The present disclosure generally relates to vacuum forming molds. More particularly, the present disclosure relates vacuum forming mold assemblies and associated methods for creating vacuum forming mold assemblies, such as for use in forming wind turbine components.
Wind power is considered one of the cleanest, most environmentally friendly energy sources presently available, and wind turbines have gained increased attention in this regard. A modern wind turbine typically includes a tower, a nacelle mounted on the tower, a generator positioned in the nacelle, and one or more rotor blades. The one or more rotor blades convert kinetic energy of wind into mechanical energy using known airfoil principles. A drivetrain transmits the mechanical energy from the rotor blades to the generator. The generator then converts the mechanical energy to electrical energy that may be supplied to a utility grid.
Each rotor blade generally includes various shell portions, such as a pressure side shell and a suction side shell bonded together along leading and trailing edges of the rotor blade. The shells are formed using a suitable mold. For example, in certain instances, the mold may be formed via sand casting. After casting, the mold may be finish machined to improve its dimensional accuracy and/or surface finish. However, given the large size of many wind turbine rotor blades, such finish machining operations are time-consuming and expensive, thereby increasing the overall cost of the wind turbine. Furthermore, such molds are difficult to modify when the design of the rotor blades changes. As such, new molds are required when modifications to the rotor blade design are made.
Accordingly, an improved vacuum forming mold assembly and a method for creating a vacuum forming mold assembly would be welcomed in the art.
Aspects and advantages of the technology will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the technology.
In one aspect, the present disclosure is directed to a method for creating a vacuum forming mold assembly. The method includes forming a plurality of support plates. Each support plate includes a surface defining a shape corresponding to a cross-section of at least a portion of the mold cavity. The method also includes removably coupling a mold body to the plurality of support plates to form the mold assembly. The mold body conforms to the shape of the surface of each support plate after being removably coupled to the plurality of support plates such that the mold body defines at least a portion of a mold cavity of the mold assembly. The mold body defines at least one of one or more vacuum manifolds or one or more fluid passages.
In another aspect, the present disclosure is directed to a vacuum forming mold assembly. The vacuum forming mold assembly includes a plurality of support plates. Each support plate includes a surface defining a shape corresponding to a cross-section of at least a portion of the mold cavity. The vacuum forming mold assembly also includes a mold body removably coupled to the plurality of support plates. The mold body conforms to the shape of the surface of each support plate after being removably coupled to the plurality of support plates such that the mold body defines at least a portion of a mold cavity of the mold assembly. The mold body defines at least one of one or more vacuum manifolds or one or more fluid passages.
These and other features, aspects and advantages of the present technology will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the technology and, together with the description, serve to explain the principles of the technology.
A full and enabling disclosure of the present technology, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which:
Repeat use of reference characters in the present specification and drawings is intended to represent the same or analogous features or elements of the present technology.
Reference will now be made in detail to present embodiments of the technology, one or more examples of which are illustrated in the accompanying drawings. The detailed description uses numerical and letter designations to refer to features in the drawings. Like or similar designations in the drawings and description have been used to refer to like or similar parts of the technology. As used herein, the terms “first”, “second”, and “third” may be used interchangeably to distinguish one component from another and are not intended to signify location or importance of the individual components.
Each example is provided by way of explanation of the technology, not limitation of the technology. In fact, it will be apparent to those skilled in the art that modifications and variations can be made in the present technology without departing from the scope or spirit thereof. For instance, features illustrated or described as part of one embodiment may be used on another embodiment to yield a still further embodiment. Thus, it is intended that the present technology covers such modifications and variations as come within the scope of the appended claims and their equivalents.
