The disclosure relates to a vacuum pump screw rotor.
Screw vacuum pumps comprise two rotor elements arranged within a pumping chamber formed by a housing. The rotor elements have a helical contour and, for conveyance of gases, are rotated in opposite senses. For achieving a high inner condensation, i.e. a volume ratio between the inlet and the outlet of the pump, it is known that the helical contour has a varying pitch. On the inlet side or suction side, the pitch is large, and also the volume of the chambers formed per winding is large. In the direction of the outlet, the pitch decreases so that, on the outlet or pressure side, there exist a small pitch and also small chamber volumes per winding. By providing a varying pitch, it is possible to realize a low power input with low inlet pressures and, at the same time, a low thermal stress of the pump. The provision of a varying pitch requires a complex and thus expensive manufacturing process. Particularly, the manufacturing stages such as the milling or lathing of the windings, i.e. of the helical recesses, have to be performed in several successive working steps.
It is an object of the disclosure to provide a vacuum pump screw rotor wherein the pump, having low power input and undergoing low thermal stress, can be manufactured in an inexpensive manner. Further, it is an object of the disclosure to provide a corresponding screw vacuum pump and a suitable manufacturing method.
The vacuum pump screw rotor of the disclosure comprises at least two helical displacer elements arranged on a rotor shaft. By the displacer elements, the rotor element is formed. According to the disclosure, the at least two displacer elements have different pitches, wherein, for each displacer element, the pitch is constant. The vacuum pump screw rotor of the disclosure comprises e.g. two displacer elements, wherein a first, suction-side displacer element has a larger constant pitch and a second, pressure-side displacer element has a smaller constant pitch. By the provision, in accordance with the disclosure, of a plurality of displacer elements which each have a constant pitch, the manufacturing process is considerably simplified.
According to the disclosure, each displacer element comprises at least one helical recess which has the same contour along its entire length. Preferably, the contours are different for each displacer element. Thus, a respective displacer element preferably comprises a constant pitch and a uniform contour. As a result, manufacture is considerably facilitated so that the production costs can be massively lowered.
For further improvement of the suction capacity, the contour of the suction-side displacer element, i.e. particularly the first displacer element as viewed in the pumping direction, is asymmetric. By the asymmetric shape of the contour or profile, the flanks can be designed in such a manner that the leakage surfaces, the so-called blowholes, are preferably entirely eliminated or at least have a smaller cross section. A particularly useful asymmetric profile is the so-called “Quimby profile”. Even though such a profile is relatively difficult to manufacture, it has the advantage that there is no continuous blowhole. A short circuit exists only between two adjacent chambers. Since the profile is an asymmetric profile having different profile flanks, manufacture thereof requires at least two working steps because the two flanks, due to their asymmetry, have to be produced in two different working steps.
The pressure-side displacer element, particularly the last displacer element as viewed in the pumping direction, is provided with a symmetric contour. The symmetric contour particularly has the advantage that the manufacture will be simpler. Particularly, both flanks with symmetric contour can be generated in one working step by use of a rotating end mill or a rotating side milling cutter. Symmetric profiles of this type comprise only small blowholes, but these are provided continuously, i.e. are not only provided between two adjacent chambers. The size of the blowhole decreases with decreasing pitch. Accordingly, such symmetric profiles can be provided particularly for the pressure-side displacer element since these, according to a preferred embodiment, have a smaller pitch than the suction-side displacer element and preferably also than the displacer element arranged between the suction-side displacer element and the pressure-side displacer element. Even though the leak-tightness of such symmetric profiles is somewhat lower, these have the advantage that their manufacture is distinctly simpler. Particularly, it is rendered possible to generate the symmetric profile in a single working step by use of a simple end mill or side milling cutter. Thereby, the costs are considerably reduced. A particularly useful symmetric profile is the so-called “cycloidal profile”.
The provision of at least two such displacer elements makes it possible that the corresponding screw vacuum pump can generate low inlet pressures while the power input is low. Further, the thermal stress is low. The arranging of at least two displacer elements designed according to the disclosure, having a constant pitch and a uniform contour, in a vacuum pump will substantially lead to the same results as in a vacuum pump having a displacer element with varying pitch. In case of high specified volume ratios, three or four displacer elements can be provided, depending on the rotor.
For reducing the achievable inlet pressure and/or for reducing the power input and/or the thermal stress, it is provided according to a particularly preferred embodiment that a pressure-side displacer element, i.e. the last displacer elements as viewed in the pumping direction, comprises a large number of windings. Due to the large number of windings, there can be accepted a larger gap between the screw rotor and the housing, while the performance will remain the same. The gap herein can have a cold gap width in the range from 0.1-0.3 mm. A large number of outlet windings and respectively of windings in the pressure-side displacer element is inexpensive in production since, according to the disclosure, this displacer element has a constant pitch and particularly also a symmetric contour. This allows for a simple and inexpensive production process so that the provision of a larger number of windings is acceptable. Preferably, this pressure side displacer element or last displacer element comprises more than 8, particularly more than 10 and with particular preference more than 12 windings. The use of symmetric profiles has the advantage, in a particularly preferred embodiment, that, by use of a milling cutter, both flanks of the profile can be cut simultaneously. In this process, the milling cutter is additionally supported by the respective opposite flank, thus avoiding deformation or deflection of the milling cutter during and resulting inaccuracies.
