The present disclosure relates to vacuum formed parts with catalytic enhancement. More particularly, the disclosure related to vacuum formed parts having one or more fiber-containing layers wherein at least one layer includes a catalyst.
Vacuum formed parts may be used in a variety of applications and industries. For example, candle filters may be vacuum formed. Candle filters are used for filtration of hot gases from the exhaust system in glass furnaces, cement industries, steel plants, and others. Similar to a baghouse filter, candle filters are placed vertically inside a filter box. Hot gases are introduced inside the filter box and the exiting cleaned gas is released to the atmosphere.
The hot gases normally contain particulate matter that gets trapped on the outside surface of the candle filter. As the gas travels through the wall thickness of the candle filter, the particulate matter is retained, and the gas exits clean of particles. In some cases, the stack gas also contains high level of NOx, SOx, dioxins and other pollutants that cannot be released to the atmosphere. In those cases, a catalytic candle filter is required. The catalytic layer has the function of cleaning the stack gas from these pollutants. Catalytic candle filters may be produced by spraying a candle filter with a catalytic solution. The catalytic liquid infuses inside the walls of the candle filter, thereby impregnating it. For example, WO 2017/055344 A1, which is incorporated herein by reference in its entirety, describes one technique of impregnating a vacuum formed candle filter with a catalytic liquor in order to obtain a catalytic candle filter. One of the problems with this approach, however, is the high cost of the final product as it requires a secondary post treatment of the candle filter once it is ready in order to transform it in a catalytic filter.
Various embodiments of the present disclosure will be understood more fully from the detailed description given below and from the accompanying drawings of various embodiments of the disclosure. In the drawings, like reference numbers may indicate identical or functionally similar elements. Embodiments are described in detail hereinafter with reference to the accompanying figures, in which:
The following disclosure provides many different embodiments or examples. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
The present disclosure is directed to methods of producing composite vacuum formed parts that incorporates a catalytic layer together with a non-catalytic layer. Vacuum formed parts are materials produced when a dispersion of fiber and binder (herein also referred to as a “slurry”) is formed into a final product shape by applying a vacuum in a porous die or mold. In particular, the die or mold is submerged in the slurry and vacuum in applied. By doing so, a layer of fiber and binder is deposited in the mold cavity and a part that mirrors the die shape in then obtained. An unlimited number of shapes (sleeves, blocks, cones, filter candles, etc.) and formulations (low density, high density, low temperature, high temperature, etc.) can be obtained.
With reference to
In some embodiments, the binder includes a colloidal metal (for example, silica, alumina, titania, zinc, magnesia, zirconia, or combinations thereof), clay, or combinations thereof. In some embodiments, the clay may be calcined or uncalcined, and may include but not be limited to attapulgite, ball clay, bentonite, hectorite, kaolinite, kyanite, montmorillonite, palygorskite, saponite, sepiolite, sillimanite, or combinations thereof.
In some embodiments, any slurry described herein may include one or more additives. For example, in some embodiments, any slurry may include a flocculating agent, such as cationic starch, acrylic latex, polyvinyl chloride, polyvinyl alcohol, polyacrylamide, or combinations thereof. In some embodiments, any slurry may include an organic filler or an inorganic filler. In some embodiments, any slurry may include a hardening agent.
Turning to
With reference to
Using the techniques described herein, it is possible to control the thickness of the catalytic layer (by changing the thickness of the original catalytic layer) and the thickness of the non-catalytic layer by controlling the immersion time with a given slurry concentration and/or by modifying the composition and/or properties (such as viscosity) of the slurry.
Referring to
With reference to
Turning to
The techniques described herein prove to be very flexible in terms of where the catalytic layer can be placed. Great flexibility is also possible in terms of the composition, density, porosity, permeability, etc. of the non-catalytic layer. The present techniques have the advantage that there is no need to pre-impregnate a blanket/mat with the catalytic element to be used to wrap or to be inserted in the mold. By simply having two tanks with the two different mixes and then vacuum forming the layers, the placement of the catalytic layer may be easily tailored. Similarly, the densities, thickness, permeability, etc. of each layer may be tailored by adjusting the respective slurry formulations.
By using the methods described in this disclosure, a catalytic candle filter can be obtained in one or more vacuum forming steps without need of any secondary post treatment. Another advantage is the ability to control the permeability, density, porosity and pressure drop of the catalytic layer in order to obtain a maximum efficacy during the catalysis process. A wide variety of shapes and formats can be produced by the methods of the present disclosure in a way that it will expand the possibilities for novel and engineered product forms for any application that requires catalysis.
Although various embodiments have been shown and described, the disclosure is not limited to such embodiments and will be understood to include all modifications and variations as would be apparent to one of ordinary skill in the art. Therefore, it should be understood that the disclosure is not intended to be limited to the particular forms disclosed; rather, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure as defined by the appended claims.
This application is a continuation of PCT International Patent Application No. PCT/US2022/076791 filed Sep. 21, 2022 and titled “VACUUM FORMED PARTS WITH CATALYTIC ENHANCEMENT”, which claims priority to U.S. Provisional Patent Application No. 63/247,481 filed Sep. 23, 2021 and titled “VACUUM FORMED PARTS WITH CATALYTIC ENHANCEMENT”, which are hereby incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
63247481 | Sep 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2022/076791 | Sep 2022 | US |
Child | 18045680 | US |