Referring now to the drawings,
Referring now to
The thermoplastic rotor blade components and/or materials as described herein generally encompass a plastic material or polymer that is reversible in nature. For example, thermoplastic materials typically become pliable or moldable when heated to a certain temperature and returns to a more rigid state upon cooling. Further, thermoplastic materials may include amorphous thermoplastic materials and/or semi-crystalline thermoplastic materials. For example, some amorphous thermoplastic materials may generally include, but are not limited to, styrenes, vinyls, cellulosics, polyesters, acrylics, polysulphones, and/or imides. More specifically, exemplary amorphous thermoplastic materials may include polystyrene, acrylonitrile butadiene styrene (ABS), polymethyl methacrylate (PMMA), glycolised polyethylene terephthalate (PET-G), polycarbonate, polyvinyl acetate, amorphous polyamide, polyvinyl chlorides (PVC), polyvinylidene chloride, polyurethane, or any other suitable amorphous thermoplastic material. In addition, exemplary semi-crystalline thermoplastic materials may generally include, but are not limited to polyolefins, polyamides, fluropolymer, ethyl-methyl acrylate, polyesters, polycarbonates, and/or acetals. More specifically, exemplary semi-crystalline thermoplastic materials may include polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polypropylene, polyphenyl sulfide, polyethylene, polyamide (nylon), polyetherketone, or any other suitable semi-crystalline thermoplastic material.
Further, the thermoset components and/or materials as described herein generally encompass a plastic material or polymer that is non-reversible in nature. For example, thermoset materials, once cured, cannot be easily remolded or returned to a liquid state. As such, after initial forming, thermoset materials are generally resistant to heat, corrosion, and/or creep. Example thermoset materials may generally include, but are not limited to, some polyesters, some polyurethanes, esters, epoxies, or any other suitable thermoset material.
In addition, as mentioned, the thermoplastic and/or the thermoset material as described herein may optionally be reinforced with a fiber material, including but not limited to glass fibers, carbon fibers, polymer fibers, wood fibers, bamboo fibers, ceramic fibers, nanofibers, metal fibers, or similar or combinations thereof. In addition, the direction of the fibers may include multi-axial, unidirectional, biaxial, triaxial, or any other another suitable direction and/or combinations thereof. Further, the fiber content may vary depending on the stiffness required in the corresponding blade component, the region or location of the blade component in the rotor blade 22, and/or the desired weldability of the component.
More specifically, as shown, the main blade structure 26 may include any one of or a combination of the following: a pre-formed blade root section 30, a pre-formed blade tip section 32, one or more one or more continuous spar caps 34, 36, 38, 40, one or more shear webs 42 (
Referring particularly to
More specifically, as shown in
In specific embodiments, as shown in
Similarly, the blade tip section 32 may include one or more longitudinally extending spar caps 38, 40 infused therewith. More specifically, as shown, the spar caps 34, 36, 38, 40 may be configured to be engaged against opposing inner surfaces of the blade segments 28 of the rotor blade 22. Further, the blade root spar caps 34, 36 may be configured to align with the blade tip spar caps 38, 40. Thus, the spar caps 34, 36, 38, 40 may generally be designed to control the bending stresses and/or other loads acting on the rotor blade 22 in a generally span-wise direction (a direction parallel to the span 46 of the rotor blade 22) during operation of a wind turbine 10. In addition, the spar caps 34, 36, 38, 40 may be designed to withstand the span-wise compression occurring during operation of the wind turbine 10. Further, the spar cap(s) 34, 36, 38, 40 may be configured to extend from the blade root section 30 to the blade tip section 32 or a portion thereof. Thus, in certain embodiments, the blade root section 30 and the blade tip section 32 may be joined together via their respective spar caps 34, 36, 38, 40.
In addition, the spar caps 34, 36, 38, 40 may be constructed of any suitable materials, e.g. a thermoplastic or thermoset material or combinations thereof. Further, the spar caps 34, 36, 38, 40 may be pultruded from thermoplastic or thermoset resins. As used herein, the terms “pultruded,” “pultrusions,” or similar generally encompass reinforced materials (e.g. fibers or woven or braided strands) that are impregnated with a resin and pulled through a stationary die such that the resin cures or undergoes polymerization. As such, the process of manufacturing pultruded members is typically characterized by a continuous process of composite materials that produces composite parts having a constant cross-section. Thus, the pre-cured composite materials may include pultrusions constructed of reinforced thermoset or thermoplastic materials. Further, the spar caps 34, 36, 38, 40 may be formed of the same pre-cured composites or different pre-cured composites. In addition, the pultruded components may be produced from rovings, which generally encompass long and narrow bundles of fibers that are not combined until joined by a cured resin.
