formed in the sidewall generally underneath the service plate and a gasket is disposed between the service plate and the hollow body. Preferably, a top end of the valve plate engages the gasket underneath the service plate, when the valve plate is in the first position relative to the hollow body and the discrete fluid paths defined thereby.
These and various other aspects, features, and advantages of the present invention will be made apparent from the following detailed description and the drawings.
Preferred exemplary embodiments of the invention are illustrated in the accompanying drawings in which like reference numerals represent like parts throughout.
Referring now to the drawings and specifically to
As shown in
Referring to
In the representative embodiment of the invention, a first end 36 of the vacuum diverter 18 (
While
Still referring to
In the closed position 42, the guard cover 20 is preferably oriented horizontally, or substantially horizontally and positioned such that a lower surface 44 of the guard cover 20 is supported by the upper surface 28 of the frame 12. In the open position 40, the guard cover 20 is oriented at an angle such that service personnel or the like can access those components, such as the vacuum diverter 18, disposed generally underneath the guard cover 20 when guard cover 20 is oriented in the closed position 42. It is contemplated that the guard cover 20 may be rotated or raised from the closed position 42 to the open position 40 and rotated or lowered from the open position 40 to the closed position 42.
Referring to
Referring to
First and second bearing mounts 70, 72 (
As mentioned above, the first end 66 of valve flap 64 is coupled, attached, permanently affixed, welded, or otherwise secured to shaft 82 such that rotation of shaft 82 causes the valve flap 64 to pivot or rotate between a first position 88 (
Referring to
It is also appreciated that the functionality associated with service plate 90 may be formed as a separate structure as described above, or, as shown in
Regardless of the specific construction, pivot arm 94 is coupled to a first end 96 of the shaft 82 that extends beyond the first bearing mount 70. In the representative embodiment of the invention, the shaft 82 is coupled to the pivot arm 94 adjacent a first end 98 of the pivot arm 94. However, in other embodiments of the invention, the shaft 82 may be coupled to the pivot arm 94 at any location along a length of the pivot arm 94. It should be further appreciated that the respective bearing mounts 70, 72 are not shown in the graphic representation of diverter assembly 18 shown in
As shown in
As the pneumatic cylinder 102 transitions between the extended and retracted positions, pivot arm 94 rotates about the location or axis 106 associated with the coupling of pivot arm to shaft 82. Actuation of cylinder 102 effectuates rotation of shaft 82 relative to hollow body 46 and thereby translation of valve flap 64 relative to the fluid flow passage internal to hollow body 46. When pneumatic cylinder 102 is in the extended position 104, valve flap 64 is oriented in the first position 88 (
In the first position 88, the valve flap 64 is oriented at an angle relative to the passage defined by hollow body 46 such that the valve flap 64 engages an interior surface 108 of each sidewall 48 of the hollow body 46 to form a vacuum seal within the hollow body 46 as a function of the desired vacuum pressure flow path. In a preferred embodiment, the first end 66 of the valve flap 64 engages gasket 92 below the service plate 90 thereby forming a seal therewith. When the valve flap 64 is in the first position 88, the valve flap 64 fluidically connects the second end 38 of the vacuum diverter 18 to the opening 50 in the sidewall 48. That is, the vacuum associated with the second end 38 of the vacuum diverter 18 pulls air from the opening 50 through sidewall 48. As such, the pull of air or vacuum flow pressure is disassociated with the buck plate 14 such that working materials can be translated relative thereto.
When oriented in the second position relative to the cavity defined by hollow body 46, the valve flap 64 is oriented horizontally or substantially horizontally against the opening 50 in the sidewall 48 in order to form a vacuum seal against the sidewall 48 and insulate the interior of the hollow body 46 from the opening 50. When the valve flap 64 is in the second position, the valve flap 64 fluidically connects the second end 38 of the vacuum diverter 18 to the first end 36 of the vacuum diverter 18. In turn, the vacuum associated with the second end 38 of the vacuum diverter 18 pulls air from the tub 16 and buck plate 14 associate with the first end 36 of the vacuum diverter 18. As such, when valve flap 64 is oriented in the second position, working materials are secured to the upper surface 34 of the buck plate 14 by the vacuum flow. The vacuum flow also drawings a portion of the cutting fluid flow and particulate debris associated with the cutting operation toward the vacuum flow source.
As shown in
Referring briefly back to
Preferably, the rigid structures of each of the hollow body 46, valve flap 64, and shaft 82 are constructed of stainless steel metal materials. Since valve flap 64 and shaft 82 can be removed from hollow body 46 in a crossing direction relative to the axis of rotation of shaft 82, valve flap 64 can be permanently affixed to shaft 82 with or without the use of extraneous fasteners. In a preferred embodiment, valve flap 64 is welded to shaft 82 such that shaft and valve flap can be replaced as a unit or serviced by suitable metal working methodologies. Constructing hollow body 46, valve flap 64, and shaft 82 from stainless steel materials allows vacuum diverter 18 to better withstand the harsh environment associated with the fluid and particulate debris flow through the diverter and the surrounding atmosphere associated with the water table cutting environment. Additionally, the ability to remove the shaft and valve flap in a lateral direction relative to the axis of rotation of the shaft allows expedient removal and replacement of the shaft and valve flap during servicing to mitigate downtime events associated with degradation of the ability of the diverter assembly to provide the desired vacuum pressure flow directions.
Although the best mode contemplated by the inventor for carrying out the present invention is disclosed above, practice of the above invention is not limited thereto. It will be evident that various additions, modifications and rearrangements of the features of the present invention may be made without deviating from the spirit and the scope of the underlying inventive concept as defined by the appending claims.
This application claims priority to U.S. Provisional Patent Application Ser. No. 62/614,922 filed on Jan. 8, 2018, titled “Vacuum Diverter Assembly” and the disclosure of which is expressly incorporated herein.
Number | Date | Country | |
---|---|---|---|
62614922 | Jan 2018 | US |