The present disclosure is generally directed to surface treatment apparatuses and more specifically to a vacuum pod configured to couple to one or more accessories.
Surface treatment apparatuses may include vacuum cleaners configured to suction debris from a surface (e.g., a floor). The vacuum cleaner may include a surface treatment head having one or more brush rolls configured to agitate a surface (e.g., a carpet) to urge debris into an airflow stream generated by the vacuum cleaner. The debris within the airflow stream may then be deposited in a debris collector (e.g., a bag) for later disposal.
These and other features and advantages will be better understood by reading the following detailed description, taken together with the drawings, wherein:
The present disclosure is generally directed to a surface treatment apparatus having a vacuum pod configured to be fluidly coupled to one or more surface treatment accessories (e.g., a surface treatment head, a wand, a brush, and/or any other accessory). The vacuum pod includes a vacuum pod body, a dust cup, and a fluid conduit fluidly coupled to the dust cup. The fluid conduit includes a flexible hose and a coupling configured to removably couple to the vacuum pod body. The flexible hose is configured to transition between an expanded and a retracted position, wherein, when the coupling is coupled to the vacuum pod body, the flexible hose is in the retracted position. In some instances, the dust cup can include a protrusion configured to mitigate and/or prevent debris deposited within the dust cup from being entrained in air flowing through the dust cup.
As generally referred to herein, the term resiliently deformable may refer to an ability of a mechanical component to repeatably transition between an un-deformed and a deformed state (e.g., transition between the un-deformed and deformed state at least 100 times, 1,000 times, 100,000 times, 1,000,000 times, 10,000,000 times, or any other suitable number of times) without the component experiencing a mechanical failure (e.g., the component is no longer able to function as intended).
As shown, at least a portion of the dust cup 104 is disposed between the handle 102 and the suction motor 106. This positions the handle 102 and the suction motor 106 at opposing end regions of the vacuum pod 100 (e.g., on opposing sides of a central plane extending through the center of the vacuum pod 100, wherein the central plane extends perpendicular to a longitudinal axis of the vacuum pod 100). The dust cup 104 and the suction motor 106 are disposed along an axis 116. The axis 116 may be a central axis of the dust cup 104. Additionally, or alternatively, a center of mass of the suction motor 106 may be generally aligned with the axis 116. The suction motor 106 may have any orientation relative to the axis 116.
The fluid conduit 108 may include a flexible and/or expandable (e.g., longitudinally) hose. In these instances, the fluid conduit 108 can be configured to include a portion that is removably coupled to the vacuum pod 100 such that a portion of the fluid conduit 108 can be maneuvered independently of, for example, the dust cup 104 and the suction motor 106. As a result, a user can carry a vacuum pod body 101 (e.g., the portion of vacuum pod 100 housing at least the dust cup 104 and the suction motor 106) of the vacuum pod 100 in one hand while maneuvering the fluid conduit 108 with the other.
The dust cup 104 and the suction motor 106 can be disposed between the handle 102 and the surface treatment head 204 such that the surface treatment head 204 is disposed closer to the suction motor 106 than the handle 102. Such a configuration positions the center of mass of the vacuum pod 100 at a position closer to the surface treatment head 204 when compared to a configuration having, for example, the suction motor 106 disposed between the dust cup 104 and the handle 102. As a result, the surface treatment apparatus 200 may feel lighter to a user.
As shown, when the suction motor 106 is activated, the flow path 112 extends from a surface treatment head inlet 206 through the wand 202 and the fluid conduit 108 into the dust cup 104 through the suction motor 106 and exits the vacuum pod 100. As such, the vacuum pod 100 can generally be described as being fluidly coupled to the surface treatment head 204 and the wand 202. In some instances, the wand 202 and the fluid conduit 108 may be electrified such that the suction motor 106 and electric components of the surface treatment head 204 (e.g., a brush roll motor, a light source, and/or any other electric component) can be powered from a common source (e.g., a battery and/or an electrical power grid).
