The present invention relates to a vacuum pump that detects disassembly of the pump.
In a turbomolecular pump, a rotor that is formed of turbine blades (rotary blades) rotates at high speeds with respect to fixed-side turbine blades (fixed blades) to exhaust gases. The fixed-side turbine blades and the rotor are arranged within a pump casing that is formed of an inlet flange (see Patent Literature 1).
Generally, when a turbomolecular pump is used, periodical maintenance and overhauling are required. For example, for turbomolecular pumps of the type supported by mechanical bearings, it is indispensable to periodically exchange the mechanical bearings. In turbomolecular pumps with magnetic bearings, mechanical bearing are used as touch-down bearings. In this case, it becomes sometimes necessary to exchange the bearings due to wear after prolonged use of the pumps. Furthermore, when a turbomolecular pump is used in an apparatus that discharges a corrosive gas, the product tends to stick to a gas flow channel in the pump to hinder the operation of the pump, so that it becomes necessary to perform maintenance for removing the product.
In operations of disassembly and assembly of a vacuum pump, no special instruments are needed, so that maintenance of the pump may be entrusted to a dealer other than the manufacturer of the pump and a designated dealer, or the maintenance may be performed by the user himself. However, for not only turbomolecular pumps but also vacuum pumps, severe precisions are required when they are assembled in order to secure vacuum performance and safety. Therefore, maintenance of a vacuum pump which involves disassembly and assembly of the pump is performed by a trained expert operator, that is, by an operator from the manufacturer of the pump or an operator from the designated maintenance dealer.
Patent Literature 1: Japanese Laid Open Patent Publication 2008-038844
In the maintenance of a vacuum pump which involves operations of disassembly and assembly of the pump, there is the possibility that the maintenance is not appropriately performed if the maintenance is entrusted to a dealer other than the manufacturer of the pump and a designated dealer or if the user himself performs the maintenance. If the maintenance is performed inappropriately, not only the performance of the pump will be decreased and the service life of the pump will be shortened but also troubles will occur or safety will be harmed.
According to the first aspect of the present invention, a vacuum pump comprises: a rotor that is rotated to perform evacuation; a pump disassembly detection circuit that detects a disassembled state in which the vacuum pump is disassembled; and a pump operation prohibition circuit that prohibits rotary drive of the rotor when the pump operation prohibition circuit determines that the pump disassembly detection circuit has detected the disassembled state.
According to the second aspect of the present invention, in the vacuum pump according to the first aspect, it is preferred that the vacuum pump further comprises: a pump unit that includes the rotor and performs evacuation; and a control unit that performs drive control of the pump unit including the rotary drive of the rotor. It is preferred that the pump unit includes the pump disassembly detection circuit and a holding circuit that holds a state corresponding to a disassembly history when the pump disassembly detection circuit has detected the disassembled state, the control unit includes the pump operation prohibition circuit, and the pump operation prohibition circuit determines that in a case where the state corresponding to the disassembly history is held by the holding circuit at start-up of the control unit, the pump disassembly detection circuit has detected the disassembled state, and prohibits the drive control of the pump unit by the control unit.
According to the third aspect of the present invention, in the vacuum pump according to the second aspect, it is preferred that the control unit includes an input unit that inputs a cancel command for canceling the state corresponding to the disassembly history held by the holding circuit, and the pump unit includes a reset circuit that resets the state corresponding to the disassembly history held by the holding circuit when the cancel command is input therein by the control unit.
According to the fourth aspect of the present invention, in the vacuum pump according to the second aspect, it is preferred that the pump unit includes a magnetic bearing that magnetically levitates the rotor, the case where the state corresponding to the disassembly history is held by the holding circuit at start-up of the control unit is a case where other data that is different from a value of a magnetic bearing control parameter with which the magnetic bearing magnetically levitates the rotor is held by the holding circuit, the pump operation prohibition circuit determines that when the other data held by the holding circuit and the value of the magnetic bearing control parameter that is input into the control unit in advance do not coincide with each other, pump disassembly detection circuit has detected the disassembled state and prohibits the drive control of the pump unit by the control unit, and the holding circuit stores in advance the value of the magnetic bearing control parameter and replaces the value of the magnetic bearing control parameter that is stored in advance by the other data when the pump disassembly detection unit has detected the disassembled state.