Referring to
In addition, as shown in
As illustrated in
As shown in
The mold assembly 100 also includes a plurality of mold body segments 130. As will be described in greater detail below, the mold body segments 130 are removably coupled together to form the mold body 122 of the mold assembly 100. In the embodiment illustrated in
As shown, one or more of the mold body segments 130 may define a one or more fluid passages 138 extending therethrough. In general, a heating fluid may flow through the fluid passages 138 in the mold body segment 130 to heat the mold body 122 for vacuum forming a thermoplastic sheet. Although, a coolant may flow through the fluid passages 138 to cool the mold body 122 in certain embodiments. In one embodiment, the fluid passages 138 may extend along the span-wise direction 102 through the mold body segment 130. As such, the fluid passages 138 may be spaced apart from each other along the chord-wise direction 108. Nevertheless, in alternative embodiments, the fluid passages 138 may extend through the mold body segment 130 in any suitable manner. Further embodiments of the mold body segment 130 may define more or fewer the fluid passages 138 including no fluid passages 138 at all. In certain embodiments, an external heater (not shown) coupled to the bottom surfaces 134 of one or more of the mold body segments 130. Such heating elements may heat the mold body 122 in addition to or in lieu of the fluid flowing through the fluid passages 138. For example, such heating elements may permit selective heating of particular portions of the mold body 122.
One or more of the mold body segments 130 may also define one or more vacuum manifolds 140 extending therethrough. In one embodiment, the vacuum manifolds 140 may extend along the span-wise direction 102 through the mold body segment 130. As such, the vacuum manifolds 140 may be spaced apart from each other along the chord-wise direction 108. Nevertheless, in alternative embodiments, the vacuum manifolds 140 may extend through the mold body segment 130 in any suitable manner. Furthermore, one or more of the mold body segments 130 define a plurality of vacuum passages 142. As shown, each vacuum passage 142 fluidly couples the mold cavity 128 and a corresponding vacuum manifold 140. In this respect, each vacuum passage 142 extends from the corresponding vacuum manifold 140 to the top surface 132 of the mold body segment 130 in a direction that is normal to the top surface 132. In operation, a vacuum may be applied to each vacuum manifold 140 by a suitable a vacuum pump or another suitable vacuum source (not shown). As such, the vacuum causes the thermoplastic sheet to conform shape of the mold cavity 128 (i.e., conform to the top surfaces 132 of the mold body segments 130).
Furthermore, the mold body segments 130 may also define a plurality of slots 144 extending therethrough. In general, each slot 144 is configured to receive one or more fasteners 146 for coupling the associated mold body segment 130 to the support plates 120. As shown, the slots 144 may extend from the bottom surface 134 of the mold body segment 130 vertically upward toward the top surface 132 of the mold body segment 130. In one embodiment, the slots 144 may extend along the span-wise direction 102 through the mold body segment 130. As such, the slots 144 may be spaced apart from each other along the chord-wise direction 108. Nevertheless, in alternative embodiments, the slots 144 may extend through the mold body segment 130 in any suitable manner. Furthermore, in the illustrated embodiment, the fasteners 146 may correspond to T-bolts and associated nuts. Nevertheless, the fasteners 146 may correspond to any other suitable type of fastener.