The dust cup 304 may be positioned along an axis 314 (e.g., an axis of the dust cup 304 and/or the suction motor assembly 306) and between the handle 302 and the suction motor assembly 306. The axis 314 extends generally parallel to a longitudinal axis 316 of the vacuum pod 300 and/or generally parallel to the fluid conduit 308. As shown, the axis 314 extends through both the suction motor assembly 306 and the dust cup 304. Therefore, the dust cup 304 and the suction motor assembly 306 may generally be described as being in an in-line (or a series) configuration. In some instances, the axis 314 may be a central axis of the dust cup 304. Additionally, or alternatively, the center of mass of the suction motor assembly 306 may be generally aligned with the axis 314.
The flexible hose 402 is coupled to the coupling 310. The coupling 310 can include an engaging portion 401 configured to engage a surface 403 of the cavity 404 such that the flexible hose 402 can be retained in a retracted position (e.g., such that the flexible hose 402 is stored within the cavity 404). For example, the engaging portion 401 may form a friction fit with the surface 403, the engaging portion 401 and/or the surface 403 may include one or more detents, and/or any other retaining mechanism.
As shown, the dust cup 304 includes a debris cavity 406. The dust cup 304 may be configured to cause a cyclone to be generated. For example, the dust cup 304 may include at least one vortex finder 408 and/or a tangential inlet such that at least one cyclone can be generated within the dust cup 304. In some instances, the cyclone extends generally parallel to, for example, the fluid conduit 308 and/or the axis 314. As also shown, the suction motor assembly 306 includes a suction motor 410 and a premotor filter 412. In some instances, and as shown, a central axis of the suction motor 410 (e.g., a rotation axis of an impeller) and a longitudinal axis of the vortex finder 408 and/or dust cup 304 (e.g., a central axis of the vortex finder 408 and/or dust cup 304) may extend along the axis 314.
When the suction motor 410 is activated fluid is caused to flow along a flow path 414. The flow path 414 extends from the fluid inlet 312 of the coupling 310 through the flexible hose 402 into the dust cup 304 through the premotor filter 412 into the suction motor 410 through a post motor filter 416 and out an exhaust outlet 418.
As also shown, the dust cup 304 and the suction motor 410 are disposed between the handle 302 and the surface treatment head 604 such that the surface treatment head 604 is disposed closer to the suction motor 410 than the handle 302. Such a configuration positions the center of mass of the vacuum pod 300 at a location closer to the surface treatment head 604 when compared to a configuration having, for example, the suction motor 410 disposed between the handle 302 and the dust cup 304. As a result, the surface treatment apparatus 600 may feel lighter to a user.
When the suction motor 410 is activated a fluid is caused to flow along a flow path 606. The flow path 606 extends from an inlet 608 of the surface treatment head 604 along a channel defined in the wand 602 through the fluid conduit 308 into the dust cup 304 and the suction motor 410 and out of the exhaust outlet 418. In some instances, the wand 602 and/or the fluid conduit 308 (e.g., the flexible hose 402) can be electrified such that the suction motor 410 and electronic components of the surface treatment head 604 (e.g., a brush motor, a light source, and/or any other electric component) can be powered from a common source (e.g., a battery and/or an electrical power grid).
As shown, the suction motor assembly 306 and the dust cup 304 can extend under the handle 302 along the axis 314 in a direction of the surface treatment head 604. The axis 314 can be spaced apart from and generally parallel to a longitudinal axis 610 of the wand 602. For example, and as shown, the axis 314 can be spaced apart from the longitudinal axis 610 of the wand 602 in a direction such that the suction motor assembly 306 and the dust cup 304 are positioned on a user facing side of the surface treatment apparatus 600. By way of further example, and as shown in
As also shown, the longitudinal axis 610 of the wand 602 aligns with the longitudinal axis of the fluid conduit 308 when the vacuum pod 300 is coupled to the wand 602 of the surface treatment apparatus 600. In other words, the wand 602 and the fluid conduit 308 may generally be described as being axially aligned along the longitudinal axis 610 of the wand 602 when the vacuum pod 300 is coupled to the wand 602 of the surface treatment apparatus 600.
