1. Technical Field
The invention relates to vacuum cleaning systems, and in particular to a storage system connected to a vacuum source for storing an extendable length of hose in a retracted condition within a storage housing. More particularly, the invention relates to a small, compact storage system adapted to be mounted in a concealed area within a home, such as in a kitchen cabinet, which contains a sufficient length of an expandable hose for ease of cleanup of the adjacent room.
2. Background Information
Central vacuum systems for home and commercial use have been used for many years, examples of which are shown in U.S. Pat. Nos. 2,943,698 and 3,173,164. These systems usually are comprised of a main vacuum source which is usually mounted in the basement or other location in the structure or closely adjacent thereto. The vacuum source is connected to various outlet locations in the structure by tubing which terminate in valves mounted in the wall into which one end of a length of cleaning hose is removably connected for cleaning an area adjacent the wall valve. These wall or hose end valves usually include some type of closure lid, which seals the hose receiving opening in the valve enabling another of the valves to be operational within the structure. Many of these valves are provided with electrical contacts or switches which energize the main vacuum source. The vacuum hose also may be provided with a pair of electric conductors for actuating the central vacuum source by a switch on the handle, such as shown in U.S. Pat. Nos. 4,064,355, 4,133,972, 4,194,081 and 4,368,348.
When using the cleaning system, the homeowner will generally have a single length of cleaning hose with various attachments which are stored in a closet or other location requiring the hose to be moved from room to room to be connected to the appropriate wall valve for cleaning the area adjacent the valve location. In many situations, this is less convenient than desired since the homeowner must continually go to a remote location to retrieve the cleaning attachments and hose for use in a particular room and then return the cleaning attachment, cleaning wand and hose to the closet for final storage. Also, these storage areas become cluttered and occupy needed space in other closets of the house.
Some central vacuum cleaning systems attempt to solve some of these storage problems by having the hose retractably inserted into the vacuum supply duct when not in use such as shown in U.S. Pat. Nos. 2,953,806, 3,593,363, 5,526,842 and 7,010,829. In another attempt to solve this storage problem in a central cleaning system, an in-wall storage cabinet was developed and shown in U.S. Pat. No. 5,740,581. However, the storage arrangement of this latter system requires the use of a power-driven mechanism for retracting the hose when not in use. Although this may perform satisfactory for its intended purpose, it is a more costly installation than may be desired by many homeowners and it requires the hose to be dedicated to a single vacuum source. This prevents the same vacuum source to be energized for supplying a vacuum to other wall valves in the structure. Also, these units may tend to be weak because their size is very limited, and in addition, their dirt capacity may also be limited.
Due to the need to retrieve the vacuum hose from a storage area and connected to an in-wall vacuum supply valve, many homeowners will not use the system for small cleanups, such as small quantities of dirt or other debris such as spillages in a kitchen or the like, and will use a manual broom. These types of cleanups usually are required in a kitchen, workroom or laundry area, but do not receive the homeowner's immediate attention due to the need of retrieving the relative long length of hose from the storage area and connecting it to a central vacuum system. Afterwhich the hose has to be disconnected from the wall valve and returned to the storage area.
Thus, the need exists for an improved hose storage system contained in a small, compact hose storage housing which can be located inside of a larger storage cabinet, such as a kitchen sink cabinet or adjacent cabinet, which facilitates the use of the vacuum cleaning equipment in a relatively simple and convenient manner, and most importantly enables a sufficient length of cleaning hose to be easily removed from and returned to the storage housing when not in use, and which can enable other vacuum outlets in the structure to be active, that is, have the vacuum source supplied to the storage housing of the present invention and to other vacuum outlets from a single central vacuum supply source, by providing a closure for an open end of the cleaning hose when not is use and stored in the housing.
The present invention provides a vacuum hose storage system having a compact hose storage housing for storing the cleaning hose, wherein the housing preferably is mounted in a larger storage area or cabinet which is connected to a vacuum source tube, which tube can extend from a main central vacuum source or from a self-contained vacuum source located within or adjacent the hose storage housing.
Another feature of the invention is to provide such a hose storage system in which the hose is permanently connected to a vacuum source tube by providing a sealing device at an open end of the hose handle which enables a central vacuum source to be active and provide a source of vacuum at other wall valves throughout the structure, enabling another hose to be used by the homeowner at one or more of these other valves if desired.