Referring now to
After being coupled to the support plates 120, the mold body 122 defines the mold cavity 128. More specifically, as mentioned above, the top surfaces 126 of the support plates 120 define a shape corresponding to a cross-section of a portion of the mold cavity 128. For example, the shape of the top surfaces 126 of the support plates 120 may be the same as or similar to the cross-sectional shape of the mold cavity 128. As such, coupling the mold body segments 130 to the support plates 120 causes the mold body segments 130 to conform to the shape of the top surfaces 126 of the support plates 120. In several embodiments, as shown in
The mold assembly 100 may include additional features as well. For example, the mold assembly 100 may include a gasket 264 (
Additionally, as shown in
As illustrated in
As shown in
As indicated above, the mold assembly 200 includes the mold body 222. As illustrated in
The mold body 222 may include one or more tubes 252 in embodiments where the mold body 22 defines the passages 250. As shown, each tube 252 is positioned within one of the passages 250. In this respect, the tubes 252 are positioned vertically between the base and top plates 238, 240. Furthermore, each tube 252 defines a fluid passage 254 extending therethrough. In general, a heating fluid may flow through the fluid passages 254 in the tubes 252 to heat the mold body 222 for vacuum forming a thermoplastic sheet. Although, a coolant may flow through the fluid passageway 254 to cool the mold body 222 in certain embodiments. In certain embodiments, an external heater (not shown) coupled to the bottom surfaces 244 of the base plate 238 of the mold body 222 may heat the mold body 222 in addition to or in lieu of the fluid flowing through the fluid passages 254. For example, such heating elements may permit selective heating of particular portions of the mold body 122.
Referring now to
After coupling to the support plates 220, the mold body 222 defines the mold cavity 234. More specifically, as mentioned above, the top surfaces 226 of the support plates 220 define a shape corresponding to a cross-section of a portion of the mold cavity 234. For example, the shape of top surfaces 226 of the support plates 220 may be the same as or similar to the cross-sectional shape of the mold cavity 234. As such, coupling the mold body 222 to the support plates 220 causes the mold body 222 to conform to the shape of the top surfaces 226 of the support plates 220. In several embodiments, as shown in
Referring now to
Referring particularly to
Additionally, the top plate 240 of the mold body 222 may define one or more grooves 272 in the top surface 246 thereof. More specifically, the grooves 272 are in fluid communication with the mold cavity 234. Furthermore, the grooves 272 are also in fluid communication with a vacuum source (not shown) via one or more vacuum ports 274 defined by the mold body 222. In this respect, the grooves 272 are configured to provide a vacuum to the mold cavity 234 that causes the thermoplastic sheet to adhere to the top surface 246 of the mold body 222. In the illustrated embodiment, the grooves 272 have a grid-like configuration. Although, in alternative embodiments, the grooves 272 may have any other suitable configuration and/or be present on any portion of the mold body 222. Furthermore, the vacuum port 274 is illustrated as being positioned proximate to an edge of the mold body 222. Nevertheless, the vacuum port 274 may be positioned in any other suitable location of the mold body 222.
In certain embodiments, the mold assemblies 100 and/or 200 may be incorporated into or otherwise combined with other types of mold assemblies or mold assembly portions. For example, the mold assembly 100 and/or 200 may be used to form the portions of the rotor blade 22 proximate to its mid-span portions of the rotor blade 22, while another mold assembly having a different configuration (e.g., one that requires machining its mold cavity) the portions of the rotor blade 22 positioned proximate to its tip. Additionally, the mold assembly 100 may be used to form a first part of a component and the mold assembly 200 may be used form a second part of the component. Nevertheless, the mold assemblies 100, 200 may be used alone to form a component.
Moreover, various aspects of one of the mold assemblies 100, 200 may be combined or otherwise be incorporated into the other of the mold assemblies 100, 200. For example, one or more of the top plates 240 may be placed on the top surfaces 132 of the mold body 122 of the mold assembly 100. However, in other embodiments, no top plate 240 or other sheet metal-like component is placed on the top surfaces 132 of the mold body 122 of the mold assembly 100.
As shown in
At (304), the method 300 includes removably coupling a mold body to the plurality of support plates to form a mold assembly. For example, in one embodiment, the plurality of mold body segments 130 may be coupled to the support plates 120 via the brackets 154 and fasteners 146, 156. Once coupled to the support plates 120, the mold body segments 130 conform to the shape of the top surfaces 126 of each support plate 120 such that the mold body 122 defines the mold cavity 128. In another embodiment, the mold body 222, which may include the base plate 238, the top plate 240, and/or the tubes 254, may be coupled to the plurality of support plates 222 using the brackets 256 and fasteners 258, 260. Once coupled to the support plates 220, the mold body 222 conforms to the shape of the top surfaces 226 of each support plate 220 such that the mold body 222 defines the mold cavity 234.