The dust cup 806 can include a cyclonic region 816 and a debris collection region 818. As shown, a cyclonic region central axis 817 and a debris collection region central axis 819 can be horizontally spaced apart and each can extend generally parallel to a longitudinal axis 821 of the vacuum pod 800. As such, the dust cup 806 can generally be described as having a first portion (e.g., that includes the debris collection region 818) that extends longitudinally along the vacuum pod body 804 and a second portion (e.g., that includes the cyclonic region 816) that extends transverse to the longitudinal axis 821 of the vacuum pod 800. The cyclonic region 816 can be configured to cause air flowing therein to move cyclonically. The cyclonic region 816 can include a vortex finder 820 about which air moving through the dust cup 806 cyclonically extends. The cyclonic motion of air about the vortex finder 820 can cause at least a portion of debris entrained within the air to fall out of the air and be deposited in the debris collection region 818.
In operation, a portion of the debris stored within the debris collection region 818 may become re-entrained within air flowing through the dust cup 806. As such, the debris collection region 818 may include a protrusion 822 that is configured to mitigate/discourage or prevent entrainment of debris deposited in the debris collection region 818 within air flowing through the dust cup 806. The protrusion 822 can extend from a distal end of the debris collection region 818. For example, the protrusion 822 may extend from an openable door 824 of the dust cup 806, wherein the openable door 824 is configured to transition between a closed position and an open position in order to empty the dust cup 806 when the dust cup 806 is decoupled from the vacuum pod body 804. The openable door 824 can be pivotally coupled to a distal end of the dust cup 806 such that the openable door 824 is spaced apart from the cyclonic region 816. As shown in
As shown, a protrusion width 826 may measure less than a protrusion height 828 and a protrusion thickness 830 may measure less than the protrusion width 826 and the protrusion height 828. As such, the protrusion may generally be described as forming a fin. As also shown, the protrusion 822 may include a chamfered region 832. The chamfered region 832 may be spaced apart from the openable door 824 and extend along a distal end of the protrusion 822 in a direction of the vacuum pod body 804.
As also shown, the dust cup 806 is coupled to the vacuum pod body 804 such that at least a portion of the dust cup 806 extends between the handle 802 and the suction motor cavity 808. For example, at least a portion of the cyclonic region 816 may be disposed between the handle 802 and the suction motor cavity 808. In these instances, and as shown, for example, in
For example, and as shown in
The flexible hose 1008 can be configured to transition between an extended/expanded position and a retracted position. When the flexible hose 1008 is in the extended position, the coupling 1006 can be decoupled from the vacuum pod body 804 and a length of the flexible hose 1008 measures greater than a length of the flexible hose 1008 in the retracted position. When in the retracted position, the coupling 1006 can be coupled to the vacuum pod body 804 and an overall length of the flexible hose 1008 may measure less than a longitudinal length of the vacuum pod 800. As such, when the coupling 1006 is coupled to the vacuum pod body 804, the flexible hose 1008 may not extend beyond the vacuum pod body 804 in a longitudinal direction.
The vacuum pod body 804 can include a receptacle 1010 configured to receive at least a portion of the coupling 1006. As shown, the receptacle 1010 defines a channel 1012 that extends in a direction generally parallel to the longitudinal axis 821 of the vacuum pod 800. The channel 1012 includes first and second retention arms 1014 and 1016 disposed on opposing longitudinal sidewalls 1018 and 1020 of the channel 1012 and a retention hook 1022 on a distal end wall 1024 of the channel 1012. The channel 1012 can include an open end 1026 that is opposite the distal end wall 1024. The channel 1012 and the open end 1026 can be configured to receive at least a portion of the coupling 1006.
The retention arms 1014 and 1016 can be biased inwardly into the channel 1012 (e.g., using a biasing mechanism such as a spring). As such, when at least a portion of the coupling 1006 is received within the channel 1012, the retention arms 1014 and 1016 can generally be described as being urged into engagement with the coupling 1006. The retention hook 1022 can be biased inwardly into the channel 1012 in a direction generally parallel to the longitudinal axis 821 of the vacuum pod 800 (e.g., using a biasing mechanism such as a spring). As such, when at least a portion of the coupling 1006 is received within the channel 1012, the retention hook 1022 can generally be described as being urged into engagement with the coupling 1006.
