The present application is a U.S. National Stage Application of International Application No. PCT/US2016/046986 filed Aug. 15, 2016, which is incorporated herein by reference in its entirety for all purposes.
The present disclosure relates generally to transferring solid bulk materials such as proppant, sand, and other particulate materials, and more particularly, to structures that facilitate the recovery of such bulk materials from a blender system.
During the drilling and completion of oil and gas wells, various wellbore treating fluids are used for a number of purposes. For example, high viscosity gels are used to create fractures in oil and gas bearing formations to increase production. High viscosity and high density gels are also used to maintain positive hydrostatic pressure in the well while limiting flow of well fluids into earth formations during installation of completion equipment. High viscosity fluids are used to flow proppant or sand into wells during fracturing and gravel packing operations. The high viscosity fluids are normally produced by mixing dry powder and/or particulate materials and agents with water at the well site as they are needed for the particular treatment. Systems for metering and mixing the various materials are normally portable, for example, skid- or truck-mounted, since they are needed for only short periods of time at a well site.
The powder or particulate material is normally transported to a well site in a commercial or common carrier tank truck. Once the tank truck and mixing system are at the well site, the dry bulk material must be transferred or conveyed from the tank truck into a supply tank for metering into a blender as needed. The bulk material is usually transferred from the tank truck pneumatically. More specifically, the bulk material is blown pneumatically from the tank truck into an on-location storage/delivery system (for example, silo). The storage/delivery system may then deliver the bulk material onto a conveyor or into a hopper, which meters the bulk material through a chute into a blender tub.
Recent developments in bulk material handling operations involve the use of portable containers for transporting dry material about a well location. The containers can be brought in on trucks, unloaded, stored on location, and manipulated about the well site when the material is needed. The containers are generally easier to manipulate on location than a large supply tank trailer. The containers are eventually emptied by dumping the contents thereof onto a mechanical conveying system (for example, conveyor belt, auger, bucket lift, etc.). The conveying system then moves the bulk material in a metered fashion to a desired destination at the well site.
For a more complete understanding of the present disclosure and its features and advantages, reference is now made to the following description, taken in conjunction with the accompanying drawings, in which:
Illustrative embodiments of the present disclosure are described in detail herein. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation specific decisions must be made to achieve developers' specific goals, such as compliance with system related and business related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of the present disclosure. Furthermore, in no way should the following examples be read to limit, or define, the scope of the disclosure.
Certain embodiments according to the present disclosure may be directed to systems and methods for efficiently removing or recovering solid bulk material from a blender unit. Bulk material handling systems are used in a wide variety of contexts including, but not limited to, drilling and completion of oil and gas wells, concrete mixing applications, agriculture, and others. The disclosed embodiments are directed to systems and methods for efficiently removing bulk material from a blender unit at a job site. The systems may include a skid-mounted vacuum unit that is configured to be placed on top of a bulk material container and used to remove bulk material remaining in a blender unit after a job and recovering that material into the container. The disclosed techniques may be used to recover any desirable bulk material having a solid constituency including, but not limited to, sand, proppant, gel particulate, diverting agent, dry-gel particulate and others. In certain embodiments, the disclosed techniques may facilitate the removal of solid bulk material from a blender unit while minimizing dust emissions. In certain embodiments, the disclosed techniques may facilitate the recovery of solid bulk material recovered from a blender unit in a form in which it can be readily reused.
In currently existing on-site bulk material handling applications, solid particulate material (e.g., sand, proppant, gel particulate, or dry-gel particulate) may be used during the formation of treatment fluids. In such applications, the bulk material is often transferred between transportation units, storage tanks, blenders, and other on-site components via pneumatic transfer, sand screws, chutes, conveyor belts, and other components. Recently, a method for transferring bulk material to a hydraulic fracturing site involves using portable containers to transport the bulk material. The containers can be brought in on trucks, unloaded, stored on location, and manipulated about the site when the material is needed. These containers generally include a discharge gate at the bottom that can be actuated to empty the material contents of the container at a desired time.
In existing systems, when a job using the bulk material in the blender unit is completed, any bulk material remaining in the blender unit must be removed. Typically this has been accomplished by manually shoveling the dry material out of the blender unit or utilizing a wet vacuum system where a fluid circulated in the unit carries the remaining bulk material out of the unit. Unfortunately, the manual shoveling processes can release a relatively large amount of dust into the air or may result in unintended material spillage. Moreover, because the blender inlet is often elevated from ground level (in some cases, 10 feet above ground level), manual access into the interior of the blender unit may be challenging in some instances. The wet vacuuming processes may reduce some of those risks and challenges, although the bulk material may be contaminated or no longer usable once suspended in the fluid. Such contaminated or unusable bulk material also typically must be disposed in a permissible manner.
