The present invention relates to a device and a method for increasing the stability of vacuum insulated glass, also abbreviated to VIG.
A problem with these VIG panes is the production of a bordering bond which is stable over a long period of time and provides a sufficiently tight seal with respect to a high vacuum. The glass-glass connection by glass solder previously used in practice in vacuum insulated glass is not considered here since this bordering bond is rigid, and, in the case of the previous methods, it is thus not possible to achieve relatively large geometrical dimensions of the panes combined with simultaneously good thermal insulating values.
A glass-metal-glass connection is aimed for since these two materials allow a flexible gas-tight bond which is suitable for high vacuums. Basic methods for producing such glass-metal connections are for example ultrasonic welding, ultrasonic soldering, the various possibilities of a pressure-diffusion connection or the use of glass and metal solders in conjunction with coatings on the glass and/or the metal.
Another problem with VIG panes is the evacuation of VIG panes.
Thus, DE 10 2007 030 031 B3 discloses a thermal insulating glazing element which comprises a glass plate arrangement having at least two glass plates which have predetermined mutual spacings, wherein intermediate spaces which can be evacuated are formed between the glass plates. This element also comprises a spacer device which is designed to set the spacings of the glass plates and has a border sealing device which is designed to seal the intermediate spaces between the glass plates with respect to the surroundings of the glazing element with a border sealing material.
Furthermore, in this case, there is at least one evacuation opening which is designed to produce an internal pressure, which is reduced with respect to the surrounding pressure, and contains an evacuation tube.
To achieve the object of affording an improvement with respect to the disadvantages in the prior art, that document claims a particular evacuation tube in which a metal sealing element is arranged which is designed for the vacuum-tight closure of the evacuation tube. No further information is given with respect to the spacer device.
DE 690 26 264 T2 discloses a method for producing a thermally insulating glass panel which has two glass panes which are arranged at a spacing from one another and which enclose a vacuum space and are connected to one another by a peripheral border of molten solder glass and an arrangement of supports, wherein the method comprises the production of the vacuum space by means of the following steps:
With regard to the structural design of the spacers of the glass panes, referred to here as support pillars, this document only reveals that these pillars should be as small as possible and should be arranged as closely as possible to one another. The basic constellation proposed for the grouping of the pillars is a square grouping.
The object on which the invention is based is to specify a vacuum insulated glass and a method for the production thereof which allows a higher stability in view of the thermal stressing of such an insulating unit.
This object is achieved by the device as claimed in claim 1 and the method as claimed in claim 9, respectively.
This solution substantially comprises avoiding or reducing thermally induced stresses on the vacuum insulated glass by means of design measures.
The device according to the invention is described in more detail below. In the figures, specifically:
a: shows a particular configuration of these distribution lines
a: shows a further distribution according to
a: shows a further design form of a spacer having three segments
Proposed as a particular configuration of the pattern shown with these structures in the form of lines is the arrangement of the spacers on a spiral closed structure having an elliptical cross section, corresponding to the longitudinal extent of the rectangular glass surface 4 shown, cf.
This ensures that, by means of the line, which extends in a self-enclosed manner and which can be assigned to the positions of the spacers arranged in this manner, the tangential stresses in the glass surfaces 4 involved can be further reduced.
Thus, in
In
In
a represents a further customary form of the distribution of spacers which is substantially based on the arrangement in hexagonal structures.
An advantageous arrangement of the spacers according to the invention is revealed from the combination of the distribution lines according to
What is essential in the construction of this spacer is that it comprises at least one areally larger spacer support 9 and an areally smaller spacer slider 7. The spacer support 9 here has a sliding surface 8 on which the spacer slider 7 can move in all directions on the bearing surface of the spacer support 9. The division into two of this specific spacer 3 not only meets the function that, under thermally induced stresses, the outer glass 5 can move relatively independently of the inner glass 6 insofar as the border seal allows this.
In addition, this division of the spacer 3 into two allows the possibility that, by the targeted selection of the thermal conductivity of the spacer support 9 and the spacer slider 7, the heat transmission at the location of the spacer 3 can be reduced. In the case of
It is of course also possible to produce from the vacuum insulated glass according to the invention elements consisting of a plurality of such VIG5.
The division according to the invention of the spacers 3 into a plurality of segments is not restricted to two segments 9, 7. Additional segments can serve, for example, within the scope of the available spacing of the glass surfaces 4, to further reduce the thermal conductivity at the respective location of a spacer 3 or to achieve intended optical effects, cf. in this respect
The contact surfaces, or sliding surfaces 8, between the respective segments can in this case be coated corresponding to the respective intended use. The intended use can be to achieve a certain temperature behavior and/or a certain sliding behavior of the segments situated on one another.
As a particular configuration, the sliding surfaces 8 respectively situated on one another can have a specific sliding behavior. This sliding behavior can be realized by a certain different or else identical roughness of the surfaces of the respective segments which slide on one another. In this way, it is not only possible to produce a settable coefficient of friction between the respective segments, but also to have the effect that both segments slide on one another over a certain distance and then mutually latch such that they are fixedly connected on one another. This is achieved for example in that the roughness depth which is set on both segments and is different in form and target direction allows a sliding friction over a certain distance, but then leads necessarily to a latching of the segments since the roughness parameters which determine the respective roughness depth have been correspondingly chosen.