The coupling 1006 can include a catch 1028, wherein at least a portion of the catch 1028 is configured to be received within the channel 1012. For example, the catch 1028 can be configured to engage the first and second retention arms 1014 and 1016. When the coupling 1006 is urged into engagement with the receptacle 1010 such that the coupling 1006 can be coupled to the vacuum pod body 804, the catch 1028 can be configured to urge the retention arms 1014 and 1016 outwardly. For example, and as shown, the catch 1028 can include a plurality of grooves 1030 defined on opposing sides of the catch 1028 and the catch 1028 can be configured to urge the retention arms 1014 and 1016 outwardly until at least a portion of the retention arms 1014 and 1016 can engage corresponding grooves 1030. When at least a portion of the retention arms 1014 and 1016 are aligned with corresponding grooves 1030, the retention arms 1014 and 1016 are urged into the corresponding groves 1030 as a result of being biased inwardly. As such, the retention arms 1014 and 1016 can generally be described as being urged into corresponding grooves 1030 when the coupling 1006 is coupled to the receptacle 1010.
The coupling 1006 can also include a retention cavity 1032 configured to receive at least a portion of the retention hook 1022. When the coupling 1006 is urged into engagement with the receptacle 1010, a portion of the coupling 1006 can be configured to urge the retention hook 1022 outwardly from the channel 1012 until the retention hook 1022 can be received within the retention cavity 1032. As such, the retention hook 1022 can generally be described as being urged into the retention cavity 1032 when the coupling 1006 is coupled to the receptacle 1010.
As shown, the retention arms 1014 and 1016 can include first retaining bevels 1044 and 1046 and second retaining bevels 1048 and 1050. The surfaces defining the first retaining bevels 1044 and 1046 extend transverse (e.g., perpendicular) to surfaces defining the second retaining bevels 1048 and 1050. A portion of the catch 1028 can be configured to engage one or more of the first and/or second retaining bevels 1044, 1046, 1048, and/or 1050 when the coupling 1006 is being coupled to the receptacle 1010 such that the retention arms 1014 and 1016 are urged outwardly. As such, the coupling 1006 can be coupled to the receptacle 1010 in response to being inserted into the channel 1012 in a direction transverse to and/or generally parallel to the longitudinal axis 821 of the vacuum pod 800. In other words, the first and/or second retaining bevels 1044, 1046, 1048, and/or 1050 can be configured to cooperate with at least a portion of the coupling 1006 to urge the retention arms 1014 and 1016 outwardly until at least a portion of the retention arms 1014 and 1016 can be received within a respective groove 1030 of the catch 1028.
When the coupling 1006 is removed from the channel 1012, the retention arms 1014 and 1016 can be urged outwardly from the channel 1012. For example, the coupling 1006 can be configured to urge the retention arms 1014 and 1016 outwardly in response to a force being applied to the coupling 1006 (e.g., a force applied to the coupling in a direction generally parallel to the longitudinal axis 821 of the vacuum pod 800).
The coupling 1006 can include a coupling body 1034 and a sleeve 1036. The sleeve 1036 can be configured to slideably engage the coupling body 1034. The sleeve 1036 can be configured to slide longitudinally along the coupling body 1034 between a retaining position and a release position. When the sleeve 1036 is urged towards the release position, the sleeve 1036 is configured to urge the retention arms 1014 and 1016 outwardly such that the coupling 1006 can disengage the receptacle 1010. For example, the sleeve 1036 can include a wedge 1038 configured to engage corresponding release bevels 1040 and 1042 defined by the retention arms 1014 and 1016. The engagement between the wedge 1038 and the release bevels 1040 and 1042 urges the retention arms 1014 and 1016 outwardly. As the retention arms 1014 and 1016 are urged outwardly, the retention arms 1014 and 1016 come out of engagement with the grooves 1030 such that the coupling 1006 can be separated from the receptacle 1010.