The particulate material recovery systems having the structure disclosed herein are designed to address or eliminate certain of the shortcomings associated with existing systems. Particles released into the surrounding air from the discharge of bulk materials at a site or operation may not be desirable. Such discharge of particles may require additional personnel and/or cost to facilitate the collection and disposal of the reclaimed material. For example, with respect to sand, respirable silica dust may be is generated when a sand particle is impacted and damaged causing the particle to be broken into more than one piece. The dust may be generated from the sand falling from one height to another or being mechanically thrusted into another object. For example, the sand may be discharged from an outlet from a container into a chute.
Among the many potential advantages to the methods and compositions of the present disclosure, only some of which are alluded to herein, the methods and systems of the present disclosure may control, minimize or eviscerate the release of this dust to prevent waste and any environmental impact. In certain embodiments, the methods and systems of the present disclosure may facilitate the recovery of bulk material such as sand, proppant, etc. in a form that can be readily reused in subsequent operations without substantial additional preparation. In certain embodiments, the reuse of bulk materials recovered using the methods and systems of the present disclosure may allow avoidance of cost associated with disposing of such bulk materials. In certain embodiments, the solid bulk materials may be recovered in solid form only such that the recovered bulk materials are not mixed with a substantial amount of liquid when recovered.
Turning now to the drawings,
As illustrated, the blender unit 20 may include a hopper 22 and a mixer 24 (for example, a mixing compartment). The blender unit 20 may also include a metering mechanism 26 for providing a controlled or metered flow or discharge of bulk material 38 from the hopper 22 to the mixer 24. However, in other embodiments the blender unit 20 may not include the hopper 22, such that the outlet 18 of the support structure 14 may provide bulk material 38 directly into the mixer 24. In one or more embodiments, blender unit 20 may be any unit or device for collecting the discharged bulk material 38 from the hopper 22 suitable for a given operation.
Water and other additives may be supplied to the mixer 24 (for example, the mixing compartment) through a fluid inlet 28. As those of ordinary skill in the art will appreciate, the fluid inlet 28 may comprise more than the one input flow line illustrated in
It should be noted that the disclosed container 12 may be utilized to provide bulk material 38 for use in a variety of fields, area, or treating processes. For example, the disclosed systems and methods may be utilized to provide proppant materials into fracture treatments performed on a hydrocarbon recovery well. In other embodiments, the disclosed techniques may be used to provide other bulk particulate materials (e.g., particulate diverting agents, gravel, weighting agents, cementitious materials, etc.) for diversions, conductor-frac applications, cement mixing, drilling mud mixing, gravel packing, and other fluid mixing applications. In other embodiments, the disclosed techniques may be used to provide materials for agriculture or land development (such as construction sites for buildings, roads, bridges, or other structures). In one or more embodiments, the container 12 may be open at the top such that bulk material 38 may be exposed. In one or more embodiments, the container 12 may have a top wall (not shown) that has an opening or gate (not shown) to allow the container 12 to be filled with bulk material 38.
As illustrated, the container 12 may be elevated above an outlet location, for example, the outlet 18, via the frame 16. The support structure 14 is designed to elevate the container 12 above the level of the blender inlet (for example, blender hopper 22, mixer 24 or both) to allow the bulk material 38 to gravity feed from the container 12 to the blender unit 20. This way, the container 12 is able to sit on the frame 16 of the support structure 14 and output bulk material 38 directly into the blender unit 20 via the outlet 18 of the support structure 14.
Although shown as supporting a single container 12, other embodiments of the frame 16 may be configured to support multiple containers 12. The exact number of containers 12 that the support structure 14 can hold may depend on a combination of factors such as, for example, the volume, width, and weight of the containers 12 to be disposed thereon and available space.
The container 12 may be completely separable and transportable from the frame 16, such that any container 12 may be selectively removed from the frame 16 and replaced with another container 12. When the bulk material 38 from the container 12 runs low or empties, a new container 12 may be placed on the frame 16 to maintain a steady flow of bulk material 38 to an outlet location. In one or more embodiments, the container 12 may be closed before being completely emptied, removed from the frame 16, and replaced by a container 12 holding a different type of bulk material 38 to be provided to the outlet location.
