The present invention relates to a vacuum interrupter, especially to that provided with a bellows.
In a vacuum interrupter, a movable conductor is provided with a bellows, and airtightness of a vacuum vessel is maintained by expanding and contracting of the bellows with an operation of the movable conductor. The bellows is generally configured of metal such as stainless steel.
Atmospheric air or pressurized insulation gas is contained inside the bellows. On the other hand, vacuum is applied to the outer side of the bellows because its outside is inside the vacuum interrupter. Thus, because the inside pressure of the bellows is higher than the outside pressure of the bellows, and both ends of the bellows are restrained, buckling in which the bellows deforms may occur when a switch opening operation of the movable conductor is performed.
As a counter-measure for this problem, by increasing the outer diameter of the bellows, the buckling can be made difficult to occur.
As another counter-measure, for example, a vacuum interrupter can also be possible, in which a bellows is arranged outside a vacuum vessel as represented in Patent Document 1, and an end of the bellows is fixed to a movable end plate, while the other end is connected to a movable contact. According to this structure, because the inner side of the bellows is in a vacuum state, and the outer side of the bellows is in an atmospheric air or a pressurized insulation gas state, the buckling is difficult to occur.
However, as the conventional vacuum interrupter described above, if the outer diameter of the bellows is increased or the bellows is put outside the vacuum vessel, a problem may occur that the overall vacuum interrupter is enlarged.
An objective of the present invention, which is made to solve the above described problem, is to prevent the enlarging of the vacuum interrupter as well as the buckling of the bellows.
In a vacuum interrupter according to the present invention, a bellows is arranged inside a vacuum vessel, and a bellows support member having a cylindrical shape is fixed to the vacuum vessel so that an accordion portion of the bellows contacts thereinside.
According to the vacuum interrupter of the present invention, the increase of the vacuum interrupter size is prevented as well as the buckling of the bellows can be prevented.
Embodiment 1
A fixed conductor 4 penetrates through the fixed end plate 2 to be bonded by brazing. One end of a bellows 6 is bonded by brazing to the movable end plate 3, while the other end is bonded by brazing to a movable conductor 5 penetrating through the inner portion of the bellows 6 and the movable end plate 3. The side of the bellows 6 has an accordion portion where mountains and valleys are alternately formed, and thereby configured to be expandable and contractable in an up-and-down direction in the figure. As material for the bellows 6, metal such as stainless steel can be used. In the vacuum vessel, a fixed contact 7 is bonded by brazing to an end of the fixed conductor 4, while a movable contact 8 is bonded by brazing to an end of the movable conductor 5, and the fixed contact 7 and the movable contact 8 are arranged to face each other.
The movable conductor 5 is configured to be linearly movable in an up-and-down direction in the figure. When the fixed contact 7 and the movable contact 8 are in contact with each other, the bellows 6 is in the most expanded state. When the fixed contact 7 and the movable contact 8 are in the most distant positions from each other within the movable range of the movable conductor 5, the bellows 6 is in the most contracted state.
An arc shield 9 having a cylindrical shape has a radius a little smaller than that of the insulator 1. The arc shield 9 is fixed by brazing to the inner face of the insulator 1 in such a way that the center axis of the arc shield 9 coincides with that of the insulator 1 and the arc shield 9 surrounds the fixed contact 7 and the movable contact 8. The arc shield 9 prevents the inner face of the insulator 1 from being stained by metal vapor generated from the fixed contact 7 and the movable contact 8 when current is interrupted.
After fabrication of the vacuum interrupter has been completed by brazing, a guide 10 for guiding linear movement of the movable conductor 5 is fixed to the movable end plate 3 by screws, etc. (not illustrated). The guide 10 limits the movement of the movable conductor 5 in directions other than the up-and-down direction in the figure.
In an end portion of the bellows 6 on the side of the movable contact 8, a bellows shield 11 is bonded by brazing to the movable conductor 5 so as to shield the bellows 6 from the fixed contact 7 and the movable contact 8. The bellows shield 11 prevents the surface of the bellows 6 from being stained by metal vapor generated from the fixed contact 7 and the movable contact 8 when current is interrupted.
A bellows support member 12 is a cylindrically formed member for preventing buckling of the bellows 6. The central axis of the bellows support member 12 coincides with that of the bellows 6. The bellows support member 12 has a length in an axis direction enough to cover the entire accordion portion in a state where the bellows 6 is most expanded, and an end thereof is bonded by brazing to the movable end plate 3. As material configuring the bellows support member 12, metal such as stainless steel can be used.
The radius of the bellows support member 12 is set to the same value as the distance from the center axis to the peaks of the accordion portion of the bellows 6 in the most contracted state so that the outer face of the peaks of the accordion portion of the bellows 6 just contacts the inside of the bellows support member 12 in the most contracted state of the bellows 6.
Here, because atmospheric air or pressurized insulation gas is contained inside the bellows 6, in a state of vacuum being applied to the outer side of the bellows 6, the pressure difference occurs between the inner side and the outer side of the bellows 6.