New ways are used for fixing the spacers 3. While in the case of earlier solutions the spacers 3 were fixed on a pane by an adhesive, such as for example sodium silicate, here it is possible to dispense with the use of adhesive. During the entire production of the VIG pane, the position of the lower glass plate remains fixedly connected to a plate. Let into this plate are fixing elements, exactly corresponding to the pattern in which the spacers 3 are to be set onto the glass plate. These fixing elements may be, for example, bar magnets (for example NdFeB, SmCo, ferrite) or electromagnets, but other elements which produce a homogeneous or inhomogeneous magnetic or electric field, etc., and thus act on the respectively used spacers 3 through the glass plate by the effect of an attractive or repulsive force, are also possible.
The spacers used here in the example are produced from, or with the addition of incorporated, magnetic or magnetizable material (ferromagnets, antiferromagnets, or ferrimagnets); the fixing elements are axially magnetized cylindrical bar magnets.
By suitable design of the generally inhomogeneous magnetic field by means of a defined arrangement of the fixing elements, in addition to the fixing of the spacers 3 there is also a correct alignment and centering in the intended position.
If, for example, a magnetic cylindrical spacer with magnetic anisotropy, caused for example by a sufficiently great length in comparison with the diameter (shape anisotropy), is brought close to an intended position on the glass surface 4 in any desired spatial orientation, vertically or horizontally, this spacer is drawn to the intended position and stands up perpendicularly on the glass plate over the intended position of the fixing element. The fixing element consists of a bar magnet inserted into the plate on the underside of the glass plate. Therefore, only a relatively inaccurate XY positioning device is required, with which the spacers 3 are distributed simultaneously or in quick succession among the corresponding positions. For this purpose, a mechanical, electrostatic, magnetic or pneumatic gripper may be used, or the spacers may slip through a positionable hose or a tube, or the spacers, or portions thereof, are allowed to fall in a distributed manner through a perforated plate. This distribution, described as the only distribution here, can also be optimized to increase the cycle time by group formation. In that case, for example, a complete row or line is always prepared and set together in sequence.
However, the spacers may also be applied as bulk material.
In the case of multi-part spacers 3, a plurality of segments are set onto one another in the manner described.
In order to design specific partial effects at different locations of a VIG, it is also possible to use spacers 3 of different compositions.
After completion of the VIG pane, the spacers in the vacuum are firmly clamped and fixed between the two glass panes of the vacuum element by the external air pressure. Now, the plate with the bar magnets can then be removed without the spacers slipping.
The advantage of this method lies not only in the simplicity achieved regarding the possibility of being able to set many spacers in a high cycle time, but also in the further reduction in the visibility of the spacers 3 as a result of the adhesive no longer being needed in this case.
New ways have in turn been used for supplying the spacers 3. While the previous solutions individually take previously ready-made spacers 3 as spheres, cylinders, disks, springs or rings of ceramic and/or metal from a stock of material and then feed them into the support setter, here the spacers 3 are produced in step with the cycle time of the automatic setting unit.
In a first variant, the spacers 3 are punched out from a metal strip, fed in from the roll, by a tool, for example a punch. Directly from the punch, the spacers 3, or portions thereof, then fall for example through X/Y-positioned hoses to the setting-up location over the fixing element.
In a second variant, the spacers 3, or portions thereof, are cut to length from a wire fed in from the roll, for example by a saw or a cut-off wheel, and then likewise individually positioned further with respect to the setting-up location.
There is also provided the alternative of producing the spacers from a stock of material by means of a suitable laser system for separating or cutting materials. This is particularly advantageous when the spacers have complex geometries.
There is also additionally the possibility of providing spacers 3, or portions thereof, which are not made of magnetic or magnetizable material, with an electroplating.
As a particular embodiment, for example, the surfaces of the spacers 3 which come into contact with a glass surface can be provided with an additional insulating layer. This insulating layer can be applied by a structuring in the form of an embossing or etching.
Independently of the above-described fixing of the spacers 3, it is possible, for example, for their spacer supports 9 to be fixed with an adhesive and for the associated spacer sliders to be set on. Here, for example, getter material can be applied as a type of fixing means.
In example a of
A fluid or a gas can also preferably be situated in the interior of the spacers, wherein the respective filling openings are tightly closed after the filling operation. This measure increases the plastic and elastic behavior of the spacers 3 and thus reduces the mechanical loading. Moreover, such a measure reduces the sound transmission, and the stability, precisely in the case of very large-area vacuum insulated glasses, and the temperature behavior are improved.
In example b of
In example c of
The materials which are preferably suitable for the production of spacers 3 according to the invention are amber, alpha-heminitrate and sintered material. The sintering of materials suitable for this purpose is preferably carried out with substances which, after sintering, display a positive effect for the stability, the resonant damping and the temperature behavior.
The proposed measures according to the invention ensure that the thermal stresses on a vacuum insulated glass unit are substantially reduced in each case not only as individual measures but also as a combination of such measures. This leads in any event to an increase in the service life of such a unit.
The complex control of the movement sequences described requires a special control program.
Number | Date | Country | Kind |
---|---|---|---|
10 2011 102 843.2 | May 2011 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE2012/000549 | 5/23/2012 | WO | 00 | 11/22/2013 |