When coupled to the wand 1104 a center of mass 1107 of the vacuum pod 800 may be positioned forward of a central longitudinal axis 1109 of the wand 1104 such that the center of mass 1107 of the vacuum pod 800 is positioned over the surface treatment head 1102. Such a configuration may increase the stability of the upright vacuum cleaner 1100. In some instances, the surface treatment head 1102 may include one or more stabilizers 1110. The stabilizers 1110 may be configured to increase the stability of the upright vacuum cleaner 1100 when in a storage position. As such, the stabilizers 1110 can be configured to transition between a retracted position and an extended position in response to the upright vacuum cleaner 1100 transitioning between an in-use and a storage position (e.g., when the wand 1104 transitions between an upright and a reclined position). In some instances, the stabilizers 1110 may include one or more stabilizer wheels 1112. The stabilizer wheels 1112 may be configured to facilitate movement of the upright vacuum cleaner 1100 when the upright vacuum cleaner 1100 is in a storage position.
When the fluid conduit 1808 defines the handle portion 1812, a radius 1814 of a connection portion 1816 of the fluid conduit 1808 may be increased (e.g., relative to a vacuum pod not having the handle portion 1812). As shown, the connection portion 1816 is coupled to an inlet to the dust cup 1806. As such, by increasing the radius 1814 fluid flow is more gradually urged into the dust cup 1806, which may improve the performance of the vacuum pod 1800.
The extension channel 1908 can extend circumferentially around at least a portion of the flexible hose 1904. A distal end 1912 of the extension channel 1908 and/or the coupling 1906 may be configured to directly couple to one or more cleaning accessories such that the cleaning accessories are fluidly coupled to the vacuum pod 1900. A proximal end 1914 of the extension channel 1908 can be configured to be coupled to the vacuum pod 1900, wherein the proximal end 1914 of the extension channel 1908 is opposite the distal end 1912 of the extension channel 1908.
An example of a vacuum pod may include a handle, a vacuum pod body, a dust cup removably coupled to the vacuum pod body, and a fluid conduit fluidly coupled to the dust cup. The fluid conduit may include a flexible hose configured to transition between an expanded and a retracted position and a coupling configured to be removably coupled to the vacuum pod body. A first end of the flexible hose may be coupled to the vacuum pod body and a second end of the flexible hose may be coupled to the coupling. When the coupling is coupled to the vacuum pod body, the flexible hose may be in the retracted position.
In some instances, the vacuum pod body defines a suction motor cavity and at least a portion of the dust cup extends between the suction motor cavity and the handle. In some instances, the dust cup may include a cyclonic region and a debris collection region. At least a portion of the cyclonic region may be disposed between the suction motor cavity and the handle. In some instances, the debris collection region may include a protrusion configured to mitigate entrainment of debris deposited in the debris collection region in air flowing through the dust cup. In some instances, the dust cup may include an openable door and the protrusion may extend from the openable door. In some instances, the vacuum pod body may define a receptacle for receiving at least a portion of the coupling. In some instances, the receptacle may include a channel having a first and a second retention arm. The first and second retention arms may be biased into the channel. In some instances, the coupling may include a catch, wherein at least a portion of the catch is configured to be received within the channel. In some instances, the catch includes a plurality of grooves. The grooves may be configured to engage a corresponding one the first and second retention arms. In some instances, when the coupling is being coupled to the vacuum pod body, the catch may be configured to urge the first and second retention arms outwardly.
Another example of a vacuum pod may include a vacuum pod body and a dust cup removably coupled to the vacuum pod body. The dust cup may include an openable door, a debris collection region, and a protrusion extending from the openable door. The protrusion may be configured to mitigate entrainment of debris deposited in the debris collection region in air flowing through the dust cup.