For further reduction of the manufacturing costs, it is particularly preferred that the displacer elements and the rotor shaft are formed as one piece.
According to a further preferred embodiment, the change of pitch between adjacent displacer elements is provided in a non-uniform or abrupt manner. Optionally, the two displacer elements are arranged at a distance from each other in the longitudinal direction so that, between two displacer elements, a surrounding cylindrical chamber is formed which serves as a tool run-out zone. This is advantageous particularly in rotors of a one-pieced configuration because, in this region, the tool generating the helical line can be withdrawn in a simple manner. In case that the displacer elements are manufactured independently from each other and then are mounted on a shaft, provision of a tool run-out zone, particularly of such a ring-shaped cylindrical region, will not be necessary.
According to a preferred embodiment of the disclosure, no tool run-out zone is provided between two adjacent displacer elements at the pitch change. In the region of the pitch change, preferably both flanks comprise a void or recess so as to allow the tool to be withdrawn. Such a void has no noteworthy influence on the compression performance of the pump because the void or recess is local and quite limited in size.
The vacuum pump screw rotor of the disclosure particularly comprises a plural number of displacer elements. These can each time have the same diameter or different diameters. In this respect, it is preferred that the pressure-side displacer element has a smaller diameter than the suction-side displacer element.
In case of displacer elements produced independently from the rotor shaft, the displacer elements will be mounted on the shaft e.g. by press fitting. Herein, it is preferred to provide elements such as dowel pins for fixation of the angular position of the displacer elements relative to each other.
Particularly in case of a one-pieced design of the screw rotor but also in case of a multi-pieced design, it is preferred to produce the screw rotor from aluminum or an aluminum alloy. It is particularly preferred to produce the rotor from aluminum or an aluminum alloy, particularly from AlSi7Mg or AlSi17Cu4Mg. The alloy preferably has a silicon percentage of more than 15% so as to reduce the expansion coefficient.
According to a further preferred embodiment of the disclosure, the aluminum used has a lower expansion coefficient. It is preferred that the material has an expansion coefficient of less than 18*10−6/K. According to a further preferred embodiment, the surface of the displacer elements is coated, there being provided particularly a coating against wear and/or corrosion. Herein, there is provided with preference an anodic coating or another suitable coating, depending on the field of application.
The disclosure further relates to a screw vacuum pump. This pump comprises two mutually meshing vacuum-pump screw rotors as described above. The two screw rotors are arranged in a suction chamber formed by a pump housing. Normally, one of the two screw rotors is connected to a drive means such as e.g. an electric motor. The two screw rotors can be connected to each other via toothed wheels which particularly are arranged on the rotor shafts. This way, there is particularly effected a synchronization of the screw rotors rotating in opposite senses. According to a particularly preferred embodiment, it is possible, due to the inventive design of the screw rotors, to achieve an internal compression of the screw vacuum pump is at least two, particularly at least four. Such a high internal compression is possible especially due to the design of the two rotors with respective constant pitch and particularly with high numbers of windings of the pressure-side displacer element. Particularly, this is possible although large gaps are allowed in the region of the pressure-side displacer element. The large gaps particularly have the advantage that the thermal stress will be distributed more evenly across the pressure-side displacer element. Particularly, there will also be avoided the thermal stress of the corresponding displacer element and thus the danger of the displacer element being contacted on the inner side of the housing. A further aspect in this regard resides in that the screw rotors have a lower expansion coefficient than the housing. Particularly, the expansion coefficient of the housing is at least 5% and with particular preference 10% larger than that of the screw rotors.
It is preferred herein that the housing is produced from an aluminum alloy having a smaller percentage of silicon than the percentage of silicon in the material of the screw rotors. This ensures a larger thermal expansion of the housing relative to the screw rotors. Thereby, it is ensured particularly that in operation, i.e. with increasing thermal stress, even though the gap can become smaller, there will always be a sufficient gap between the outer side of the displacer elements and the inner side of the pumping chamber.
The disclosure further relates to a method for producing a screw rotor as described above. The manufacture herein is performed particularly in such a manner that the displacer elements and the rotor shaft are formed in one piece. In a first step, a base body for the screw rotor will be produced. The helical recesses for producing the displacer element are generated by means of an end mill or a side milling cutter. Depending on the displacer element, this is performed in a separate step because the pitch and particularly the contour of the helical recesses are different in each displacer element.
It is preferred that, in case of displacer elements with symmetric contour, the recess is generated by use of a single tool and particularly in a single working step. Further, it is preferred that the tool reproduces the outer contour of the recess so that, preferably, both flanks can be generated in one working step.
