The present invention relates generally to vacuum packaging systems and, more particularly, to a vacuum packager constructed to secure, sever, evacuate and seal an open edge of a container, such as a flexible vacuum packaging bag.
Foodstuffs and other products are commonly packaged in vacuum sealed bags and similar containers to prevent premature spoilage. During the vacuum packaging process, the excess fluid, typically air, within the container or bag is evacuated and the open end of the bag is then sealed. The sealing of the bag prevents contamination of the goods or materials contained within the bag. In order to ensure a hermetic seal of the bag, the bag must be securely and relatively uniformly engaged by the sealing system. Furthermore, the vacuum packager must be constructed to allow uninterrupted removal of the sealed bag from the vacuum packager in order to ensure that the sealed bag is not perforated after being sealed. The process of sealing the bag often results in an unsealed end area which must then be severed in order to produce an aesthetic product. Accordingly, there is a need for an improved vacuum sealing process that efficiently and effectively trims the unsealed end area of the bag. There is also a need for an improved vacuum packaging system that enables evacuation without requiring retraction of the knife that severs the end area of the bag, in order to reduce cycle time.
The present invention relates to a vacuum packager that includes an automatic bag cutter and bag sealer in which a bag or other container is cut prior to evacuation of the bag and sealing the contents within the bag. The vacuum packager includes a housing constructed to sealingly engage a platen. Prior to evacuation, the bag is cut using a suitable blade. In this regard, the excess material that would normally be cut after evacuation in prior art systems is cut prior to evacuation. After the bag is then cut, the vacuum system removes gas from the bag placed between the housing and the platen. The bag is sealed after it has been evacuated. In one embodiment, the blade has a series of holes formed through the blade body transverse to its cutting edge. These holes form flow passages that allow evacuation through the blade following cutting of the bag while the housing remains engaged with the platen. Alternately, the blade may be retracted while the housing remains engaged with the platen to permit evacuation from the bag.
Therefore, in accordance with one aspect of the invention, a vacuum packager includes a housing, a vacuum system, a bag bar, a cutter, and a sealer. The housing engages a platen and cooperates with the platen to define a cavity. The vacuum system evacuates gas from the cavity. The bag bar is operable to secure the bag in position, and the cutter is positioned proximate the bag bar for severing a terminal end area of the bag. The sealer is operable to seal the bag on a side of the bag bar opposite the cutter.
Another aspect of the invention involves a cavity evacuation and closure system having a vacuum system constructed to remove a gas from a container. The system includes a packager having a first securing bar constructed to secure a first portion of the container. A second securing bar is constructed to secure a second portion of the container proximate the first portion. A severing tool is disposed between the first and second securing bars, and a sealer is disposed on a product side of the first and second securing bars.
Yet another aspect of the invention involves a method of packaging a container, such as a bag. The method includes the steps of placing an article to be packaged into the interior of a bag having a closed and an open end, severing the bag at the open end, evacuating fluid from the bag, and then sealing the evacuated bag at the open end so as to enclose the article within the bag.
Various other features, objects and advantages of the present invention will be made apparent from the following detailed description and the drawings.
The drawings illustrate one preferred embodiment presently contemplated for carrying out the invention.
In the drawings:
Conveyor 18 includes a series of platens 24, each of which is adapted to receive and support an article and receptacle (not shown). Generally, any article suitable for vacuum packaging, such as a perishable food products, may be vacuum packaged by the vacuum packaging system 10 and the receptacle may be any satisfactory open-ended receptacle, such as a sealable bag, sized to receive the article and suitable for vacuum packaging, as is known in the art. Conveyor 18 may be configured to advance incrementally at spaced intervals in an indexing fashion, or may be configured to provide continuous advancement of items supported by conveyor 18, either at a continuous rate of speed or at variable rates of speed. The platens 24 are advanced by conveyor 18 and cooperate with evacuation arrangement 20 to evacuate and seal the article within the receptacle.
The evacuation arrangement 20 includes a series of identical vacuum chambers or heads 26a-c, each of which is associated with a cylinder 28a-c containing valves that control the supply of vacuum to the interior of the associated vacuum chambers 26a-c. More particularly, each vacuum chamber 26a-c is provided with negative pressure by a header 30 that is fluidly connected to pumps 14 by conduits 32, which may be hose, tubing, pipe, or the like. The header 30 includes fittings 34 that mate with conduits 32 to deliver negative pressure provided to the conduit 32 by pumps 14. When valves 28a-c are open, negative pressure is delivered from the header 30 to the vacuum chambers 26a-c. Header 30 acts as a combination vacuum manifold and support for vacuum heads 26a-c, and replaces the need for each vacuum chamber 26a-c to be directly connected to pumps 14.
