Vacuum ejector pump

Information

  • Patent Grant
  • 6394760
  • Patent Number
    6,394,760
  • Date Filed
    Wednesday, September 20, 2000
    24 years ago
  • Date Issued
    Tuesday, May 28, 2002
    22 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Walberg; Teresa
    • Patel; Vinod D
    Agents
    • Young & Thompson
Abstract
An ejector includes two or more nozzles arranged in series. A stream of air fed at high velocity through the nozzle is used to create a negative pressure in an outer, surrounding space. The surrounding space is in flow communication with at least one slot located between the nozzles. The nozzles are coupled together and assembled into an integrated nozzle body having at least one flexible valve member integrally arranged within the nozzle body to cover the flow communication with the surrounding space upon reaching a certain, desired pressure difference between the surrounding space and the atmosphere.
Description




BACKGROUND OF THE INVENTION




The present invention relates to a vacuum pump or ejector, which is used for generating a negative pressure in a medium used for transportation or lifting, e.g., and more particularly to a vacuum pump having a nozzle body with at least one integrated valve member.




Pumps for generating a vacuum using overpressure are known in the art, see for example

FIGS. 1



a


-


1




d


of the appended drawings. Ejectors of the intended type, so called multistage ejectors, usually comprise two or more nozzles arranged in series within a house, wherein a surrounding space such as a chamber is associated to each respective nozzle, which extends through the partition wall between adjacent chambers. The nozzles present a through-channel with gradually increasing, sectional opening area, through which a stream of air with high velocity is fed to carry, through a slot located between the nozzles, air or other medium in the surrounding chamber and generate therein a lowering of the pressure.




When three or more nozzles are coupled in a series, the respective chamber is commonly in flow communication with a common or outer space, which has coupling means for connecting the vacuum pump to external equipment. A non-return valve in the form of e.g. a flexible tongue is arranged in the flow path to prevent leakage between the outer space and that chamber which, upon a certain difference in pressure, ceases to be active for further lowering of the pressure.




Ejectors of this known construction may be formed with nozzles coupled in series, with different efficiency characteristics in order to provide both a high vacuum flow and a low vacuum level in one ejector.




SUMMARY OF THE INVENTION




It is the object of the invention to provide an improved ejector of the above type, which permits greater flexibility and freedom of choice when built in with equipment for different applications wherein a space is to be evacuated or vacuum to be used for transportation or lifting. The ejector according to the invention also permits simplified assembly and disassembly in service and maintenance.











BRIEF DESCRIPTION OF THE DRAWINGS




The invention will be described in more detail below with reference to the appended drawings, in which





FIGS. 1



a


-


1




d


schematically show a multistage vacuum pump or ejector according to the state of the art,





FIG. 2

shows, in a longitudinal cross-section, a preferred embodiment of a nozzle body forming part of the ejector according to the invention,





FIG. 3

shows a valve member incorporated in the ejector, in a perspective view,





FIG. 4

shows the valve member of

FIG. 3

in a lateral view,





FIG. 5

shows the nozzle body accommodated in a housing, and





FIG. 6

shows the nozzle body according to the invention mounted in a machine element.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS





FIGS. 1



a


-


1




d


show schematically, in four cross-sectional views, a known ejector at gradually increased vacuum levels in an outer space.




The prior art ejector of

FIGS. 1



a


-


1




d


comprises a housing


100


, wherein ejector nozzles


101


,


102


,


103


and


104


are supported in series with intermediate gaps separately communicating with an outer chamber


105


via ports


106


,


107


,


108


and


109


, respectively. In

FIG. 1



a


the ejector


100


is shown in a non-operating mode. In

FIG. 1



b


, the ejector is driven by air that is accelerated into a channel


110


and directed through the nozzles from the left hand side to the right hand side of the drawing, whereby a pressure fall is generated in the gaps between the nozzles. In

FIG. 1



b


, the total pressure fall over the gaps has reduced the pressure in the outer chamber


105


to a level that is lower than the pressure fall in the gap between nozzles


101


and


102


, causing a flap valve


111


to close the port


106


. In

FIG. 1



c


, the pressure in the outer chamber


105


is reduced to the extent that a valve


112


closes communication through port


107


. In

FIG. 1



d


, also port


108


is closed by a valve


113


, such that the outer chamber


105


is maintained at a pressure level determined by the pressure fall produced by nozzle


104


which communicates with the chamber


105


through the port


109


. The multi stage ejector of

FIGS. 1



a


-


1




d


is connected via port


114


to external equipment, driven by the ejector.




