The present invention relates generally to air filters, and, more particularly, to high-efficiency filters, and filter materials that are used in the manufacture of air filters, including vacuum filter bags.
Air filters and filter media are commonly classified using the MERV (Minimum Efficiency Reporting Value) system. In this system, a filter is assigned a number between 1 and 20 according to its overall efficiency in removing particles from air-a higher number representing a more efficient filter. For example, for residential applications in the US, the ANSI/ ASHRAE Standard 62.2-200716 requires a filter with a designated minimum efficiency of MERV 6 or better. A filter with a MERV rating of 6 is capable of removing 35-50% of airborne particles that are 3-10 μm (micrometers) across. Most common home furnace filters are in the range of MERV 6-8. This is in contrast, for example, with a filter with a MERV rating of 13, which is capable of removing up to 75% of particles of 0.3 μm, and 90% of particles larger than 1 μm. A class of filter that is receiving increased interest, as concern with airborne contaminants grows, is referred to as HEPA (High Efficiency Particulate Air). A HEPA rating corresponds to a MERV 17, and indicates that the filter is capable of removing 99.97% of particles as small as 0.3 μm.
Because of the increased interest in more efficient filters, some manufacturers or sellers describe their filters as HEPA-type, HEPA-like, HEPA-style, etc. Such terms suggest that the products in question have not been tested by an independent laboratory, or were not found to meet the MERV 17 criteria. On the other hand, the difference in efficiency between a MERV 13 rating and a MERV 17 rating is, in practice, insignificant except in highly critical environments, such as laboratories, hospitals, clean rooms and the like. In a residence, the difference would be generally undetectable, because homes are not sealed from the surrounding environment, and air exchange with the exterior is frequent or continuous.
According to an embodiment, a filter assembly is provided that includes a first element with a selected value of efficiency in removing airborne particulates, and a second element that is impregnated with silver or a silver compound.
According to an embodiment, the first element includes a plurality of layers, each having a respective value of efficiency in removing airborne particulates.
According to an embodiment, the second element also functions as one of the layers of the first element.
According to an embodiment, the filter assembly is configured such that air passes first through the first element, then through the second element.
According to another embodiment, the first element has a MERV rating of 13 or greater.
According to an embodiment, the functions of the first and second elements are combined into a single element that is configured to remove airborne particulates and that is impregnated with silver.
According to an embodiment, the filter assembly is a vacuum filter bag.
According to an embodiment, a vacuum cleaner is provided that is configured to receive the vacuum filter bag.
According to a further embodiment, the vacuum includes an output filter configured to filter air as it exits the vacuum cleaner.
According to an embodiment, the output filter has a MERV rating that is higher than that of the filter assembly.
According to an embodiment, the second filter includes a layer of silver-impregnated material.
It will be understood that the scope of the appended claims should not be limited by particular embodiments set forth herein, but should be construed in a manner consistent with the specification as a whole.
In the drawings, a reference number followed by a letter, e.g., “203a, 203b,” is used where it may be useful in the corresponding description to refer to or differentiate between specific ones of a number of otherwise similar or identical elements. Where the description omits the letter from a reference, and refers to such elements by number only, this can be understood as a general reference to the elements identified by that reference number, unless other distinguishing language is used.
The main body 102 includes a support element 110, a bag housing 112, and a motor assembly 114. The bag housing 112 defines a hollow interior that is separated by a dividing wall 116 into a bag chamber 118 and an output plenum 120. The motor assembly 114 includes a motor and an air blower (not shown in detail), with an air intake 122 in fluid communication with the bag chamber 118 and an exhaust outlet 124 in fluid communication with the output plenum 120. A plurality of louvres collectively form a clean air outlet 126 between the output plenum 120 and the exterior of the bag housing 112. A filter assembly 128 is positioned within the output plenum 120 over the clean air outlet 126 US 2019/0239707 A1 such that air passes through the filter assembly 128 prior to exiting the output plenum. A waste intake channel 130 is positioned within the support element 110 with an upper end extending into the bag chamber 118. A vacuum filter bag 132 is positioned within the bag chamber 118 and is attached to the upper end of the waste intake channel 130.