A storage area 32 may be provided at the site or location for storing one or more additional containers 12 of bulk material 38 to be positioned on the frame 16 of the support structure 14. The containers 12 may be transported to the desired location on a transportation unit (for example, a truck, train, vessel, or any other transport unit). The containers 12 could be stored on the transportation unit itself or on a skid, a pallet, or some other holding area. One or more containers 12 of bulk material 38 may be transferred from the storage area 32 onto the support structure 14, as indicated by arrow 34. This transfer may be performed by lifting the container 12 via a hoisting mechanism, such as a forklift, a crane, or a specially designed container management device.
When the one or more containers 12 are positioned on the support structure 14, one or more discharge gates 40 of one or more of the containers 12 may be opened, allowing bulk material 38 to flow from the containers 12 into the outlet 18 of the support structure 14. The outlet 18 may then route the flow of bulk material 38 directly into a blender inlet (for example, into the hopper 22 or mixer 24) of the blender unit 20.
After one or more of the containers 12 on the support structure 14 are emptied, the empty container(s) 12 may be removed from the support structure 14 via a hoisting mechanism. In some embodiments, the one or more empty containers 12 may be positioned on another storage area 32 (for example, a transportation unit, a skid, a pallet, or some other holding area) until they can be removed from the site, refilled or both. In other embodiments, the one or more empty containers 12 may be positioned directly onto a transportation unit for transporting the empty containers 12 away from the site. It should be noted that the same transportation unit used to provide one or more filled containers 12 to the location may then be utilized to remove one or more empty containers 12 from the site.
As illustrated, the support structure 14 may be equipped with a plurality of locator pins 52 disposed on top of the frame 16 for locating and holding the containers 12 on the frame 16. The containers 12 may include complementary engagement features designed to interface with the locator pins 52, thus enabling a precise placement of the containers 12 into desired locations on the frame 16. In the illustrated embodiment, the locator pins 52 are generally disposed at the corners on the upper face of each cubic/rectangular support 50. However, other placements of the locator pins 52 along the upper surface of the support structure 16 may be utilized in other embodiments.
The support structure 14 may also include one or more actuators 54 designed to aid in actuation of a discharge gate 40 of the one or more containers 12 disposed on the frame 16. In the illustrated embodiment, the actuators 54 may be rotary actuators designed to rotate into engagement with a discharge gate 40 of a container 12 to transition the discharge gate 40 between a closed position and an open position. In other embodiments, the actuators 54 may be linear actuators designed to interface with the discharge gates 40 of the containers 12 to selectively open and close the discharge gates 40. In some embodiments, the actuators 54 may include a set of two actuators (disposed on opposite sides of the frame 16) for actuating the discharge gate 40 of a single container 12 disposed on the frame 16. In such an arrangement, one of the actuators 54 may transition the discharge gate 40 from closed to open, while the opposite actuator 54 may transition the gate from open to closed.
The illustrated support structure 14 may be transportable to and from a desired or predetermined location on a flatbed trailer or some other transportation unit. Alternately, the support structure could be built into the trailer chassis so that the support structure is its own transportation unit. Once at a location, a hoisting mechanism (for example, forklift, crane, etc.) (not shown) may be used to remove the support structure 14 from the transportation system unit and to place the support structure 14 into a desired or predetermined position. To that end, the support structure 14 may include slots 56 that a forklift can engage to lift and manipulate the portable support structure 14 about the site. In the illustrated embodiment, the slots 56 are formed in a section of the frame 16 that is slightly elevated above a lower edge of the support structure 14. This may enable relatively easy release of the forklift from the support structure 14 once the support structure 14 is positioned on the ground or predetermined location. The slots 56 may be formed through a central portion (for example, central cubic/rectangular support 50B) of the elongated support structure 14 to keep the weight of the support structure 14 evenly distributed during movement at the site or predetermined location. In other embodiments, the support structure 14 may include other types of mechanical features for interfacing with another type of hoisting mechanism. For example, the support structure 14 may include one or more lifting eyes (not shown) for interfacing with a crane (not shown) used to position the support structure 14 as needed at the site or predetermined location.
Once the forklift (or other hoisting mechanism) brings the support structure 14 to a desired location at the site, the hoisting mechanism may lower the support structure 14 onto the ground or a relatively flat loading area proximate the ground level, or other predetermined location. The frame 16 may include corner supports 58 for distributing a weight of the support structure 14 (and any containers 12 disposed thereon) along the ground surface or predetermined location. As shown, the corner supports 58 may be disposed along the lower surface of the frame 16 at various corners of the cubic/rectangular supports 50. In the illustrated embodiment, for example, the corner supports 58 may be disposed at the lower corners of the two outside cubic/rectangular supports 50A and 50C, since the lower surface of the central support 50B is slightly elevated above the ground level.