In FIG.


2


and the following drawings, the ejector according to the invention is generally indicated with the reference numeral


1


. The ejector


1


in the embodiment shown in

FIG. 2

comprises four jet-shaped nozzles


2


,


3


,


4


and


5


.




The nozzles


2


-


5


comprise a through-channel


6


with gradually increasing, cross-sectional opening area. The nozzles are arranged in a series with a slot


7


,


8


and


9


, respectively, between them, the slots and the jets being dimensioned according to considerations of the person skilled in the art to give the ejector the desired efficiency characteristics.




The nozzles


2


,


3


,


4


and


5


are designed for assembly to form an integrated nozzle body


1


.




For this purpose, the nozzles are formed in the opposed ends thereof with shoulders and projecting flanges or with casings, by which the assembled nozzles are spaced to form slots


7


,


8


and


9


of suitable width and opening area. Alternatively, the nozzles may be formed with threads for threaded engagement, or with other coupling means, to be assembled into an integrated body.




In connection with the coupling areas of the nozzles and adjacent to the slots


7


,


8


and


9


, through openings


10


are arranged in the wall of the nozzle body. The openings


10


provide flow communication with an outer space (like the chamber V in

FIG. 5

) surrounding the nozzle body


1


. Valve members


11


are arranged, in a manner which will be described below, to cover and to open, respectively, the flow communications


10


, the number of which may vary within the scope of the invention.




The valve members


11


are arranged to prevent, in the way of non-return valves


11


, leakage from the air flow in the channel


6


and to the surrounding space in a situation, where the outer space holds a pressure which is lower than the pressure of the air flow through the slot


7


,


8


or


9


, respectively, associated with the valve members. The valve member


11


may preferably be produced from a flexible material, such as natural rubber, synthetic rubber or plastic.




The valve members


11


are accommodated for integration with the nozzle body


1


.




In the connection areas of the nozzles, assembled in a series, valve seats are formed on the inner wall of the nozzle body and adapted for receiving a respective valve member


11


in the area of the flow communications


10


and adjacent to the slots. The valve member


11


extends inwardly of the openings


10


to lie, in a covering position, against the inner wall of the nozzle body


1


and to cover the opening with a section of the valve member.




In the preferred embodiment, the nozzle body


1


has a rotationally symmetric shape. Thus, the valve member


11


is of cylindrical shape and runs concentric with the airflow through the channel


6


.




The detailed design of the valve member may naturally be varied within the scope of the invention. In the embodiment shown, the valve member


11


comprises a pair of axial slots


12


, in such way that a pair of semi-circular tongues


13


are formed in the flexible and covering end of the valve member, see

FIGS. 3 and 4

. Further, a pair of radial slots


16


are formed inwardly of the tongues


13


, so that these connect only through one respective bridge


14


to a cylindrical base section


15


of the valve member


11


. The base section


15


may, as in the shown embodiment, comprise heels or pins


17


, which in the receiving position of the valve member engage with corresponding recesses


18


, formed in the wall of the nozzle body in order to secure the valve member. Naturally, the valve member may be secured in the nozzle body also in other ways without departure from the concept of the invention.




With reference to

FIG. 5

, an ejector according to the invention is shown comprising a nozzle body


1


with integrated valve members and mounted in a housing


19


. The nozzle body


1


extends, from its inlet end, between an inlet chamber I and an outlet chamber U wherein the nozzle body opens with its outlet end, and passes through a surrounding, outer space V. Via the openings


10


, the outer space V is in flow communication with the channel


6


of the nozzle body. The outer space or chamber V, from which evacuation occurs upon feeding an air flow at high velocity through the channel


6


, is open to all the flow communications


10


of the nozzle body


1


. In the drawing, an additional nozzle body is indicated in broken lines. This second nozzle body may be operated in parallel with the nozzle body


1


. It will be appreciated, that ejectors may be formed with housings


19


for mounting of more than two nozzle bodies


1


, operating in parallel, according to the invention.