In some instances, the vacuum pod may further include a fluid conduit fluidly coupled to the dust cup. The fluid conduit may include a flexible hose configured to transition between an expanded and a retracted position and a coupling configured to be removably coupled to the vacuum pod body. A first end of the flexible hose may be coupled to the vacuum pod body and a second end of the flexible hose may be coupled to the coupling. When the coupling is coupled to the vacuum pod body, the flexible hose may be in the retracted position. In some instances, the vacuum pod body defines a receptacle for receiving at least a portion of the coupling. The receptacle may include a channel having a first and a second retention arm. The first and second retention arms may be biased into the channel. In some instances, the coupling may include a catch. At least a portion of the catch may be configured to be received within the channel. In some instances, the catch may include grooves configured to engage a corresponding one the first and second retention arms. The catch may be configured to urge the first and second retention arms outwardly such that the first and second retention arms can engage the corresponding grooves.
Another example of a vacuum pod may include a handle, a dust cup, a fluid conduit, and a vacuum pod body. The fluid conduit may be fluidly coupled to the dust cup. The fluid conduit may include a flexible hose having a first end and a second end, wherein the flexible hose may be configured to transition between an expanded and a retracted position. The fluid conduit may also include a coupling that may have a catch, wherein the coupling may be coupled to the second end of the flexible hose. The vacuum pod body may be coupled to the first end of the flexible hose. The vacuum pod body may define a receptacle for receiving at least a portion of the catch. The receptacle may include a channel having a first and a second retention arm. The first and second retention arms may be configured to engage corresponding grooves defined in the catch.
In some instances, the vacuum pod body may define a suction motor cavity, wherein at least a portion of the dust cup may extend between the suction motor cavity and the handle. In some instances, the dust cup may include a cyclonic region and a debris collection region, wherein at least a portion of the cyclonic region may be disposed between the suction motor cavity and the handle. In some instances, the debris collection region may include a protrusion configured to mitigate entrainment of debris deposited in the debris collection region in air flowing through the dust cup. In some instances, the dust cup may include an openable door and the protrusion may extend from the openable door.
An example of a surface treatment apparatus may include a wand, a surface treatment head coupled to the wand, and a vacuum pod fluidly coupled to the wand. The vacuum pod may include a handle, a vacuum pod body, a dust cup removably coupled to the vacuum pod body, and a fluid conduit fluidly coupled to the dust cup. The fluid conduit may include a flexible hose configured to transition between an expanded and a retracted position and a coupling configured to be removably coupled to the vacuum pod body. A first end of the flexible hose may be coupled to the vacuum pod body and a second end of the flexible hose may be coupled to the coupling. When the coupling is coupled to the vacuum pod body, the flexible hose may be in the retracted position.
In some instances, the vacuum pod body defines a suction motor cavity and at least a portion of the dust cup extends between the suction motor cavity and the handle. In some instances, the dust cup may include a cyclonic region and a debris collection region. At least a portion of the cyclonic region may be disposed between the suction motor cavity and the handle. In some instances, the debris collection region may include a protrusion configured to mitigate entrainment of debris deposited in the debris collection region in air flowing through the dust cup. In some instances, the dust cup may include an openable door and the protrusion may extend from the openable door. In some instances, the vacuum pod body may define a receptacle for receiving at least a portion of the coupling. In some instances, the receptacle may include a channel having a first and a second retention arm. The first and second retention arms may be biased into the channel. In some instances, the coupling may include a catch, wherein at least a portion of the catch is configured to be received within the channel. In some instances, the catch includes a plurality of grooves. The grooves may be configured to engage a corresponding one the first and second retention arms. In some instances, when the coupling is being coupled to the vacuum pod body, the catch may be configured to urge the first and second retention arms outwardly.
While the principles of the invention have been described herein, it is to be understood by those skilled in the art that this description is made only by way of example and not as a limitation as to the scope of the invention. Other embodiments are contemplated within the scope of the present invention in addition to the exemplary embodiments shown and described herein. Modifications and substitutions by one of ordinary skill in the art are considered to be within the scope of the present invention, which is not to be limited except by the following claims.
