The present invention relates to a motor rotor and more particularly to a vacuum pump motor rotor, a motor including the same and a vacuum pump including the motor.
For example, in a semiconductor fabrication process, vacuum techniques are used in various steps. Raised as some of examples of such vacuum techniques are a vacuum deposition method for forming a metal film, a plasma etching process for a resist removing or etching step, an ion implantation process for an impurity diffusion step, and a low pressure CVD or plasma CVD process for a silicone oxide film or nitride film forming step. Any of these processes is performed in a vacuum (or low pressure) environment, and the role played by vacuum in the semiconductor fabrication process is very important.
As a vacuum pump used in a semiconductor fabrication system, there is a multi-stage roots type positive displacement vacuum pump 101 as shown in
In
On the other hand, a vacuum pump 121 shown in
Also, in the case of the canned motor M3, a space where the motor rotor 129 resides communicates directly with an interior space of the vacuum pump. Because of this, the motor rotor 129 is exposed directly to a gas which is exhausted in the semiconductor fabrication process. Gases used or produced in the semiconductor fabrication process contain a corrosive gas, and hence, components of the canned motor M3 need to be formed of highly anticorrosive materials and to have a highly anticorrosive construction. In particular, in a motor of a type in which permanent magnets are used, since permanent magnets themselves are corrodible, techniques for enhancing anti-rusting and anticorrosion properties of the permanent magnet are necessary.
Several techniques are proposed as techniques for enhancing the anticorrosive properties of the motor rotor. For example, in a first example, a permanent magnet is inserted to be fixed in place in a magnet insertion through hole in a rotor iron core which is formed by laminating a number of annular iron core plate materials. Under these situation, in the permanent magnet, a plurality of or two unit magnets are aligned end to end in an axial direction and are then coated with a resin into a rod-like shape. The invention of this first example is intended to prevent the deterioration of the properties of the permanent magnet to thereby prevent the reduction in performance of an electric motor by coating the permanent magnet with the resin so as to suppress the production of eddy current on the surface of the permanent magnet to thereby prevent the increase in temperature of the permanent magnet (refer to the abstract of Patent Document 1).
Additionally, in a second example, a rotor in which a plurality of disc-shaped rotor cores are laminated one on the top of the other is fixedly provided on a rotating shaft. The rotor includes a rotor core having a through hole, a magnet inserted in the through hole, a resin portion poured into the through hole and end plates which are provided at both axial end portions of the rotor core, and the magnet is in contact with the end plates (refer to the abstract of Patent Document 2). The second example pays attention particularly to the sealing of the gap defined between inner surface of the through hole and the magnet.
Further, in a third example, a magnet insertion space defined in a magnet insertion bore which is opened in a rotor core is sized to be slightly larger than a permanent magnet in height, width and length dimensions. Because of this, the permanent magnet, which is inserted into the magnet insertion bore through loose fit, is embedded completely in the magnet insertion bore, and a space is formed between an inner wall surface of the magnet insertion space and a circumference of the permanent magnet. Additionally, a space is also formed at each end face of the rotor core. After the permanent magnet is inserted into the magnet insertion bore, a resin which is a non-magnetic material is filled in the spaces which cover the whole surface of the permanent magnet. By doing so, the corrosion of the permanent magnet is prevented (refer to the abstract of Patent Document 3).
As has been described heretofore, the inventions according to Patent Documents 1 to 3 are intended to enhance the anti-rusting properties of the permanent magnet. Namely, the inventions are intended to provide the motor configuration in which the motor includes the rotor core which is made up of the plurality of laminated steel plates and the permanent magnet which is inserted in the through hole which penetrates the rotor core in the axial direction, and the resin is interposed in the gap defined between the coating applied to the surface of the permanent magnet and the magnet insertion through hole so as to prevent the intrusion of water which causes corrosion.