The base assembly 104 includes a pair of rear wheels 134 and a beater brush 136. The beater brush 136 is rotatably positioned within a collection chamber 138 and extends from a waste intake port 140 so as to make contact with the floor beneath the base assembly 104. An air passage 142 is in fluid communication with the collection chamber 138 and is coupled to the waste intake channel 130 via a flexible coupling (not shown in detail) that permits rotation of the main body 102 relative to the base assembly 104. The main body 102 is configured to rotate relative to the base assembly 104 around a rotation axis of the motor, which is coupled via a drive belt to the beater brush 136, which rotates during operation.
During operation, the air blower draws air into the motor assembly 114 from the bag chamber 118 via the air intake 122 and blows the air from the exhaust outlet 124 into the output plenum 120. This produces a partial vacuum within the bag chamber 118, drawing air into the vacuum filter bag 132 via the waste intake channel 130, the air passage 142, and the collection chamber 138, pulling air, together with waste matter lifted by the beater brush 136, from the exterior via the waste intake port 140. The waste is carried with the air into the vacuum filter bag 132, which filters the waste from the air and passes the air through permeable walls to the bag chamber 118.
As noted above, vacuum filter bags, like other air filters, are rated according to their efficiency in removing particulates from air as it passes. As filter efficiency increases, the energy required to transmit air increases. To mitigate the increased resistance, most high-efficiency air filters are provided with deep pleats. This increases the thickness of the filter, but also increases the available surface area, reducing air resistance. Additionally, in many systems, a more powerful blower motor is provided to move air through the filter. However, space within a vacuum cleaner is limited, and any increase in bag thickness reduces the capacity of the bag, and a more powerful motor would be larger, heavier, and more expensive, making the vacuum less attractive to consumers. Thus, most vacuum cleaners on the market are provided with vacuum filter bags that are not HEPA rated, and that have a relatively low MERV rating. As a result, many pathogens that are lifted from a floor or carpet by a vacuum cleaner pass through the vacuum filter bag and are distributed into the air, to settle onto other surfaces in the room, or to be ingested by room occupants.
The vacuum engagement element 206 is configured to engage a mating structure of a selected make and model of vacuum cleaner. Such engagement elements can include various combinations of seals, rigid panels, and openings, etc. Most vacuum cleaner machines require engagement elements and bag designs that are unique to the particular make and model. The claims are not limited to any particular filter bag design except where such limitation is explicit in the claim.
According to an embodiment, as shown in
The outer bag wall 204 can also be made, for example, of a melt-blown non-woven filter material, porous paper, or any other appropriate material. In the embodiment shown, the outer bag wall 204 has a MERV rating that is at least slightly lower than that of the inner bag wall 202, so as to permit air to pass without significantly increasing the total air flow resistance of the vacuum filter bag 132. The material of the outer bag wall 204 is impregnated with silver, or a compound that includes silver, which acts as an antimicrobial agent, preventing live pathogens from passing through the inner and outer bag walls.
As used herein, the term impregnated means to have been subject to any process or treatment by which silver, ions of silver, or silver-bearing compounds are incorporated into, on, or with a porous or permeable material so as to come into contact with air and/or air-entrained pathogens as the air passes through the material. Processes that can be employed include infusion, spraying, sintering, sputter or vapor deposition, plating, etc.
According to an embodiment, micro- and/or nanoparticles of silver are blended with a polymer that is melted and blown from a nozzle onto a support surface, such as the surface of a rotating drum, in a melt-blowing process. According to another embodiment, a non-woven textile media is coated with a silver-bearing substance. According to a further embodiment, a bi-component sheath-core material is provided, in which the sheath of the fiber is silver-impregnated.