Next, an operation of the vacuum interrupter according to Embodiment 1 of the present invention is explained. In a switch closing state, the fixed contact 7 and the movable contact 8 are in contact with each other. When excessive current flows in this state, the vacuum interrupter starts a switch opening operation, and by the movable conductor 5 moving linearly toward the lower direction in
Here, because of the pressure difference between the inner side and the outer side of the bellows 6, due to the above-described stress, buckling that the bellows 6 is deformed outward might occur. However, in the vacuum interrupter according to Embodiment 1 of the present invention, because the bellows support member 12 contacts the accordion portion of the bellows 6, and holds the bellows 6 not to be deformed outward, the buckling can be prevented.
When the movable conductor 5 is rapidly accelerated or decelerated, vibration occurs in the bellows 6; however, due to the vibration energy propagating through the bellows 6 being consumed by friction between the bellows support member 12 and the bellows 6, the vibration in the bellows 6 attenuates.
As described above, in the vacuum interrupter according to Embodiment 1 of the present invention, by arranging the bellows support member 12 to contact the accordion portion of the bellows 6, while preventing size increase of the vacuum interrupter, the buckling of the bellows 6 can be prevented.
In a vacuum interrupter which is opened and closed in a high speed, at the first step where rapid acceleration is performed and at the last step where rapid deceleration is performed during an open/close operation, a bellows thereof receives impact force, and then vibration occurs in the bellows; however, in the vacuum interrupter according to Embodiment 1 of the present invention, because the bellows support member 12 is arranged to contact the entire accordion portion of the bellows 6, the vibration energy propagating through the bellows 6 is consumed by the friction with the bellows support member 12, thereby attenuating the vibration in the bellows 6. Accordingly, because the stress occurring in the bellows 6 is reduced, the life time of the bellows 6 can be extended.
Here, between a state of the bellows 6 being contracted and that being expanded, the distance from the center axis to the peaks of the accordion portion of the bellows 6 slightly varies. Accordingly, it may be configured in such a way that the bellows support member has elasticity in a radius direction by using elastomer such as rubber as material of the bellows support member 12, and the bellows 6 is fastened. Consequently, even when the bellows 6 is not in the most contracted state, the bellows 6 and the bellows support member 12 are in contact with each other, whereby the buckling can be more surely prevented.
Embodiment 2
The difference from the vacuum interrupter according to Embodiment 1 is that in Embodiment 2 the bellows shield 11 is removed from the vacuum interrupter in Embodiment 1, and instead a shielding portion 12a is integrally formed at an end of the bellows support member 12 on the side of the movable contact 8. The shielding portion 12a is arranged at a position, intervening between the contact side edge of the bellows 6 and the movable contact 8, where the shielding portion 12a does not contact the movable contact 8 during the open/close operation. The shielding portion 12a shields between the movable contact 8 and the side edge of the movable contact 8 of the bellows 6.
Because the shielding portion 12a functions similarly to the bellows shield 11, the bellows 6 can be prevented from being stained by metal vapor generated from the fixed contact 7 and the movable contact 8 when current is interrupted.
As described above, in the vacuum interrupter according to Embodiment 2 of the present invention, due to the shielding portion 12a being integrally formed with the bellows support member 12, the operation of fixing the bellows shield 11 is needless, and the number of the parts can be reduced, thereby facilitating the assembly.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2010/003136 | 5/7/2010 | WO | 00 | 11/5/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/138819 | 11/10/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3440377 | Wesoloski | Apr 1969 | A |
3590184 | Wachta | Jun 1971 | A |
3898406 | Larkin | Aug 1975 | A |
4081640 | Rich | Mar 1978 | A |
4481390 | Kashiwagi et al. | Nov 1984 | A |
4871888 | Bestel | Oct 1989 | A |
5777287 | Mayo | Jul 1998 | A |
5791416 | White et al. | Aug 1998 | A |
6043446 | Mayo et al. | Mar 2000 | A |
6891121 | Ren | May 2005 | B2 |
6965089 | Stoving | Nov 2005 | B2 |
7186942 | Slade | Mar 2007 | B1 |
Number | Date | Country |
---|---|---|
51-63470 | Jun 1976 | JP |
53-113375 | Sep 1978 | JP |
6-12947 | Jan 1994 | JP |
7-176242 | Jul 1995 | JP |
2001-006503 | Jan 2001 | JP |
2003-187679 | Jul 2003 | JP |
8-31280 | Feb 1996 | KE |
Entry |
---|
Office Action (Notice of Preliminary Rejection) issued Sep. 17, 2013, by the Korean Patent Office in corresponding Korean Patent Application No. 10-2012-7028963, and an English Translation of the Office Action. (7 pages). |
International Search Report (PCT/ISA/210) issued on Jun. 1, 2010, by the Japanese Patent Office as the International Searching Authority for International Application No. PCT/JP2010/003136. |
Office Action issued Jun. 19, 2014, by the Chinese Patent Office in corresponding Chinese Patent Application No. 201080066639.X, and an English Translation of the Office Action. (9 pages). |
Office Action issued by the German Patent Office on Jul. 3, 2015, in corresponding DE Patent Application No. 11 2010 005 545.9, with full English Translation (10 pages). |
Number | Date | Country | |
---|---|---|---|
20130048611 A1 | Feb 2013 | US |