Referring now to

FIG. 6

there is shown an ejector mounted in a machine element


20


, and comprising a nozzle body


1


with integrated valve members according to the invention. The nozzle body


1


extends from an inlet chamber I to an outlet chamber U and passes an enclosing space V′, which is evacuated through the operation of the ejector. The nozzle body


1


is tightly fitted into a bore


21


, e.g. formed as a blind hole


21


, and seals against the inner wall of the bore through O-rings


22


. The evacuated space V′, and if desired also the inlet and outlet chambers I and U, respectively, may be provided as transverse bores which intersect the bore


21


. In the embodiment shown, the space V′ is comprised of three individual spaces V′, separated by the seals


22


. However, it will be noted that with another design of the accommodation and sealing of the nozzle body in the bore


21


, the individual chambers V′ may also be in mutual flow communication through the circular gap between the nozzle body


1


and the wall of the bore


21


, in applications where this would be desired.




The invention has here been described with reference to an embodiment wherein both the nozzles


2


,


3


,


4


,


5


and the valve members


11


are rotationally symmetric bodies. While this design is the most preferred embodiment in aspects of production, maintenance and construction for different applications, the invention is in no way to be limited to ejectors having the shown design, as it is obvious to those skilled in the art that many of the advantages of the invention may also be implemented in nozzle bodies of other sectional shapes, at least externally. The claimed scope of protection is thus drafted to accommodate also such considered embodiments that are not specifically shown here but lie within the knowledge of those skilled in the art to practice with the guidance of the above description.



Claims
  • 1. An ejector comprising at least two nozzles assembled in series, wherein a stream of air fed through the at least two nozzles at high velocity is used to create, in an outer, surrounding space a negative pressure, the surrounding space being in flow communication with at least one slot located between the at least two nozzles, wherein the at least two nozzles have means to be coupled together into an integrated, rotationally symmetric nozzle body, and that the flow communication is arranged in a wall of the rotationally symmetric nozzle body.
  • 2. An ejector according to claim 1, further comprising at least one flexible valve member for covering the flow communication and arranged integrally in the nozzle body so as to extend concentrically with the stream of air fed through the at least two nozzles.
  • 3. An ejector according to claim 2, wherein the at least two nozzles which are coupled together to form the integrated nozzle body with the at least one slot formed between the at least two nozzles, has the at least one flexible valve member arranged in connection with each of the at least one slot, respectively, the valve member being axially slotted to present at least one semi-circular tongue for covering the flow communication.
  • 4. An ejector according to claim 2, wherein the at least two nozzles are formed in opposing ends thereof to be assembled into the integrated nozzle body with a through channel of gradually increasing, sectional opening area, the nozzle body having the at least one slot, which opens into the through channel and is in flow communication with the surrounding space, and at least one seat for the valve member covering the flow communication.
  • 5. An ejector according to claim 1, wherein the at least two nozzles have a rotationally symmetric outer and inner cross sectional shape, assembled to form the integrated nozzle body, wherein the at least one valve member is integrally received in the nozzle body in order to cover, upon a reached pressure difference between atmosphere and an outer space surrounding the nozzle body, the flow communication between the surrounding outer space and a channel through the at least two nozzles in the region of the at least one slot formed between the assembled at least two nozzles in the nozzle body, said at least one valve member sealing against an inner wall of the nozzle body.
Priority Claims (1)
Number Date Country Kind
9800943 Mar 1998 SE
PCT Information
Filing Document Filing Date Country Kind
PCT/SE99/00386 WO 00
Publishing Document Publishing Date Country Kind
WO99/49216 9/30/1999 WO A
US Referenced Citations (9)
Number Name Date Kind
4395202 Tell Jul 1983 A
4466778 Volkmann Aug 1984 A
4759691 Kroupa Jul 1988 A
4790054 Nichols Dec 1988 A
4880358 Lasto Nov 1989 A
5169293 Yamamoto Dec 1992 A
5228839 Peterson et al. Jul 1993 A
5683227 Nagai et al. Nov 1997 A
6155795 Schmalz Dec 2000 A