Still another feature of the invention is to provide such a hose storage system in which the hose when not in use is inserted into a pivotally mounted cradle which automatically actuates a switch to turn off the vacuum source and which seals the end of the hose to enable a central vacuum source to be active and provide a source of vacuum at other wall valves throughout the structure.
A further feature of the present invention is to provide the hose storage housing with a plurality of rollers attached in a spaced relationship between the walls of the housing within the storage compartment around which the hose is placed in a looped fashion preventing it from becoming tangled within the housing, and which enables the hose to be easily grasped and pulled from the housing by expanding the hose from a retracted to an extended position.
Another aspect of the invention is to form the rollers with a concave outer circumference to ensure that the hose during expansion and contraction remains in proper alignment within the storage housing thereby reducing friction during expansion and contraction of the hose.
Still another aspect of the present invention is to provide a sealing device for an open end of the hose handle when the handle is mounted in a storage cradle, which sealing device can have various configurations for sealing the open end of the handle while the vacuum supply is energized, and in which an ON/OFF switch can be mounted in the support cradle to turn the vacuum power supply ON and OFF automatically upon placing the handle in the cradle.
Another aspect is to provide the hose with an expansion ratio of 5 to 1 thereby enabling a long useable length of hose to be obtained from a relatively short contracted length of hose easily stored in a small storage area.
A further feature is to provide a vacuum storage system in which one or more drive belts may extend between the hose storage rollers to assist in the uniform expansion and contraction of the hose as it is pulled from or retracted back into the housing by synchronizing the rotational movement of the rollers.
Still another feature of the invention is to provide a small compact storage housing preferably mounted within an outer cabinet which stores a maximum length of hose in a minimum amount of storage space within the housing whereby the hose end is easily removed from a storage cradle which upon removal will automatically turn the vacuum source ON and when returned to cradle will automatically turn the vacuum source OFF, in which a maximum length of hose can be stored and removed from a minimum storage area, and in which the vacuum source can be connected at various locations in the storage housing and connected to a remotely located central vacuum source or to a dedicated source of vacuum adjacent the hose storage housing.
Another aspect is to use a neutrally biased hose or an expansion biased hose which relies upon the retraction force created by the vacuum to assist in retracting the hose back into the housing after use eliminating the use of a spring biased retraction type of hose.
Still another feature of the invention is to use a switched hose for actuating the vacuum source by providing an ON/OFF switch on the wand or handle which is connected to the vacuum source motor via electrical conductors extending through the hose.
A further feature is to provide a type of ratchet mechanism on the hose storage rollers which will lock the rollers in position upon pulling the hose from within the storage housing which relieves the biased retraction force on the hose avoiding the user having to continually apply a force to the hose when in use to prevent it from being pulled back into the housing.
A still further feature is to provide a high voltage source (120V or 240V) to a power driven brush-type of cleaning attachment mounted on the end of the hose and connected to the remote source of voltage by electrical conductors extending through the hose to enhance the cleaning ability of the vacuum cleaning system.
These features and advantages are obtained by the vacuum hose storage system of the present invention, the general nature of which may be stated as including a housing or cabinet forming an internal storage compartment; a plurality of guide wheels mounted within the storage compartment; a length of hose extendable between a retracted position in the storage compartment and an extended position extending from said storage compartment, wherein the hose has a first end adapted to be connected to a vacuum source and a second end, with the hose extending in a looped fashion about the guide wheels when in the retracted and extended positions; a handle attached to the second end of the hose; a cradle for holding the handle in a stored position; a switch for turning the vacuum source ON and OFF when the handle is placed in the cradle; and a biasing device connected to the hose exerting a retracting force on the hose when in an extended position.
A preferred embodiment of the invention, illustrated of the best mode in which Applicant contemplates applying the principles, is set forth in the following description and is shown in the drawings and is particularly and distinctly pointed out and set forth in the appended claims.
Similar numbers refer to similar parts throughout the drawings.