As described above, the support structure 14 may include several outlets 18 for routing bulk material 38 directly from one or more containers 12 disposed on the frame 16 into a blender inlet. The term “blender inlet” used herein may refer to any number of inlets to tubs, hoppers, mixers, and other areas where bulk material is needed. As mentioned above, the blender inlet may be associated with a blender unit 20 disposed at a job site (for example, at a well site). For example, the blender inlet may be a blender hopper (for example, hopper 22 of
In the illustrated embodiment, the blender unit 20 and support structure 14 may be designed such that the support structure 14 routes bulk material 38 directly from a container 12 into the blender hopper 22. The “blender inlet” may correspond to the blender hopper 22. In
The outlets 18A, 18B, and 18C may be used to deliver a flow of bulk material 38 to the blender hopper 22 (or other blender inlet) from each of three respective containers 12 disposed on the frame 16. In some embodiments, the support structure 14 may also include individual hoppers 60A, 60B, and 60C at the top of the frame 16 for funneling bulk material 38 from the discharge gate 40 of the corresponding containers 12 into the outlets 18A, 18B, and 18C, respectively.
In one or more embodiments, the outlets 18 may be positioned such that the lower end of each of the gravity feed outlets 18 is disposed fully within the blender hopper 22. This allows the outlets 18 to provide bulk material 38 from all of the containers 12 positioned on the frame 16 into the same blender inlet (for example, blender hopper 22) at or near the same time. The outlets 18 may provide a gravity feed where an angle of repose of the bulk material 38 exiting the outlets 18 is able to choke the flow of bulk material 38 through the outlets 18. As bulk material 38 is metered from the blender hopper 22 into another portion of the blender unit 20 (for example, mixer 24), additional bulk material 38 flows via gravity into the blender hopper 22 directly from the one or more gravity feed outlets 18. In embodiments where the outlets 18 are positioned to route bulk material 38 directly from the containers 12 into an inlet of the mixer 24 of the blender unit 20, the gravity feed outlets 18, the blender inlet, or both may feature a metering gate/valve that regulates the amount of bulk material 38 provided to the mixer 24 (for example, instead of separate sand screws)
In some instances, the support structure 14 may be equipped with a set of outriggers 64 to increase the stability of the portable support structure 14. The outriggers 64 may help to keep the support structure 14 stable in the event of high winds or the support structure 14 being impacted by a container, forklift, blender, or other pieces of equipment at the job site. In addition, the outriggers 64 on the support structure 14 may be used for interfacing with the blender unit 20 to bring the blender inlet into a desired position or alignment within the opening 62 of the support structure 14.
System 100 further includes an empty container 112D that has a structure substantially similar to one or more of containers 112A, 112B, and 112C, the structures of which are illustrated in further detail in