The mold assemblies 100, 200 and the associated method 300 for creating the mold assemblies 100, 200 provide advantages over conventional vacuum forming molds and methods of forming such molds. For example, as described above, support plates 120, 22 include top surfaces 126, 226 that define shapes corresponding to the cross-sectional shape of the mold cavities 128, 234. As such, the mold bodies 122, 222 conform (e.g., via deformation) to these top surfaces 126, 226 such that the mold bodies 122, 222 define the mold cavities 128, 234. In this respect, and unlike conventional vacuum forming molds and methods of forming such molds, the mold assemblies 100, 200 and the associated method 300 do not require machining to form the mold cavities 128, 234. Accordingly, the mold assemblies 100, 200 are less expensive to produce than conventional mold assemblies, thereby reducing the overall cost of the wind turbine.
This written description uses examples to disclose the technology, including the best mode, and also to enable any person skilled in the art to practice the technology, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the technology is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.
Number | Name | Date | Kind |
---|---|---|---|
RE19412 | Zaparka | Jan 1935 | E |
2450440 | Mills | Oct 1948 | A |
2451131 | Vidal | Oct 1948 | A |
2503450 | Nebesar | Apr 1950 | A |
3000446 | Warnken | Sep 1961 | A |
3093219 | Ramme | Jun 1963 | A |
3137887 | Mannino et al. | Jun 1964 | A |
3321019 | Dmitroff et al. | May 1967 | A |
3528753 | Dutton et al. | Sep 1970 | A |
3586460 | Toner | Jun 1971 | A |
3956564 | Hillig | May 1976 | A |
4319872 | Lupke | Mar 1982 | A |
4329119 | Baskin | May 1982 | A |
4474536 | Gougeon et al. | Oct 1984 | A |
4626172 | Mouille et al. | Dec 1986 | A |
4718844 | Dickhut | Jan 1988 | A |
5031483 | Weaver | Jul 1991 | A |
5059109 | Dickhut | Oct 1991 | A |
5088665 | Vijgen et al. | Feb 1992 | A |
5178885 | Vallier | Jan 1993 | A |
5346367 | Doolin et al. | Sep 1994 | A |
5793015 | Walczyk | Aug 1998 | A |
6012883 | Engwall et al. | Jan 2000 | A |
6264877 | Pallu De La Barriere | Jul 2001 | B1 |
6298896 | Sherrill | Oct 2001 | B1 |
6890152 | Thisted | May 2005 | B1 |
7059833 | Stiesdal et al. | Jun 2006 | B2 |
7364407 | Grabau | Apr 2008 | B2 |
7458777 | Herr | Dec 2008 | B2 |
7637721 | Driver et al. | Dec 2009 | B2 |
7976275 | Miebach et al. | Jul 2011 | B2 |
7988421 | Bakhuis et al. | Aug 2011 | B2 |
8007624 | Stiesdal | Aug 2011 | B2 |
8062728 | De Baets | Nov 2011 | B2 |
8083488 | Fritz | Dec 2011 | B2 |
8092187 | Bell | Jan 2012 | B2 |
8162590 | Haag | Apr 2012 | B2 |
8273806 | Guadagno et al. | Sep 2012 | B2 |
8317479 | Vronsky et al. | Nov 2012 | B2 |
8376450 | Long et al. | Feb 2013 | B1 |
8540491 | Gruhn | Sep 2013 | B2 |
8602761 | Arrizabalaga | Dec 2013 | B2 |
8657581 | Pilpel et al. | Feb 2014 | B2 |
8673106 | Jolley et al. | Mar 2014 | B1 |