The improved hose storage system of the present invention is indicated generally at 1, and includes a storage housing 2 which is shown in
In accordance with one of the features of the invention, an extendable hose 15 is mounted in a looped fashion about a plurality of guide rollers 17 which are rotatably mounted within housing 2 on shafts 19, which preferably extend between and are mounted on spaced side walls 7. In the preferred embodiment shown in
In the preferred embodiment, hose 15 in a collapsed position as shown in
A handle 23 is attached to the distal open end 25 of hose 15 by a connector 27 (
A vacuum source such as a central vacuum cleaning unit 33, as shown in
If desired, a special tube and hose connector 37 can be mounted in a lower rear corner of housing 2 (
In accordance with another feature of the invention, a hose receiving cradle 45 is located in front wall 11 of housing 2 and accessible through an opening 44 formed in front wall 11 (
Upon completion of a cleaning operation, the user will merely relax the pulling force on the hose wherein the expanded internal helical spring 21 of the hose will bias the hose toward a retracted coiled looped position around roller 17 until the handle 23 is replaced into cradle 45 in the position as shown in
In accordance with another feature of the invention, one or more ratchet mechanisms 65 can be mounted on one or more of the rollers which when the hose is pulled from within housing 2 will prevent the rollers from having a tendency to rotate backwards since they are retained in their forward rotated position by the ratchet mechanism. This assists in reducing the biasing retraction force exerted on the hose by internal helical spring 21 and the internal vacuum. This reduces the fatigue on the user by not requiring the user to continually exert an outward force on the hose to prevent its retraction back into housing 2. The ratchet mechanism can be easily reduced by suddenly pulling out on the hose and then releasing this pulling force permitting the one or more rollers on which the ratchet mechanism are connected to rotate freely in the reverse direction. This type of ratchet mechanisms is well-known in the art such as used for vehicle seat belts and similar applications, and thus the details thereof are not described in further detail.
A modified cradle 66 is shown in
An electrical ON/OFF switch 75 is mounted within or adjacent compartment 69 and connected to a source of electrical power by a pair of electrical conductors 77 for controlling a vacuum producing motor 32 such as shown in
In accordance with another feature of the present invention discussed above is the attachment of a power driven rotary brush cleaning attachment 26 on the end of handle 23 by a wand 28 and connected to a remote source of high voltage electric power such as 120V/240V, by electrical conductors 73 which extend throughout the interior of cleaning hose 15. An ON/OFF switch 75 mounted on the wand 28 is used to control the operation of cleaning attachment 26. The cleaning attachment can be easily removed from the wand 28 by a connection clip 78 of the type well-known in the cleaning appliance industry. The cleaning wand 28 can then be easily detached from handle 23 after the cleaning operation has been completed.
In operation, housing 2 preferably is mounted within various types of an outer larger storage cabinet 5 or could be located in a closet or similar area and connected to a vacuum source, either an adjacent self-contained vacuum unit contains motor 32 (
The relatively small compact size of housing 2 and its ability to hold a considerable length of hose 15 and its automatic mode of operation will enable the user to easily remove the hose from its position within cradles 49 and 66 for cleaning up small spills or other dirt and debris in an adjacent area which heretofore required the homeowner to remove a length of hose from a storage area and connect it to an adjacent vacuum outlet valve. Heretofore, after picking up the dirt the user had to remove the hose from the wall mounted control valve and return it to its storage area. The collected dirt is drawn through hose 15 and deposited in a dirt receptacle contained in housing 31 (
Storage system 1 enables an occupant to quickly pickup small quantities of dirt, spillage etc. by easily removing handle 23 from its storage cradle and directing open end 29 against the area being cleaned. Afterwhich hose 15 retracts automatically into housing 2 upon releasing the pulling force on the hose.
In accordance with another feature, the total length of the hose for use in a particular size housing 2 can be determined easily by the following formula LTOT=Σ L+½WπD with reference to
In the foregoing description, certain terms have been used for brevity, clearness, and understanding. No unnecessary limitations are to be implied therefrom beyond the requirement of the prior art because such terms are used for descriptive purposes and are intended to be broadly construed.
Moreover, the description and illustration of the invention is an example and the invention is not limited to the exact details shown or described.
This application claims priority from U.S. Provisional Application Ser. No. 61/062,724 filed Jan. 29, 2008; the disclosure of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61062724 | Jan 2008 | US |