While
The antimicrobial properties of silver have been known for centuries, although the mechanism by which it operates is still not fully understood. While the use of silver has been largely discontinued with the advent of immunizations, antibiotics, antiseptic cleaners, and the like, many recent and ongoing studies are exploring the benefits of silver, which in some cases still exceed those of more recent-and more expensive-treatments. Silver used in research and treatment is provided in various different forms and compounds, including, for example, silver nitrate, silver sulfadiazine, colloidal silver, and nanoparticles of silver. In each case, it is generally understood that the active antimicrobial agent is ionized silver, and that whatever the form in which it is delivered to the site, the silver releases ions when it comes into contact with moisture. Accordingly, it would not be expected that silver would be effective as an antimicrobial agent while dry. However, recent research has shown that when impregnated with silver, dry, porous materials can exhibit significant antimicrobial properties. For example, a recent study examined the antimicrobial effect of surgical masks coated with nanoparticles of silver nitrate and titanium dioxide. In that study, a 100% reduction in viable E. coli and S. aureus was observed in the coated mask materials after 48 hours of incubation. (Antimicrobial effect of surgical masks coated with nanoparticles (abstract), Li Yet al., The Journal of Hospital Infection, 2006 January; 62(1):58-63. Epub 2005 Aug. 15.)
It should be noted that in known systems that provide a true HEPA-quality vacuum filter bag, the bag traps most pathogens that are collected. However, this means that after use, the bag itself may be highly contaminated, so that a user who handles the vacuum filter bag risks being infected by pathogens present in or on the surface of the bag, or that are released in high concentration in the air when the bag is removed from the machine or thrown into a garbage receptacle. In embodiments that include an inner layer of silver impregnated material, the silver kills any pathogens that come into contact, significantly reducing the danger of infection to those who handle the bag or come into contact with the contents.
The embodiment shown in
It will be recognized that, while a manufacturer may recommend a particular schedule or frequency of service and bag replacement, the manufacturer cannot force compliance, and that some users may overfill a vacuum filter bag to a point well beyond its rated capacity, before replacing the bag. In such cases, a vacuum filter bag can degrade, so that it is no longer capable of removing small particles, and its antimicrobial properties may be compromised. In such cases, the addition of silver to the filter assembly 128 can act as insurance, and continue to extend antimicrobial protection and/or to remove very fine particles from the exhaust air.
The inventors have found that manufacturing a vacuum filter bag with silver impregnation, as described above, is relatively inexpensive, particularly when compared to the cost of producing a vacuum filter bag with a true HEPA rating, not to mention the cost of a vacuum cleaner capable of drawing air through such a bag without significant loss of efficiency.
During operation, air pressure against the filter element 302, as air passes through the assembly, can tend to push the filter and antimicrobial elements 302, 304 outward from the frame 306. Accordingly, a support grid 308 is attached to the frame 306 on the output side of the filter assembly 300 to provide physical support to the filter and antimicrobial elements 302, 304. The filter element 302 has an accordion shape, which provides increased surface area, thereby increasing the capacity and reducing air resistance of the assembly.
In the embodiment shown in
US 2019/0239707 Al direction of air flow, with inward referring to an element that is upstream relative to another element, and outward referring to an element that is downstream, relative to another element. Thus, functionally, the terms correspond in meaning to the use of similar terms in describing elements of the vacuum filter bag 132 of
A number of alternative embodiments are contemplated with respect to the filter assembly 300, generally corresponding to the various alternative embodiments described above with reference to the vacuum filter bag 132, and in particular to those described with reference to
In addition to the upright vacuum cleaner 100 described above with reference to
The abstract of the present disclosure is provided as a brief outline of some of the principles of the invention according to one embodiment, and is not intended as a complete or definitive description of any embodiment thereof, nor should it be relied upon to define terms used in the specification or claims. The abstract does not limit the scope of the claims.
This application is a continuation of application Ser. No. 17/942,151 filed on Sep. 11, 2022 titled “Vacuum Filter Bag With Silver-Impregnated Layer For Antimicrobial Action,” which is a continuation of application Ser. No. 16/269,518 filed on Feb. 6, 2019 titled “Vacuum Filter Bag With Silver-Impregnated Layer For Antimicrobial Action,” which claims priority of provisional application Ser. No. 62/710,054 Titled “Vacuum Filter Bag With Silver-Impregnated Layer For Antimicrobial Action” filed on Feb. 6, 2018, all of which are incorporated herein by reference in their entirety for all that is taught and disclosed therein, none of which are admitted to be prior art with respect to the present invention by its mention in this cross-reference section.
Number | Date | Country | |
---|---|---|---|
Parent | 17942151 | Sep 2022 | US |
Child | 18419513 | US | |
Parent | 16269518 | Feb 2019 | US |
Child | 17942151 | US |