[Patent Document 1] Japanese Patent Public Disclosure No. 2005-94845
[Patent Document 2] Japanese Patent No. 4685661
[Patent Document 3] Japanese Patent Public Disclosure No. 2012-213310
However, the inventions according to the patent Documents described above have the following problems. Namely, in any of the cited Documents, silicone steel plates are used as a material for the laminated disc-shaped rotor cores. When observing the silicone steel plates microscopically, gaps are produced between the adjacent silicone steel plates due to undulation produced in surfaces of the silicone steel plates. Water and corrosive gas pass through the gaps to intrude into the through hole where the permanent magnet is inserted to be placed.
When an anticorrosion treatment is applied to the surface of the permanent magnet and the resin is filled in the gap between the permanent magnet and the magnet insertion through hole, there is caused no such situation that the permanent magnet is exposed directly to water and corrosive gas. However, the anticorrosion film and the resin film are very thin. Because of this, when a flaw or pinhole exists in the surface of the permanent magnet and the resin, water and corrosive gas pass therethrough, whereby a rusting or corrosion of the material of the permanent magnet is occurred. Thus, the inventions according to the patent Documents described above cannot provide sufficient anti-rusting or anticorrosion properties in this respect.
The invention has been made in view of the problem described above, according to a first aspect of the invention, there is provided a motor rotor for use in a motor for driving a pump rotor rotating shaft of a vacuum pump including a rotor core made up of a plurality of steel plates which are laminated in an axial direction and having a through hole, a permanent magnet which is disposed in the through hole and end plates which are attached individually to axial end portions of the rotor core, wherein an adhesive is applied to a whole surface of each of the plurality of steel plates, and the plurality of steel plates are surface joined to each other and to the end plates via the adhesive. By adopting this configuration, gaps existing between the laminated steel plates are eliminated from between the steel plates by the adhesive applied thereto. At the same time, the end plates at the end portions of the motor rotor are also surface bonded to the corresponding steel plates by the adhesive, whereby the through hole into which the permanent magnet is inserted is made completely gastight by the laminated steel plates. This enables the permanent magnet residing in the through hole to be completely shut out of the external atmosphere (water and corrosive gas), whereby the effectiveness of the anti-rusting or anticorrosion properties is increased in a more ensured fashion.
According to a second aspect of the invention, a configuration is adopted in which the adhesive is also applied to a whole of a joining surface of each of the end plates before the end plates are joined to the steel plates. By adopting this configuration, in addition to the working effect provided by the first aspect of the invention, the adhesive is allowed to be interposed between the outermost steel plates at the end portions of the rotor core and the corresponding end plates.
In addition, according to a third aspect of the invention, a configuration is adopted in which the steel plates of the rotor core are silicone steel plates. By adopting this configuration, in addition to the working effect provided by the first or second aspect of the invention, a low iron loss required on an electromagnetic steel plate can be realized by reducing the specific electric conductivity without deteriorating the high permeability provided by pure iron.
Additionally, according to a fourth aspect of the invention, a configuration is adopted in which the motor rotor is attached to an end portion of a pump rotor rotating shaft. By adopting this configuration, in addition to the working effect provided by any of the first to third aspects of the invention, the pump rotor rotating shaft can be rotated directly by the motor, and therefore, the construction of the motor rotor becomes simple.
According to a fifth aspect of the invention, a configuration is adopted in which the end plates are non-magnetic metal plates or resin plates. By adopting this configuration, in addition to the working effect provided by any of the first to fourth aspects of the invention, since the end plates are made up of the non-magnetic material, there is caused no such situation that a flux path is formed into the interior of the end plates, whereby a flux path is formed in stator cores with good efficiency, thereby no motor properties being damaged.