System 100 also includes a skid-mounted vacuum unit 170 that is placed on top of empty container 112D, and may provide a source of vacuum that can be used to remove bulk material remaining in a portion of the blender unit (e.g., the blender hopper 122). Vacuum unit 170 is illustrated in further detail in
After a job using the blender unit to blend bulk material into a fluid is completed, the system 100 and techniques according to the present disclosure may be used to recover any solid bulk material remaining in the blender unit. In particular, once the vacuum unit 170 is placed on empty container 112D and connected to the blender inlet as shown in
According to the embodiment shown, the tank 191 is mounted in a skid frame 171 that has the same footprint dimensions as container 112, and is configured to be stacked on top of the container 112. In particular, skid frame 171 comprises an upper frame 171b, vertical supports 171a, and bottom rails 171c that surround and support the tank 191. Bottom rails 171c are configured to be placed on a top surface of a container 112. In particular, bottom rails 171c may be equipped with engagement features 173 that are designed to interface with the locator pins 152 on the top of container 112 when the vacuum unit 170 is placed on top of container 112. Bottom rails 171c also may include slots 176 that a forklift can engage to lift and manipulate the vacuum unit 170 about the site (e.g., when lifting vacuum unit 170 and placing it on top of a container). Moreover, upper frame 171b may be equipped with locator pins 175 that are designed to interface with engagement features on the bottom of a container or other vacuum unit when it is placed on top of vacuum unit 170. Of course,
Although the present disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the disclosure as defined by the following claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/046986 | 8/15/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/034641 | 2/22/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
710611 | Ray | Oct 1902 | A |
802254 | Baker et al. | Oct 1905 | A |
917646 | Otto | Apr 1909 | A |
1519153 | Mitton | Dec 1924 | A |
1726603 | Allen | Sep 1929 | A |
1795987 | Adams | Mar 1931 | A |
2231911 | Hitt et al. | Feb 1941 | A |
2281497 | Hyson et al. | Apr 1942 | A |
2385245 | Willoughby | Sep 1945 | A |
2415782 | Zademach et al. | Feb 1947 | A |
2513012 | Dugas | Jun 1950 | A |
2563470 | Kane | Aug 1951 | A |
2652174 | Shea | Sep 1953 | A |
2670866 | Glesby | Mar 1954 | A |
2678737 | Mangrum | May 1954 | A |
2759737 | Manning | Aug 1956 | A |
2802603 | McCray | Aug 1957 | A |
2867336 | Soldini et al. | Jan 1959 | A |
3049248 | Heltzel et al. | Aug 1962 | A |
3083879 | Coleman | Apr 1963 | A |
3151779 | Rensch et al. | Oct 1964 | A |
3203370 | Friedrich et al. | Aug 1965 | A |
3217927 | Bale, Jr. et al. | Nov 1965 | A |
3318473 | Jones et al. | May 1967 | A |
3326572 | Murray | Jun 1967 | A |
3343688 | Ross | Sep 1967 | A |
3354918 | Coleman | Nov 1967 | A |
3380333 | Clay et al. | Apr 1968 | A |
3404963 | Fritsche et al. | Oct 1968 | A |
3410530 | Gilman | Nov 1968 | A |
3432151 | O'Loughlin et al. | Mar 1969 | A |
3467408 | Regalia | Sep 1969 | A |
3476270 | Cox et al. | Nov 1969 | A |
3602400 | Cooke | Aug 1971 | A |
3627555 | Driscoll | Dec 1971 | A |
3698693 | Poncet | Oct 1972 | A |
3785534 | Smith | Jan 1974 | A |
3802584 | Sackett, Sr. et al. | Apr 1974 | A |
3986708 | Heltzel et al. | Oct 1976 | A |
4019641 | Merz | Apr 1977 | A |
4023719 | Noyon | May 1977 | A |