The present application claims the benefit of U.S. Provisional Application Ser. No. 62/693,282 filed on Jul. 2, 2018, entitled Vacuum Pod Configured to Couple to one or more Accessories, which is fully incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1983567 | Replogle et al. | Dec 1934 | A |
2677846 | Segesman | May 1954 | A |
4156952 | Lynch, Jr. | Jun 1979 | A |
4513472 | Wells | Apr 1985 | A |
5101615 | Fassauer | Apr 1992 | A |
5331716 | Hemmann et al. | Jul 1994 | A |
5388303 | Hemmann et al. | Feb 1995 | A |
5389004 | Gray et al. | Feb 1995 | A |
5504970 | Neshat et al. | Apr 1996 | A |
5787546 | Bass et al. | Aug 1998 | A |
5850666 | Farone et al. | Dec 1998 | A |
6085382 | Bobrosky et al. | Jul 2000 | A |
6098242 | Choi | Aug 2000 | A |
6173474 | Conrad | Jan 2001 | B1 |
6256833 | Steinberg | Jul 2001 | B1 |
6260235 | Leung | Jul 2001 | B1 |
6311366 | Sepke et al. | Nov 2001 | B1 |
6497001 | Di Nunzio et al. | Dec 2002 | B2 |
6530118 | Oh | Mar 2003 | B2 |
6588051 | Hashizume et al. | Jul 2003 | B2 |
7823251 | Dyson et al. | Nov 2010 | B2 |
RE42155 | Ragner | Feb 2011 | E |
8281456 | Finke | Oct 2012 | B2 |
8528160 | Conrad | Sep 2013 | B2 |
8826490 | Giarmo | Sep 2014 | B1 |
8966708 | Worker et al. | Mar 2015 | B2 |
8991005 | Mersmann | Mar 2015 | B2 |
9402516 | Pilch | Aug 2016 | B2 |
9622630 | Faremo et al. | Apr 2017 | B2 |
10660494 | Alton | May 2020 | B1 |
20010018780 | Hashizume et al. | Sep 2001 | A1 |
20020101075 | Park et al. | Aug 2002 | A1 |
20040223803 | Fahy et al. | Nov 2004 | A1 |
20050155177 | Baer et al. | Jul 2005 | A1 |
20070040376 | Choi | Feb 2007 | A1 |
20070226946 | Best | Oct 2007 | A1 |
20080086833 | Capron-Tee | Apr 2008 | A1 |
20080281481 | Abramson et al. | Nov 2008 | A1 |
20090064449 | Newton et al. | Mar 2009 | A1 |
20090089969 | Lee et al. | Apr 2009 | A1 |
20090165242 | Lee et al. | Jul 2009 | A1 |
20100005614 | Cochran et al. | Jan 2010 | A1 |
20110088196 | Wills et al. | Apr 2011 | A1 |
20110088197 | Postle et al. | Apr 2011 | A1 |
20110088198 | Wills et al. | Apr 2011 | A1 |
20110088200 | White et al. | Apr 2011 | A1 |
20110088205 | Dyson et al. | Apr 2011 | A1 |
20110088206 | Ford et al. | Apr 2011 | A1 |
20110088208 | White et al. | Apr 2011 | A1 |
20110088212 | Dyson et al. | Apr 2011 | A1 |
20110094054 | Dos Reis et al. | Apr 2011 | A1 |
20110219569 | Vines et al. | Sep 2011 | A1 |
20110219581 | Vines et al. | Sep 2011 | A1 |
20120030900 | Seo et al. | Feb 2012 | A1 |
20120180258 | Seo | Jul 2012 | A1 |
20120222250 | Conrad | Sep 2012 | A1 |
20120222251 | Conrad | Sep 2012 | A1 |
20120233806 | Streciwilk | Sep 2012 | A1 |
20130081226 | Mcluckie | Apr 2013 | A1 |
20130086770 | Wolfe, Jr. | Apr 2013 | A1 |
20130091813 | Smith | Apr 2013 | A1 |
20140033471 | Toole et al. | Feb 2014 | A1 |
20140245562 | Conrad | Sep 2014 | A1 |
20140338148 | Lee | Nov 2014 | A1 |
20160128527 | Grey et al. | May 2016 | A1 |
20160198914 | Conrad | Jul 2016 | A1 |
20160208981 | Kaesemeyer | Jul 2016 | A1 |
20160213218 | Ham et al. | Jul 2016 | A1 |
20160270614 | Kawamura et al. | Sep 2016 | A1 |
