The present invention relates to a desalination system.
Prior art patents such as Multi-phase Selective Mass Transfer Through a Membrane, U.S. Pat. No. 8,500,960B, to Ehrenberg et al., has disclosed selective mass transfer systems that be utilized for material separation, such for example removing water from sea water, or salt water streams.
However, the embodiments provided in the patent and literature to date, have only disclosed the actual membrane separation unit, but not identified important elements that are required in practical applications. For example, sea water normally has components such as particulates that need to be removed prior to the membrane based multi-phase separation system, since particulates can damage the membranes.
Also, clearly the system requires energy to perform the selective process. Yet, methods of integrating independent power generation into the overall system have not been disclosed or analyzed. Many potential applications of this system involve remote settings where solar power would be necessary. However, while pumps and other components of the system require electrical energy, the multi-phase selective process actually needs thermal energy to enable evaporation through the membrane. Solar powered systems would be susceptible to insufficient power dues to cloudy days and operation at night.
Another important consideration, is the overall system efficiency. There are many methods for sea water desalination including Reverse Osmosis systems, RO systems.
One final consideration for a stand alone unit, providing potable water in a remote setting is the disinfection of the water once produced and stored in an adjacent vessel. This patent discloses the use of a small (compact) ozone generator for water purification.
The invention is directed a desalination system that employs vacuum to evaporate heated water through a separator material. The evaporated water is then passed through a heat exchanger wherein the heat is exchanged with an inflow of water to the system to heat the incoming water and greatly increase the overall system efficiency. Utilizing this latent heat of evaporation to heat the incoming water increases the overall efficiency of the system. The incoming water may be salt water, seawater or brackish water, for example. The incoming water heated in the heat exchanger may then be passed to a heater to further heat the water before being provided to an evaporator. A vacuum is drawn across a separator material in the evaporator to produce evaporated water vapor that is purified. This water vapor is then provided to the heat exchanger, wherein the water vapor is condensed and the incoming water is heated. An ozone disinfecting system may produce ozone that is mixed with the condensed water to produce a purified and disinfected water that is suitable for consumption. In addition, evaporating salt or brackish water can be done at lower temperatures that non-salt or brackish water. This increased rate of evaporation of the at least brackish water increase the system efficiency.
The heater may be any suitable heater but in an exemplary embodiment is a solar heater. A solar heater may heat the water by passing it through light absorbing conduits.
The separator material may be any material that allows water vapor to pass therethrough but prevents liquid water from passing and may be a hydrophobic membrane, or a thin film of material including, but not limited to, an ionomer, a urethane or other polymer having a high moisture vapor transmission rate, MVTR. Other separator materials included, but are not limited to, Nafion®, PSFA, sulfonated PEEK (poly ether ether Ketone), PES (poly ether sulfone), Polymer-SEBS, poly(arylene), and polyolefin, sulfonated urethanes.
A separator membrane may be non-air permeable, having no bulk flow of air therethrough, and may be film. A non-air permeable separator, as used herein will have a Gurley value of about 100 seconds or more, and preferably 200 second or more, and in some cases about 500 seconds or more, as measured by an Automatic Gurley Densometer, 4340, from Gurley Instruments Inc.
An exemplary separator material may be very thin to increase the MVTR, or rate of transfer of the water vapor and may have a thickness of about 50 micron or less, about 25 microns or less, about 15 microns or less and any range between and including the thickness values provided. A separator material may comprise a support material that mechanically reinforces the separator material such as a net, mesh, woven material or membrane. An exemplary support material is an expanded polymer membrane and water vapor polymer, such as an ionomer or urethane may be imbibed into or otherwise attached to the expanded membrane. An exemplary expanded polymer membrane is expanded polytetrafluoroethylene, available from W.L. Gore and Associates, Inc. An expanded polymer membrane may be preferred as it is very thin and strong.
An exemplary desalination system may comprise a renewable power source such as a solar panel, or photovoltaic array, or wind power generator and the like. An exemplary desalination system may be remote and be self-powered, thereby not requiring power from grid power and wherein all power required is produced by renewable power sources. A renewable power source may provide electrical power to the components of the system directly and/or may store power in a battery or battery pack for later use. For example, during the day, a solar panel may provide power directly to the desalination system and may also provide power to a battery pack. During the night, the desalination system may be powered by the battery pack.
This application incorporates by reference, in their entirety, U.S. provisional patent application No. 62/353,545, filed on Jun. 22, 2016, provisional patent application No. 62/258,945 filed on Nov. 23, 2015 and provisional patent application No. 62/373,329 filed on Aug. 10, 2016.
This application incorporates by reference, in their entirety, the following: U.S. provisional patent application No. 62/171,331, filed on Jun. 5, 2015 and entitled Electrochemical Compressor Utilizing a Preheater; U.S. patent application Ser. No. 14/859,267, filed on Sep. 19, 2015, entitled Electrochemical Compressor Based Heating Element and Hybrid Hot Water Heater Employing Same; U.S. patent application Ser. No. 13/899,909 filed on May 22, 2013, entitled Electrochemical Compressor Based Heating Element And Hybrid Hot Water Heater Employing Same; U.S. provisional patent application No. 61/688,785 filed on May 22, 2012 and entitled Electrochemical Compressor Based Heat Pump For a Hybrid Hot Water Heater; U.S. patent application Ser. No. 14/303,335, filed on Jun. 12, 2014, entitled Electrochemical Compressor and Refrigeration System; U.S. patent application Ser. No. 12/626,416, filed on Nov. 25, 2009, entitled Electrochemical Compressor and Refrigeration System now U.S. Pat. No. 8,769,972; and U.S. provisional patent application No. 61/200,714, filed on Dec. 2, 2008 and entitled Electrochemical Compressor and Heat Pump System; the entirety of each related application is hereby incorporated by reference.
The summary of the invention is provided as a general introduction to some of the embodiments of the invention, and is not intended to be limiting. Additional example embodiments including variations and alternative configurations of the invention are provided herein.
The accompanying drawings are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention, and together with the description serve to explain the principles of the invention.
As used herein, the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having” or any other variation thereof, are intended to cover a non-exclusive inclusion. For example, a process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. Also, use of “a” or “an” are employed to describe elements and components described herein. This is done merely for convenience and to give a general sense of the scope of the invention. This description should be read to include one or at least one and the singular also includes the plural unless it is obvious that it is meant otherwise.
Certain exemplary embodiments of the present invention are described herein and are illustrated in the accompanying figures. The embodiments described are only for purposes of illustrating the present invention and should not be interpreted as limiting the scope of the invention. Other embodiments of the invention, and certain modifications, combinations and improvements of the described embodiments, will occur to those skilled in the art and all such alternate embodiments, combinations, modifications, improvements are within the scope of the present invention.
As shown in
As shown in
As shown in
As shown in
Referring to
Referring to
Referring to
It will be apparent to those skilled in the art that various modifications, combinations and variations can be made in the present invention without departing from the spirit or scope of the invention. Specific embodiments, features and elements described herein may be modified, and/or combined in any suitable manner. Thus, it is intended that the present invention cover the modifications, combinations and variations of this invention provided they come within the scope of the appended claims and their equivalents.
This application claims the benefit of provisional patent application No. 62/385,178, filed on Sep. 8, 2016, entitled Electrochemical Desalination System; the entirety of which is hereby incorporated by reference herein.
This invention was made with government support under Government Contract Grant No. DE-SC0015923 awarded by Department of Energy. The government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
62385178 | Sep 2016 | US |