4058239 | Van Mill | Nov 1977 | A |
4138163 | Calvert et al. | Feb 1979 | A |
4178117 | Brugler | Dec 1979 | A |
4204773 | Bates | May 1980 | A |
4248337 | Zimmer | Feb 1981 | A |
4258953 | Johnson | Mar 1981 | A |
4313708 | Tiliakos | Feb 1982 | A |
4395052 | Rash | Jul 1983 | A |
4398653 | Daloisio | Aug 1983 | A |
4423884 | Gevers | Jan 1984 | A |
4544279 | Rudolph | Oct 1985 | A |
4548507 | Mathis et al. | Oct 1985 | A |
4583663 | Bonerb | Apr 1986 | A |
4626166 | Jolly | Dec 1986 | A |
4701095 | Berryman et al. | Oct 1987 | A |
4806065 | Holt et al. | Feb 1989 | A |
4850702 | Arribau et al. | Jul 1989 | A |
4856681 | Murray | Aug 1989 | A |
4900157 | Stegemoeller et al. | Feb 1990 | A |
4919540 | Stegemoeller et al. | Apr 1990 | A |
4956821 | Fenelon | Sep 1990 | A |
4993883 | Jones | Feb 1991 | A |
4997335 | Prince | Mar 1991 | A |
5036979 | Selz | Aug 1991 | A |
5096096 | Calaunan | Mar 1992 | A |
5114169 | Botkin et al. | May 1992 | A |
5149192 | Hamm et al. | Sep 1992 | A |
5303998 | Whitlatch et al. | Apr 1994 | A |
5339996 | Dubbert et al. | Aug 1994 | A |
5343813 | Septer | Sep 1994 | A |
5375730 | Bahr et al. | Dec 1994 | A |
5401129 | Eatinger | Mar 1995 | A |
5413154 | Hurst, Jr. et al. | May 1995 | A |
5426137 | Allen | Jun 1995 | A |
5441321 | Karpisek | Aug 1995 | A |
5443350 | Wilson | Aug 1995 | A |
5445289 | Owen | Aug 1995 | A |
5590976 | Kilheffer et al. | Jan 1997 | A |
5609417 | Otte | Mar 1997 | A |
5722552 | Olson | Mar 1998 | A |
5772390 | Walker | Jun 1998 | A |
5806441 | Chung | Sep 1998 | A |
5913459 | Gill et al. | Jun 1999 | A |
5915913 | Greenlaw et al. | Jun 1999 | A |
5927356 | Henderson | Jul 1999 | A |
5944470 | Bonerb | Aug 1999 | A |
5997099 | Collins | Dec 1999 | A |
6059372 | McDonald et al. | May 2000 | A |
6112946 | Bennett et al. | Sep 2000 | A |
6126307 | Black et al. | Oct 2000 | A |
6193402 | Grimland et al. | Feb 2001 | B1 |
6247594 | Garton | Jun 2001 | B1 |
6379086 | Goth | Apr 2002 | B1 |
6425627 | Gee | Jul 2002 | B1 |
6491421 | Rondeau et al. | Dec 2002 | B2 |
6517232 | Blue | Feb 2003 | B1 |
6536939 | Blue | Mar 2003 | B1 |
6537015 | Lim et al. | Mar 2003 | B2 |
6568567 | McKenzie et al. | May 2003 | B2 |
6622849 | Sperling | Sep 2003 | B1 |
6876904 | Oberg et al. | Apr 2005 | B2 |
7008163 | Russell | Mar 2006 | B2 |
7086342 | O'Neall et al. | Aug 2006 | B2 |
7100896 | Cox | Sep 2006 | B1 |
7114905 | Dibdin | Oct 2006 | B2 |
7252309 | Eng Soon et al. | Aug 2007 | B2 |
7284579 | Elgan | Oct 2007 | B2 |
7451015 | Mazur et al. | Nov 2008 | B2 |
7475796 | Garton | Jan 2009 | B2 |
7500817 | Furrer et al. | Mar 2009 | B2 |
7513280 | Brashears et al. | Apr 2009 | B2 |
7665788 | Dibdin et al. | Feb 2010 | B2 |
7762281 | Schuld | Jul 2010 | B2 |
7997213 | Gauthier et al. | Aug 2011 | B1 |
8387824 | Wietgrefe | Mar 2013 | B2 |
8434990 | Claussen | May 2013 | B2 |
D688349 | Oren et al. | Aug 2013 | S |
D688350 | Oren et al. | Aug 2013 | S |
D688351 | Oren et al. | Aug 2013 | S |
D688772 | Oren et al. | Aug 2013 | S |
8505780 | Oren | Aug 2013 | B2 |
8545148 | Wanek-Pusset et al. | Oct 2013 | B2 |
8573917 | Renyer | Nov 2013 | B2 |
8585341 | Oren | Nov 2013 | B1 |
8607289 | Brown et al. | Dec 2013 | B2 |
8616370 | Allegretti et al. | Dec 2013 | B2 |
8622251 | Oren | Jan 2014 | B2 |
8662525 | Dierks et al. | Mar 2014 | B1 |
8668430 | Oren et al. | Mar 2014 | B2 |
D703582 | Oren | Apr 2014 | S |
8827118 | Oren | Sep 2014 | B2 |
