The present disclosure relates to vacuums and in particular to a vacuum with wheels and shock absorbing features.
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
Vacuums, particularly industrial shop vacuums, may be equipped with wheels to facilitate mobility and versatile use. These wheels are typically rigidly mounted to the vacuum. Impediments, debris, and other hazards are common to the intended operating environment of many vacuums. Impacts associated with dropping the vacuum or collisions with job site impediments can damage the wheels and their mounting components.
A vacuum including a housing, a suction device disposed within the housing, at least one axle mounted to the housing at one or more mounting points, and a plurality of wheels mounted to the axle. The axle is operable to flex about the one or more mounting points to absorb an impact force. The vacuum may also include at least one rail mounted to the housing at a plurality of mounting points and at least one caster wheel rotatably fixed to the rail. The at least one rail may be operable to pivot about an axis partially defined by at least one of the mounting points in response to input forces, and a plurality of spring elements are operable to resist the pivoting and damp the input forces.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.
Referring to
In an exemplary embodiment, wheels 14 are relatively larger than caster wheels 16. Wheels 14 are rotatably fixed to a flexible axle 18, as best shown in
Axle 18 is fixed within a groove 20, disposed on housing 12, at one or more mounting points 22, as best seen in
As shown best in
Wheels 14 may include an elastomeric tire portion 30. Tire 30 is operable to compress in response to impact forces F and spring back to its nominal shape. In this manner, elastomeric tire 30 is operable to absorb impact energy, similar to the springing action of axle 18 described above. Tire 30 may also include a cavity 32, as shown in
Referring now to
In an exemplary embodiment, rail 40 is fixed to housing 12 at a first set of end mounting points 42, and a second set of intermediate mounting points 44. Bolts 46 are disposed through rail 40 at the mounting points 42, 44 and are threadably engaged either directly with housing 12 or with nuts (not shown) disposed within housing 12.
As best shown in
Alternatively, the first set of spring elements 48 may be tension springs disposed at the end mounting points 42, between rail 40 and housing 12. In this configuration, spring elements 48 stretch in response to impact forces, resisting the pivoting action of rail 40 and damping impact energy.
In an alternative embodiment, vacuum 10 may include a plurality of rails. For example, each caster wheel 16 may be soft mounted to an independent rail, or a plurality of rails 40 may include a plurality of caster wheels 16.
With reference to
Each shock absorber 110 is fixedly mounted to a support 140, which may be integrally formed with housing 12 or otherwise fixed thereto. As shown in
Cylindrical member 112 includes an upper closed end 120, an intermediate flange 122 and a lower flange 124. Stem 114 includes an upper flange 126 disposed between upper closed end 120 and intermediate flange 122 of cylindrical member 112. Stem 114 also includes a lower flange 128 disposed between the intermediate flange 122 and the lower flange 124.
Stem 114 is slidably engaged with cylindrical member 112, and is rotatable therein to allow rotation of caster wheel 16, improving maneuverability of vacuum 100. Stem 114 may also support caster wheel 16 for rotation about a second axis perpendicular to the length of stem 114.
Compression spring 116 is disposed between upper closed end 120 of the cylindrical member 112 and the upper flange 126 of stem 114. Compression spring 116 is operable in this configuration to absorb impact energy as an impact force F drives stem 114 upward relative to cylindrical member 112. The range of upward travel of stem 114 is limited by the lower flange 128 of stem 114 abutting against the intermediate flange 122 of the cylindrical member 112. The downward travel of stem 114 is limited by the lower flange 128 of the stem 114 abutting against the lower flange 124 of the cylindrical member 112.
Compression spring 116 may be a metallic helical spring. In an alternative embodiment, shock absorber 110 may include a plurality of compression springs 116. In another embodiment, compression spring 116 may be a compressible elastomeric member. In yet another embodiment, compression spring 116 may be a pneumatic or hydraulic impact damping device.
Referring now to
Frame 170 may include a plurality of wheels 14 and/or caster wheels 16. Caster wheels 16 are rotatably mounted on a bracket 172. Bracket 172 is fixed to frame 170 via a shock absorber 180. Shock absorber 180 may be configured similarly to any of the embodiments of shock absorber 110 described above. Additionally, shock absorber 180 may include structure to prevent a relative rotation between frame 170 and bracket 172.
With reference to
In an exemplary embodiment, movement-support members 202 include wheels 14 and at least one of a front support 210 and a rear support 212. Wheels 14 may be disposed on an axis located at or near the center of a length L of housing 12. Front support 210 and rear support 212 are disposed at or near the center of a width W of housing 12.
Either or both of front support 210 and rear support 212 may be adjustable to move upward relative to a floor or ground on which the vacuum 200 is situated. In this configuration, vacuum 200 is operable to move relative to a floor or ground, while the floor or ground is in contact only with wheels 14. In this configuration, vacuum 200 is operable to maneuver over and/or around many common job site impediments such as electrical cable, hoses, boards, or other equipment or debris.
Either or both of the front support 210 or the rear support 212 may contact the floor or ground during movement to provide additional stability and/or support for vacuum 200.
As shown in
In an exemplary embodiment, support 320 at least partially surrounds wheel 318 and is operable to shield wheel 318 from damaging impacts and debris. Support 320 includes an inclined surface 326 and a lower surface 328 operable to deflect a job site impediment 330 away from caster 316, thus reducing the risk of damage to caster 316 and reducing the need to avoid impediments.
Alternatively, caster 316 may include a deflector 332, as shown in
The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.
This application claims the benefit of U.S. Provisional Application No. 60/954162 filed on Aug. 6, 2007, and U.S. Provisional Application No. 60/859,948 filed on Nov. 20, 2006. The disclosures of the above applications are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60954162 | Aug 2007 | US | |
60859948 | Nov 2006 | US |