In addition, according to a sixth aspect of the invention, a configuration is adopted in which an axial length of the permanent magnet is shorter than an axial length of the rotor core, a predetermined end portion gap is formed between each end plate and the permanent magnet, and the adhesive is filled in the gaps. Additionally, according to a seventh aspect of the invention, the adhesive is filled in the gap between the through hole and the permanent magnet. By adopting these configurations, in addition to the working effect provided by any of the first to fifth aspect of the invention, the adhesive is filled in the gap between the through hole of the rotor core and the permanent magnet and the gap between the permanent magnet and both the end plates, whereby the space is sealed. Thus, even though a pinhole or the like is made in the steel plate main body in which the steel plates are laminated for some reason, allowing water or corrosive gas to intrude into the interior of the rotor core, the adhesive surrounding the permanent magnet interrupts the intrusion of water or corrosive gas into the permanent magnet. Because of this, an advantage is provided that neither rust nor corrosion is produced in the permanent magnet. Additionally, by sealing the permanent magnet with the adhesive not with the resin, the silicone steel plates and the permanent magnet are connected together strongly and rigidly at the gap due to the nature of the adhesive.
According to an eighth aspect of the invention, a configuration is adopted in which the adhesive is an anaerobic adhesive, a heat curable adhesive or a two component reaction curable adhesive. By adopting this configuration, in addition to the working effect provided by any of the first to seventh aspects of the invention, the adhesive has not yet cured when the permanent magnet is inserted into the through hole in the rotor core but is allowed to cure after the permanent magnet has been inserted into the through hole, thereby making it possible to fill a sufficient amount of adhesive in the gap. Additionally, since the anaerobic adhesive cures on an iron member in such a state that air is shut off, there is no such situation that the permanent magnet is exposed to a high melting temperature (of the order of several hundreds of degrees) as done when a resin is filled. Thus, the permanent magnet is not influenced by the curing temperature of the adhesive filled. In addition, in the case of the two component reaction curable adhesive, since the adhesive cures at a curing temperature of the order of 100 degrees C., the permanent magnet is not influenced by the curing temperature of the adhesive filled, either.
In addition, according to a ninth aspect of the invention, a configuration is adopted in which the adhesive which cures after the steel plates have been laminated is sealed with a resin impregnated additive. By adopting this configuration, in addition to the working effect provided by any of the first to eighth aspects of the invention, although there may be caused a pinhole when the steel plates are laminated and bonded together for some reason, the pinhole so caused can be sealed with the liquid resin impregnated in the additive.
According to a tenth aspect of the invention, a configuration is adopted in which at least part of a surface of the motor rotor is coated with a corrosion preventive film. By adopting this configuration, in addition to the working effect provided by any of the first to ninth aspects of the invention, the steel plates themselves can be prevented from rusting or corroding.
Additionally, according to an eleventh aspect of the invention, a configuration is adopted in which a surface of the permanent magnet is coated with a rust preventive film or a corrosion preventive film. By adopting this configuration, in addition to the working effect provided by any of the first to ninth aspects of the invention, a further improvement in resistance to rusting or resistance to corrosion can be realized.
In addition, according to a twelfth aspect of the invention, a configuration is adopted in which the rusting preventive or corrosion preventive film applied is made up of a plurality of layers of films, and a non-pinhole coating is applied to at least one layer thereof with a film prepared by a CVD method using an anticorrosion resin. By adopting this configuration, in addition to the working effect provided by the eleventh aspect of the invention, even in the event that water or a corrosive gas intrudes into the interior of the rotor core, the water or corrosive gas is not allowed to contact the permanent magnet, and therefore, it is possible to prevent the production of rust or corrosion.
According to a thirteenth aspect of the invention, there is provided a motor including the motor rotor according to any of the first to twelfth aspects of the invention and motor stators which are disposed around the motor rotor at predetermined intervals. By adopting this configuration, even in the event that the motor rotor is disposed, for example, in a corrosive gas atmosphere, the motor rotor has the high anticorrosion properties.
According to a fourteenth aspect of the invention, there is provided a canned motor including the motor according to the thirteenth aspect of the invention and a can disposed between the motor rotor and the motor stators. By adopting this configuration, the area where the motor rotor is provided and the area where the motor stators are provided are separated from each other, this obviating the necessity of applying an anticorrosion treatment to the motor stators.
According to a fifteenths aspect of the invention, there is provided a vacuum pump including the motor according to the thirteenth aspect or the canned motor according to the fourteenth aspect of the invention. By adopting this configuration, the vacuum pump is realized which is superior in resistance to rusting and resistance to corrosion.