8834012 | Case et al. | Sep 2014 | B2 |
8882428 | Fikes et al. | Nov 2014 | B2 |
8887914 | Allegretti et al. | Nov 2014 | B2 |
RE45713 | Oren et al. | Oct 2015 | E |
9162603 | Oren | Oct 2015 | B2 |
RE45788 | Oren et al. | Nov 2015 | E |
9248772 | Oren | Feb 2016 | B2 |
RE45914 | Oren et al. | Mar 2016 | E |
9296518 | Oren | Mar 2016 | B2 |
9340353 | Oren et al. | May 2016 | B2 |
9358916 | Oren | Jun 2016 | B2 |
9394102 | Oren et al. | Jul 2016 | B2 |
9403626 | Oren | Aug 2016 | B2 |
9421899 | Oren | Aug 2016 | B2 |
9440785 | Oren et al. | Sep 2016 | B2 |
9446801 | Oren | Sep 2016 | B1 |
9475661 | Oren | Oct 2016 | B2 |
9511929 | Oren | Dec 2016 | B2 |
9522816 | Taylor | Dec 2016 | B2 |
9527664 | Oren | Dec 2016 | B2 |
9580238 | Friesen et al. | Feb 2017 | B2 |
RE46334 | Oren et al. | Mar 2017 | E |
9617065 | Allegretti et al. | Apr 2017 | B2 |
9617066 | Oren | Apr 2017 | B2 |
9624030 | Oren et al. | Apr 2017 | B2 |
9624036 | Luharuka et al. | Apr 2017 | B2 |
9643774 | Oren | May 2017 | B2 |
9650216 | Allegretti | May 2017 | B2 |
9656799 | Oren et al. | May 2017 | B2 |
9669993 | Oren et al. | Jun 2017 | B2 |
9670752 | Glynn et al. | Jun 2017 | B2 |
9676554 | Glynn et al. | Jun 2017 | B2 |
9682815 | Oren | Jun 2017 | B2 |
9694970 | Oren et al. | Jul 2017 | B2 |
9701463 | Oren et al. | Jul 2017 | B2 |
9718609 | Oren et al. | Aug 2017 | B2 |
9718610 | Oren | Aug 2017 | B2 |
9725233 | Oren et al. | Aug 2017 | B2 |
9725234 | Oren et al. | Aug 2017 | B2 |
9738439 | Oren et al. | Aug 2017 | B2 |
RE46531 | Oren et al. | Sep 2017 | E |
9758081 | Oren | Sep 2017 | B2 |
9758993 | Allegretti et al. | Sep 2017 | B1 |
9771224 | Oren et al. | Sep 2017 | B2 |
9783338 | Allegretti et al. | Oct 2017 | B1 |
9796319 | Oren | Oct 2017 | B1 |
9796504 | Mlegretti et al. | Oct 2017 | B1 |
9809381 | Oren et al. | Nov 2017 | B2 |
9828135 | Allegretti et al. | Nov 2017 | B2 |
9840366 | Oren et al. | Dec 2017 | B2 |
9969564 | Oren et al. | May 2018 | B2 |
9988182 | Allegretti et al. | Jun 2018 | B2 |
10059246 | Oren | Aug 2018 | B1 |
10081993 | Walker et al. | Sep 2018 | B2 |
10189599 | Allegretti et al. | Jan 2019 | B2 |
10207753 | O'Marra et al. | Feb 2019 | B2 |
10287091 | Allegretti | May 2019 | B2 |
10308421 | Allegretti | Jun 2019 | B2 |
10486854 | Allegretti et al. | Nov 2019 | B2 |
10518828 | Oren et al. | Dec 2019 | B2 |
10604338 | Allegretti | Mar 2020 | B2 |
20020121464 | Soldwish-Zoole et al. | Sep 2002 | A1 |
20030159310 | Hensley et al. | Aug 2003 | A1 |
20040008571 | Coody et al. | Jan 2004 | A1 |
20040031335 | Fromme et al. | Feb 2004 | A1 |
20040206646 | Goh et al. | Oct 2004 | A1 |
20040258508 | Jewell | Dec 2004 | A1 |
20050219941 | Christenson et al. | Oct 2005 | A1 |
20060013061 | Bivens et al. | Jan 2006 | A1 |
20070014185 | Diosse et al. | Jan 2007 | A1 |
20070201305 | Heilman et al. | Aug 2007 | A1 |
20080187423 | Mauchle | Aug 2008 | A1 |
20080294484 | Furman et al. | Nov 2008 | A1 |
20090078410 | Krenek et al. | Mar 2009 | A1 |
20090129903 | Lyons, III | May 2009 | A1 |
20090292572 | Alden et al. | Nov 2009 | A1 |
20090314791 | Hartley et al. | Dec 2009 | A1 |
20100038077 | Heilman et al. | Feb 2010 | A1 |
20100196129 | Buckner | Aug 2010 | A1 |
20100319921 | Eia et al. | Dec 2010 | A1 |
20120017812 | Renyer et al. | Jan 2012 | A1 |
20120018093 | Zuniga et al. | Jan 2012 | A1 |
20120020747 | Schneider et al. | Jan 2012 | A1 |
20120037231 | Janson | Feb 2012 | A1 |