The vacuum packaging system 10 and evacuation arrangement 20 include components not specifically described herein, but which are known in the art, such as a user interface module, various drive motors, drive belts, belt tensioners, guide rollers, and pulleys, as described in PCT Application PCT/US2005/015833 and U.S. Ser. No. 11/747,519, the disclosures of which are incorporated herein by reference.
Referring now to
With additional reference to
Retaining bar 44 has openings 82 that align with openings 68 of retaining bar 46. Additionally, blade 48 has openings 84 formed in the blade body. As will be described below, the openings 68, 82, and 84 define flow passages through which fluid, e.g., gas may pass during evacuation of a container. To provide additional evacuation paths, the retaining bars 44, 46 each have a notched edge 86, 88, respectively. The notched edges 86, 88 effectively form openings between the retaining bars 44, 46 and the platen 24 when the blade 48 is lowered into a cutting position, which may result in the openings 84 of the blade no longer aligning with openings 68, 82 of the retaining bars 46, 44.
As shown in
After the end area of the container 90 has been severed as described above, the container 90 is evacuated by evacuation of the volume defined by housing 36 and platen 24. The sealer 50 is then lowered against the container 90 by operation of cylinder 28, to seal the end of the container 90 and are thereby maintain in the negative air pressure within the interior of the container 90. Thus, the container 90 is severed before it is evacuated. In the illustrated embodiment, the blade 48 remains seated in groove 96 during the evacuation process. The openings 84 formed in the blade 48 allow gas to pass through the blade 48 during the evacuation process. As shown in
Alternately, it is contemplated that the blade may be independently lowered into and raised out of position by an actuator arm which would permit a solid blade to be used rather than the perforated blade described above. In this alternate embodiment, the blade would be retracted from the groove prior to the evacuation process. The openings formed in the retaining bars would provide flow paths for evacuating gas from the vacuum head.
For instance, and referring now to
Blade 106 may be perforated such that flow paths are formed through its body, such as described above, which would permit evacuation of the vacuum head 126 and the container 112 even when the blade 106 is seated in the groove 120; or, alternately, the actuator 104 may be controlled by the controller 100 to retract the blade 106 prior to the evacuation process. In the case of the latter, the coupling of the blade 106, retaining bars 108, 110, and the carriage 122 allows the blade 106 to be retracted without retracting the retaining bars 108, 110. The retaining bars 108, 110 have a perforated body, such as described above, which forms multiple flow paths so that gas may be evacuated from the vacuum head 126 even when the retaining bars 108, 110 are seated on the anvil 116. This construction is advantageous because it maintains the engagement of the container 112 on the cutting surface 114 during the evacuation process and subsequent sealing process carried out by sealer 128. Thus, similar to the embodiment described above, cutter and sealer system 98 is designed such that a container is severed, then evacuated, and then sealed.
Accordingly, the present invention includes a vacuum packaging system having an automatic bag sealing and end severing closure system. The vacuum packaging system includes a housing constructed to sealingly engage a platen. A vacuum head is constructed to remove the gas from a container, or bag, placed between the housing and the platen. The vacuum head severs the excess material of the bag, whereupon the bag is evacuated and then sealed.
Therefore, one embodiment of the invention includes a vacuum head having a housing, a vacuum system, bag bar, a cutter, and a sealer. The housing is for engaging a platen and enclosing a cavity therebetween. The vacuum system is for evacuating a gas from the cavity. The bag bar is bar for securing a position of a bag and the cutter is positioned proximate the bag bar for severing a terminal end of the bag. The sealer is for sealing the bag on a side of the bag bar opposite the cutter.
Another embodiment of the invention includes a cavity evacuation and closure system having a vacuum system constructed to remove a gas from a container. The system includes a head having a first securing bar constructed to secure a first portion of the container. A second securing bar is constructed to secure a second portion of the container proximate the first portion. A severing tool is disposed between the first and second securing bars and a sealer is disposed on a product side of at least one the securing bar and another securing bar.
A further embodiment of the invention includes a method of packaging a container. The method includes placing a widget in a bag having a closed end and an open end, severing the bag at the open end, evacuating fluid from the bag, and sealing the evacuated bag at the open end.
The present invention has been described in terms of the preferred embodiment, and it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the impending claims.
This application claims the benefit of U.S. Ser. No. 60/805,392, filed Jun. 21, 2006, the disclosure of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60805392 | Jun 2006 | US |