20160270615 | Kawamura et al. | Sep 2016 | A1 |
20170265697 | Conrad | Sep 2017 | A1 |
20170340177 | Conrad | Nov 2017 | A1 |
20180064301 | Cottrell | Mar 2018 | A1 |
20180132683 | Walker | May 2018 | A1 |
Number | Date | Country |
---|---|---|
2303758 | Jan 1999 | CN |
2324840 | Jun 1999 | CN |
1889877 | Jan 2007 | CN |
101116770 | Feb 2008 | CN |
100539920 | Sep 2009 | CN |
101828891 | Sep 2010 | CN |
201631106 | Nov 2010 | CN |
104271020 | Jan 2015 | CN |
105832247 | Aug 2016 | CN |
205458447 | Aug 2016 | CN |
3834686 | Dec 1989 | DE |
202008017137 | Mar 2009 | DE |
102011001631 | Oct 2011 | DE |
102012110182 | Apr 2014 | DE |
0983741 | Mar 2000 | EP |
1356755 | Oct 2003 | EP |
1591052 | Nov 2005 | EP |
1758493 | Mar 2007 | EP |
2055219 | May 2009 | EP |
2290462 | Jan 1996 | GB |
2304549 | Mar 1997 | GB |
S60194919 | Oct 1985 | JP |
S61012461 | Jan 1986 | JP |
S62151835 | Sep 1987 | JP |
63194615 | Aug 1988 | JP |
H02172427 | Jul 1990 | JP |
H02234733 | Sep 1990 | JP |
H033956 | Jan 1991 | JP |
H034825 | Jan 1991 | JP |
H05184502 | Jul 1993 | JP |
H07322972 | Dec 1995 | JP |
2000116574 | Apr 2000 | JP |
4258730 | Apr 2009 | JP |
2010194070 | Sep 2010 | JP |
2013162882 | Aug 2013 | JP |
100774508 | Nov 2007 | KR |
101003601 | Dec 2010 | KR |
101052161 | Jul 2011 | KR |
20120004104 | Jan 2012 | KR |
20120014326 | Feb 2012 | KR |
20120016810 | Feb 2012 | KR |
2005034706 | Apr 2005 | WO |
2008142642 | Nov 2008 | WO |
2009030885 | Mar 2009 | WO |
2013139364 | Sep 2013 | WO |
Entry |
---|
PCT Search Report and Written Opinion dated Sep. 10, 2019, received in PCT Application No. PCT/US19/38303, 9 pgs. |
PCT Search Report and Written Opinion dated Nov. 25, 2019, received in PCT Application No. PCT/US19/49925, 10 pgs. |
PCT Search Report and Written Opinion dated Apr. 26, 2019, received in PCT Application No. PCT/US19/17030, 9 pgs. |
Chinese Office Action with English translation dated Nov. 15, 2021, received in Chinese Patent Application No. 201980070915.0, 13 pages. |
U.S. Office Action dated Dec. 8, 2021, received in U.S. Appl. No. 16/562,989, 24 pages. |
Chinese Office Action with English translation dated Aug. 24, 2021, received in Chinese Patent Application No. 201980049043.X, 10 pages. |
U.S. Office Action dated Jun. 30, 2021, received in U.S. Appl. No. 16/562,989, 16 pages. |
UK Examination Report dated Feb. 17, 2022, received in UK Patent Application No. GB2020866.6, 6 pages. |
U.S. Office Action dated Jun. 1, 2022, received in U.S. Appl. No. 16/562,989, 18 pages. |
Chinese Office Action with machine generated translation, dated Aug. 2, 2022, received in Chinese Patent Application No. 201980070915.0, 21 pages. |
U.S. Office Action dated Jan. 23, 2023, received in U.S. Appl. No. 16/562,989, 18 pages. |
Chinese Office Action with English translation dated Feb. 27, 2023, received in Chinese Patent Application No. 2019800709150, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20200000298 A1 | Jan 2020 | US |
Number | Date | Country | |
---|---|---|---|
62693282 | Jul 2018 | US |