20120181093 | Fehr et al. | Jul 2012 | A1 |
20120219391 | Teichrob et al. | Aug 2012 | A1 |
20130128687 | Adams | May 2013 | A1 |
20130135958 | O'Callaghan | May 2013 | A1 |
20130142601 | McIver et al. | Jun 2013 | A1 |
20130206415 | Sheesley | Aug 2013 | A1 |
20130284729 | Cook et al. | Oct 2013 | A1 |
20140023463 | Oren | Jan 2014 | A1 |
20140044508 | Luharuka et al. | Feb 2014 | A1 |
20140076569 | Pham et al. | Mar 2014 | A1 |
20140083554 | Harris | Mar 2014 | A1 |
20140216736 | Leugemors et al. | Aug 2014 | A1 |
20140305769 | Eiden, III et al. | Oct 2014 | A1 |
20140377042 | McMahon | Dec 2014 | A1 |
20150003955 | Oren et al. | Jan 2015 | A1 |
20150016209 | Barton et al. | Jan 2015 | A1 |
20150183578 | Oren et al. | Jul 2015 | A9 |
20150191318 | Martel | Jul 2015 | A1 |
20150284194 | Oren et al. | Oct 2015 | A1 |
20150353293 | Richard | Dec 2015 | A1 |
20150366405 | Manchuliantsau | Dec 2015 | A1 |
20150368052 | Sheesley | Dec 2015 | A1 |
20150375930 | Oren et al. | Dec 2015 | A1 |
20160031658 | Oren et al. | Feb 2016 | A1 |
20160039433 | Oren et al. | Feb 2016 | A1 |
20160046438 | Oren et al. | Feb 2016 | A1 |
20160046454 | Oren et al. | Feb 2016 | A1 |
20160068342 | Oren et al. | Mar 2016 | A1 |
20160130095 | Oren et al. | May 2016 | A1 |
20160244279 | Oren et al. | Aug 2016 | A1 |
20160264352 | Oren | Sep 2016 | A1 |
20160332809 | Harris | Nov 2016 | A1 |
20160332811 | Harris | Nov 2016 | A1 |
20170021318 | McIver et al. | Jan 2017 | A1 |
20170123437 | Boyd et al. | May 2017 | A1 |
20170129696 | Oren | May 2017 | A1 |
20170144834 | Oren et al. | May 2017 | A1 |
20170190523 | Oren et al. | Jul 2017 | A1 |
20170203915 | Oren | Jul 2017 | A1 |
20170217353 | Pol et al. | Aug 2017 | A1 |
20170217671 | Allegretti | Aug 2017 | A1 |
20170225883 | Oren | Aug 2017 | A1 |
20170240350 | Oren et al. | Aug 2017 | A1 |
20170240361 | Glynn et al. | Aug 2017 | A1 |
20170240363 | Oren | Aug 2017 | A1 |
20170267151 | Oren | Sep 2017 | A1 |
20170283165 | Oren et al. | Oct 2017 | A1 |
20170313497 | Schaffner et al. | Nov 2017 | A1 |
20170320660 | Sanders et al. | Nov 2017 | A1 |
20170349226 | Oren et al. | Dec 2017 | A1 |
20180002120 | Allegretti et al. | Jan 2018 | A1 |
20180257814 | Allegretti et al. | Sep 2018 | A1 |
20190009231 | Warren et al. | Jan 2019 | A1 |
20190111401 | Lucas et al. | Apr 2019 | A1 |
20200062448 | Allegretti et al. | Feb 2020 | A1 |
Number | Date | Country |
---|---|---|
0511788 | Nov 1992 | EP |
2937826 | Oct 2015 | EP |
2066220 | Jul 1981 | GB |
2204847 | Nov 1988 | GB |
2008239019 | Oct 2008 | JP |
2008012513 | Jan 2008 | WO |
2013095871 | Jun 2013 | WO |
2013142421 | Sep 2013 | WO |
2014018129 | Jan 2014 | WO |
2014018236 | May 2014 | WO |
2015119799 | Aug 2015 | WO |
2015191150 | Dec 2015 | WO |
2015192061 | Dec 2015 | WO |
2016044012 | Mar 2016 | WO |
2016160067 | Oct 2016 | WO |
2016178691 | Nov 2016 | WO |
2016178692 | Nov 2016 | WO |
2016178694 | Nov 2016 | WO |
2016178695 | Nov 2016 | WO |
2017014768 | Jan 2017 | WO |
2017014774 | Jan 2017 | WO |
2017014768 | Jan 2017 | WO |
2017014771 | Jan 2017 | WO |
2017014774 | Jan 2017 | WO |
2017027034 | Feb 2017 | WO |
Entry |
---|
EP 0511 788 to Allen (Year: 1992). |
International Search Report and Written Opinion issued in related PCT Application No. PCT/US2016/046986 dated May 12, 2017, 17 pages. |
Number | Date | Country | |
---|---|---|---|
20200038825 A1 | Feb 2020 | US |