8678746 | Haag | Mar 2014 | B2 |
8708691 | Matsen et al. | Apr 2014 | B2 |
8747098 | Johnson et al. | Jun 2014 | B1 |
8865798 | Merle et al. | Oct 2014 | B2 |
8877116 | Grabau | Nov 2014 | B2 |
8932024 | Hayashi et al. | Jan 2015 | B2 |
8961142 | Wansink | Feb 2015 | B2 |
8992813 | Robbins et al. | Mar 2015 | B2 |
9090027 | Sutton | Jul 2015 | B2 |
9150721 | Bateman et al. | Oct 2015 | B2 |
9377005 | Yarbrough et al. | Jun 2016 | B2 |
9434142 | Levit | Sep 2016 | B2 |
9458821 | Jacobsen et al. | Oct 2016 | B2 |
9512818 | Richtman | Dec 2016 | B2 |
9719489 | Stewart | Aug 2017 | B2 |
10273935 | Albert | Apr 2019 | B2 |
20020155186 | Walsh | Oct 2002 | A1 |
20040253114 | Gunneskov et al. | Dec 2004 | A1 |
20070065290 | Herr | Mar 2007 | A1 |
20070077150 | Llorente Gonzalez | Apr 2007 | A1 |
20070107189 | Prichard | May 2007 | A1 |
20090068017 | Rudling | Mar 2009 | A1 |
20090074585 | Koegler et al. | Mar 2009 | A1 |
20090140527 | Pawar | Jun 2009 | A1 |
20090148300 | Driver et al. | Jun 2009 | A1 |
20090155084 | Livingston et al. | Jun 2009 | A1 |
20090301648 | Hogg | Dec 2009 | A1 |
20100047070 | Slot | Feb 2010 | A1 |
20100121475 | Lyons | May 2010 | A1 |
20100135806 | Benito | Jun 2010 | A1 |
20100135815 | Bagepalli | Jun 2010 | A1 |
20100296940 | Zuteck | Nov 2010 | A1 |
20100296941 | Zuteck | Nov 2010 | A1 |
20110018282 | Hayashi et al. | Jan 2011 | A1 |
20110076149 | Santiago et al. | Mar 2011 | A1 |
20110097211 | Rudling | Apr 2011 | A1 |
20110097326 | Luehrsen | Apr 2011 | A1 |
20110100540 | Matthew | May 2011 | A1 |
20110103965 | Matthew | May 2011 | A1 |
20110135467 | Saddoughi et al. | Jun 2011 | A1 |
20110142635 | Frizt | Jun 2011 | A1 |
20110142667 | Miebach et al. | Jun 2011 | A1 |
20110142668 | Rao | Jun 2011 | A1 |
20110142670 | Pilpel | Jun 2011 | A1 |
20110176928 | Jensen | Jul 2011 | A1 |
20110200444 | Garcia | Aug 2011 | A1 |
20110223028 | Stege et al. | Sep 2011 | A1 |
20110243736 | Bell | Oct 2011 | A1 |
20110243750 | Gruhn | Oct 2011 | A1 |
20110266721 | Song et al. | Nov 2011 | A1 |
20110268558 | Driver | Nov 2011 | A1 |
20110286853 | Kristensen | Nov 2011 | A1 |
20120009069 | Grove-Nielsen | Jan 2012 | A1 |
20120027590 | Bonnet | Feb 2012 | A1 |
20120027610 | Yarbrough | Feb 2012 | A1 |
20120027612 | Yarbrough | Feb 2012 | A1 |
20120027613 | Yarbrough | Feb 2012 | A1 |
20120121430 | Olsen et al. | May 2012 | A1 |
20120128810 | Arriola Arrizabalaga et al. | May 2012 | A1 |
20120134848 | Ramirez Jimenez et al. | May 2012 | A1 |
20120138218 | Dean et al. | Jun 2012 | A1 |
20120183408 | Noerlem | Jul 2012 | A1 |
20120186730 | Shindo | Jul 2012 | A1 |
20120263913 | Karem | Oct 2012 | A1 |
20130108455 | Quiring et al. | May 2013 | A1 |
20130164133 | Grove-Nielsen | Jun 2013 | A1 |
20130186558 | Comb | Jul 2013 | A1 |
20130241117 | Lind | Sep 2013 | A1 |
20140072715 | Jones et al. | Mar 2014 | A1 |