In addition, through holes 17 having a rectangular cross section are formed along an axial direction in the motor rotor 11. The through holes 17 are formed so as to extend along the entire length of the motor rotor 11 in the axial direction. Permanent magnets 19 having a rectangular cross section are inserted to be disposed in the through holes 17. The cross section of the through hole 17 into which the permanent magnet 19 is inserted is made slightly larger than that of the permanent magnet 19 in width and length dimensions, so that a predetermined gap is defined between the inner surface of the through hole 17 and the permanent magnet 19. Additionally, an adhesive is filled in this gap to cure therein. It should be noted that there is imposed no specific limitation on the cross-sectional shape of the permanent magnet 19 and hence, the permanent magnet 19 may take any cross-sectional shape including a square, circular, oval or triangular shape.
In this embodiment, four permanent magnets 19 are provided. Specifically, as shown in
The adhesive 23 also exists between the silicone steel plates 21 at the end portions of the rotor core and the corresponding end plates 15. The adhesive 23 is the adhesive applied to the surface of each of the silicone steel plates 21. Because of this, even in the event that a gap is remained between the silicone steel plates 21 and the corresponding end plates 15 due to undulation, the adhesive 23 is allowed to exist in the gap to fill the gap. It should be noted that the adhesive may be applied to a whole of the bonding surface of each of the end plates before the rotor core is built up. Additionally, a corrosion preventive film 25 made from resin may be applied to an outer circumferential surface of the rotor core. Although various resins can be considered to be used for such a corrosion preventive film, in this embodiment, an epoxy resin is used. It should be noted that the application of the corrosion preventive film made from the epoxy resin is not limited to the outer circumferential surface of the rotor core. Namely, the corrosion preventive film may be formed on an inner circumferential surface of the through bore portion 13 (refer to
Additionally, in this embodiment, the permanent magnet 19 is formed so as to be slightly shorter than an axial length of the rotor core. Then, as shown in
In addition,
Further,
The adhesive 23 is not limited to the anaerobic adhesive, and hence, the heat curable adhesive or the two component reaction curable adhesive may be used. Either of the adhesives is the adhesive which starts to be cured after the silicone steel plates 21 have been laminated together. Because of this, the adhesive 23 is allowed to be filled in between the silicone steel plates 21 after they have been laminated together in an ensured fashion. In addition to the characteristics that have been described heretofore, when compared with the conventional technique in which a molten resin is used (in which case the rotor core needs to be heated to on the order of several hundreds of degrees C.), the heat curable adhesive can be cured by being heated to on the order of 100 degrees C. Because of this, the permanent magnet can be prevented from being adversely affected by being heated to a higher temperature. Additionally, in the case of the anaerobic adhesive or the two component reaction adhesive being used for the adhesive 23, no heating is necessary, and hence, it does not have to be taken into consideration that the permanent magnet is adversely affected by being heated. It should be noted that the different adhesives can be used in the different locations. For example, there is an approach in which the heat curable adhesive having a high adhesive force is used to surface bond the silicone steel plates 21 together, while the anaerobic adhesive is used around the permanent magnet.
The motor stators 37 is made up of a stator core and a stator coil. Then, the motor rotor 11 rotates by means of a magnetic force generated by the motor stators 37. As shown in
As an example of an application, the invention can be applied to a vacuum pump which produces vacuum in a semiconductor fabrication system.
4A, 4B, 4C enlarged portion; 11 motor rotor; 13 through bore portion; 15 end plate; 17 through hole; 19 permanent magnet; 19a permanent magnet main body; 19b nickel plating layer; 19c corrosion preventive layer (thin-film resin layer); 21 silicone steel plate; 23 adhesive; 25 corrosion preventive film; 33 can; 35 motor housing; 37 stator; L axis; M2 canned motor.
Number | Date | Country | Kind |
---|---|---|---|
2013-033584 | Feb 2013 | JP | national |