In case of an asymmetric element, the flanks have to be processed by two different tools.
It is preferred that, particularly in screw rotors produced as one piece, a tool run-out zone will be generated prior to the generating of the helical recesses. Such a ring-shaped cylindrical recess can be produced by milling or lathing.
According to a particularly preferred embodiment, no such tool run-out zone is provided. Instead, a recess or void is provided in a flank of an adjacent displacer element. In this case, the void or recess will be generated when the milling tool is withdrawn.
The base body used is particularly designed in a cylindrical shape so that, from a single base body, there can be produced the rotor shaft, optionally together with shaft journals following the shaft, and particularly also the displacer elements. It is also possible to use a base body which is formed as a semi-finished product and already comprises recesses and/or bearing pins. The base body can be produced e.g. by a casting process.
The disclosure will be explained in greater detail hereunder by way of a preferred embodiment and with reference to the accompanying drawings.
The following is shown:
According to the first preferred embodiment of the vacuum pump screw rotor, the rotor comprises two displacer elements 10, 12. A first, suction-side displacer element 10 has a large pitch of about 10-150 mm/revolution. The pitch is constant along the entire displacer element 10. Also the contour of the helical recess is constant. The second, pressure-side displacer element 12 again has, along its length, a constant pitch and a constant contour of the recess. The pitch of the pressure-side displacer element 12 is preferably in the range of 10-30 mm/revolution. Between the two displacer elements, a ring-shaped cylindrical recess or void 14 is provided. Said recess has the purpose of realizing a tool run-out zone in view of the one-pieced design of the screw rotor shown in
Further, the one-pieced screw rotor comprises two bearing seats 16 and shaft end 18. To the shaft end 18, there is connected e.g. a toothed wheel for driving.
In the second preferred embodiment shown in
Such a symmetric profile is preferably provided in the suction-side displacer element 10.
The schematic lateral view in
A symmetric profile as shown in
The further embodiment, shown in
Further, it is possible to provide more than two displacer elements. These can optionally have different head diameters and corresponding foot diameters. Herein, it is preferred that a displacer element with larger head diameter is arranged at the inlet, i.e. on the suction side, so as to realize a larger suctional capacity in this region and/or to increase the volume ratio. Also combinations of the above described embodiments are possible. For instance, two or more displacer elements can be produced in one piece with the shaft, or an additional displacer element can be produced independently from the shaft and then be mounted on the shaft.
A schematic sectional view of a vacuum pump (
As can be seen in
Number | Date | Country | Kind |
---|---|---|---|
10 2016 216 279.9 | Aug 2016 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/070065 | 8/8/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/041556 | 3/8/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2622787 | Hans | Dec 1952 | A |
3265292 | Lauritz | Aug 1966 | A |
6132103 | Englund | Oct 2000 | A |
6341951 | Chen | Jan 2002 | B1 |
6544020 | Bahnen | Apr 2003 | B1 |
6758660 | Kriehn et al. | Jul 2004 | B2 |
6918749 | Garczorz et al. | Jul 2005 | B2 |
7056108 | Behling et al. | Jun 2006 | B2 |
20030152475 | Becher | Aug 2003 | A1 |
20050236437 | Miyashita | Oct 2005 | A1 |
20080025858 | Hwang | Jan 2008 | A1 |
20080044304 | Izawa | Feb 2008 | A1 |
20080240967 | Goepfert | Oct 2008 | A1 |
20100086883 | Zollig et al. | Apr 2010 | A1 |
20100150760 | Yamamoto | Jun 2010 | A1 |
20130183185 | Dirscherl et al. | Jul 2013 | A1 |
Number | Date | Country |
---|---|---|
1585860 | Feb 2005 | CN |
201368025 | Dec 2009 | CN |
102974990 | Mar 2013 | CN |
10129341 | Jan 2003 | DE |
69721031 | Feb 2004 | DE |
102010019402 | Nov 2011 | DE |
102011118050 | May 2013 | DE |
1070878 | Jan 2001 | EP |
1242743 | Sep 2002 | EP |
1305524 | May 2003 | EP |
1882856 | Jan 2008 | EP |
1890039 | Feb 2008 | EP |
2196675 | Jun 2010 | EP |
2615307 | Jul 2013 | EP |
2030227 | Apr 1980 | GB |
2000045976 | Feb 2000 | JP |
2015183572 | Oct 2015 | JP |
20030026992 | Apr 2003 | KR |
20050010753 | Jan 2005 | KR |
20070022575 | Feb 2007 | KR |
2003042541 | May 2003 | WO |
2005038255 | Apr 2005 | WO |
Entry |
---|
International Search Report dated Nov. 23, 2017 for PCT application No. PCT/EP2017/070566. |
Dadapan ,S.; “Vacuum Design Handbook, 3rd Edition”; Defence Workers Industriepresse; Jul. 2004; pp. 1-8 (with English translation). |
Number | Date | Country | |
---|---|---|---|
20190211822 A1 | Jul 2019 | US |