20140178204 | Livingston et al. | Jun 2014 | A1 |
20140186175 | Baehmann et al. | Jul 2014 | A1 |
20140205454 | Giovannetti et al. | Jul 2014 | A1 |
20140295187 | Jacobsen | Oct 2014 | A1 |
20140322023 | Tapia | Oct 2014 | A1 |
20140328692 | Riddell et al. | Nov 2014 | A1 |
20140334930 | Rob | Nov 2014 | A1 |
20150224759 | Boon | Aug 2015 | A1 |
20150247487 | Oerlemans et al. | Sep 2015 | A1 |
20150308404 | Dahl | Oct 2015 | A1 |
20150316028 | Breckenfeld | Nov 2015 | A1 |
20150322920 | Jones | Nov 2015 | A1 |
20160023433 | Langone | Jan 2016 | A1 |
20160052173 | Hunter | Feb 2016 | A1 |
20160107397 | Schibsbye | Apr 2016 | A1 |
20160146019 | Pizano et al. | May 2016 | A1 |
20160168997 | Garm | Jun 2016 | A1 |
20160263844 | Smith | Sep 2016 | A1 |
20160297145 | Wu | Oct 2016 | A1 |
20160319801 | Smith | Nov 2016 | A1 |
20160327019 | Tobin et al. | Nov 2016 | A1 |
20160327020 | Tobin et al. | Nov 2016 | A1 |
20160327021 | Tobin et al. | Nov 2016 | A1 |
20160354984 | Hedges | Dec 2016 | A1 |
20160377050 | Caruso et al. | Dec 2016 | A1 |
20160377051 | Caruso et al. | Dec 2016 | A1 |
20160377052 | Caruso et al. | Dec 2016 | A1 |
20170015066 | Herrmann | Jan 2017 | A1 |
20170021575 | Hansen et al. | Jan 2017 | A1 |
20170022821 | Ferber | Jan 2017 | A1 |
20170030330 | Caruso | Feb 2017 | A1 |
20170050372 | Nielsen et al. | Feb 2017 | A1 |
20170051718 | Klitgaard | Feb 2017 | A1 |
20170057158 | Caruso et al. | Mar 2017 | A1 |
20170058862 | Caruso et al. | Mar 2017 | A1 |
20170058865 | Caruso et al. | Mar 2017 | A1 |
20170058866 | Caruso | Mar 2017 | A1 |
20170074236 | Hynum et al. | Mar 2017 | A1 |
20170074237 | Caruso et al. | Mar 2017 | A1 |
20170074238 | Tobin et al. | Mar 2017 | A1 |
20170074240 | Caruso et al. | Mar 2017 | A1 |
20170082087 | Yarbrough | Mar 2017 | A1 |
20170082088 | Yarbrough et al. | Mar 2017 | A1 |
20170100902 | Asmatulu et al. | Apr 2017 | A1 |
20170113265 | Slavens et al. | Apr 2017 | A1 |
20170122287 | Dobbe et al. | May 2017 | A1 |
20170145990 | Drack et al. | May 2017 | A1 |
20170175534 | Ferber | Jun 2017 | A1 |
20170204833 | Albert et al. | Jul 2017 | A1 |
20170225362 | Anthony | Aug 2017 | A1 |
20170252966 | Susnjara | Sep 2017 | A1 |
20170306766 | Munzer | Oct 2017 | A1 |
20180135602 | Tobin et al. | May 2018 | A1 |
20180156190 | Johnson | Jun 2018 | A1 |
20180216601 | Yarbrough | Aug 2018 | A1 |
20180223794 | Tobin et al. | Aug 2018 | A1 |
20180229452 | Ogale | Aug 2018 | A1 |
20180264749 | Albert | Sep 2018 | A1 |
20180283349 | Wardropper | Oct 2018 | A1 |
20180311927 | Tyan | Nov 2018 | A1 |
20190001589 | Salimi | Jan 2019 | A1 |
20190032491 | Nissen et al. | Jan 2019 | A1 |
20190153994 | Tobin | May 2019 | A1 |
20190178227 | Hawkins | Jun 2019 | A1 |
20190195191 | Girolamo | Jun 2019 | A1 |
20190291861 | McIntyre et al. | Sep 2019 | A1 |
20190293049 | Roberts | Sep 2019 | A1 |
Number | Date | Country |
---|---|---|
1343162 | Apr 2002 | CN |
105034410 | Nov 2005 | CN |
1938148 | Mar 2007 | CN |
101511568 | Aug 2009 | CN |
101906251 | Dec 2010 | CN |
102017790 | Apr 2011 | CN |
103358564 | Oct 2013 | CN |
204488065 | Jul 2015 | CN |
104955278 | Sep 2015 | CN |
107187020 | Sep 2018 | CN |
0319449 | Jun 1989 | EP |
0435446 | Jul 1991 | EP |
0435466 | Jul 1991 | EP |
1813404 | Aug 2007 | EP |
2204577 | Jul 2010 | EP |
2653717 | Oct 2013 | EP |
3037655 | Jun 2016 | EP |
3138697 | Aug 2017 | EP |
2371893 | Nov 2012 | ES |
UD20010007 | Jul 2002 | IT |
H07102609 | Nov 1995 | JP |
2000 317972 | Nov 2000 | JP |
2007009926 | Jan 2007 | JP |
2007092716 | Apr 2007 | JP |
2012 158151 | Aug 2012 | JP |
2016 032929 | Mar 2016 | JP |
101 520 898 | May 2015 | KR |
WO2006039953 | Apr 2006 | WO |
WO2010025830 | Mar 2010 | WO |
WO2011088835 | Jul 2011 | WO |
WO2011098785 | Aug 2011 | WO |
WO2012076168 | Jun 2012 | WO |
WO2013023745 | Feb 2013 | WO |
WO2013178624 | Dec 2013 | WO |
WO2015015202 | Feb 2015 | WO |
WO2017092766 | Jun 2017 | WO |
WO2018015250 | Jan 2018 | WO |
Entry |
---|
CGTech VERICUT, Automated Fibre Placement—wind blade: VERICUT Composite CNC simulation, Sep. 16, 2015, YouTube, retrieved from the Internet on Sep. 28, 2019, URL: https://youtu.be/xFNtTE82DiU (Year: 2015). |
Thamizhisai Periyaswamy, Karthikeyan Balasubramanian, Christopher Pastore, “Novel characterization method for fibrous materials using non-contact acoustics: Material properties revealed by ultrasonic perturbations”, Sep. 16, 2014, Elsevier, Ultrasonics 56, 261-369 (Year: 2014). |
Zhai, Yuwei et. al., Additive Manufactacturing: Making Imagination the Major Limitation, Journal of Metals, vol. 66, No. 5, Springer, NY, Mar. 11, 2014. pp. 808-816. |
Patlolla, New progress in self-healing technology of composite wind turbine blades, Department of Mechanical Engineering, Wichita State Univeristy, https://soar.wichita.edu/handle/10057/5493, Feb. 16, 2012, (Abstract Only). |
Matt, Development of Novel Self-Healing Polymer Composites for Use in Wind Turbine Blades http://energyresources.asmedigitalcollection.asme.org/article.aspx?articleid=2174064, The American Society of Mechanical Engineers, Journal of Energy Resources Technology, vol. 137, Issue 5, Sep. 1, 2015 (Abstract Only). |
Teuwen et al., Vacuum Infused Thermoplastic Composites for Wind Turbine Blades, 2008 Wind Turbine Blade Workshop—Sandia National Laboratories, Jun. 3, 2008, 22 pages. |
U.S. Appl. No. 15/424,055, filed Feb. 3, 2017. |
U.S. Appl. No. 15/424,084, filed Feb. 3, 2017. |
European Search Report for EP Application No. 18880995.8, dated Jul. 7, 2021. |
European Search Report for EP Application No. 18880855.4, dated Jul. 7, 2021. |
Foreign Office Action for application CN201880087172.3, dated Dec. 22, 2021. |
English translation of Foreign Office Action for CN201880087172.3, dated Dec. 22, 2021. |
Number | Date | Country | |
---|---|---|---|
20190152127 A1 | May 2019 | US |