According to the fifth aspect of the present invention, in the vacuum pump according to the first aspect, it is preferred that the vacuum pump further comprises: a pump unit that includes the rotor and performs evacuation; and a control unit that is separably fixed to the pump unit and performs drive control of the pump unit including the rotary drive of the rotor. It is preferred that the pump disassembly detection circuit detects the disassembled state when the control unit is separated from the pump unit.
According to the sixth aspect of the present invention, in the vacuum pump according to the fifth aspect, it is preferred that the pump unit and the control unit each include a connector that electrically connects the pump unit and the control unit with each other, and the pump disassembly detection circuit detects the disassembled state when the connector is separated upon separation of the control unit from the pump unit.
According to the seventh aspect of the present invention, in the vacuum pump according to any one of the first to the sixth aspects, it is preferred that the vacuum pump further comprises: an alarm device that generates an alarm when the pump operation prohibition circuit determines that the pump disassembly detection circuit has detected the disassembled state.
According to the present invention, when the pump disassembly detection circuit has detected pump disassembly, the pump operation prohibition circuit prohibits the rotary drive of the rotor, so that the safety of the vacuum pump can be increased.
—First Embodiment—
A shaft 3, to which a rotor 2 is attached, is contactlessly supported by electromagnet s 51, 52 provided on a base 4. The position of levitation of the shaft 3 is detected by a radial displacement sensor 71 and an axial displacement sensor 72, which sensors are provided on the base 4. The electromagnet 51 that constitutes a radial magnetic bearing and the electromagnet 52 that constitutes an axial magnetic bearing and the displacement sensors 71, 72 together constitute a five-axes-controlled magnetic bearing. That is, the five-axes-controlled magnetic bearing magnetically levitates the shaft 3 together with the rotor 2. Note that in a state where the magnetic bearing is not in operation, the shaft 3 is supported by mechanical bearings 27, 28.
At a lower end of the shaft 3, a circular disc 41 is provided and the electromagnets 52 are provided so that they sandwich the disc 41 from above and below. The disc 41 is attracted by each of the upper and lower electromagnets 52 so that the shaft 3 is levitated in the axial direction. The disc 41 is fixed at the lower end of the shaft 3 with a nut member 42. A disassembly detection unit 45 is provided on the side of the base 4. The disassembly detection unit 45 is described in detail later. A back lid 43, which is detached when the pump is disassembled, is fixed at the bottom of the base 4. The gap between the back lid 43 and the base 4 is hermetically sealed with an O-ring 44.
The rotor 2 is formed of a plurality of stages of rotary blades 8 in the direction of rotation axis. Between any adjacent two rotary blades 8 that are vertically arranged, a fixed blade 9 is disposed. The rotary blades 8 and the fixed blades 9 together constitute stages of turbine blades of the pump unit 1. Each of the fixed blades 9 is held by spacers such that it is sandwiched vertically by two spacers 10 from above and below. The spacers 10 have a function of holding the fixed blades 9 therebetween and a function of maintaining the gap between the adjacent fixed blades 9 at a predetermined distance.
A thread stator 11 that constitutes a drag pump stage is provided at a rear stage of the fixed blades 9 (shown at a lower part of the figure). A gap is formed between an inner peripheral surface of the thread stator 11 and a cylindrical part 12 of the rotor 2. The rotor 2 and the fixed blades 9 held by the spacers 10 are accommodated in a pump casing 13 that is formed of an inlet 13a. By contactlessly supporting the shaft 3 provided with the rotor 2 by the electromagnets 51, 52 and driving it by the motor 6 to rotate it, the gas on the side of the inlet 13a is exhausted to the side of the outlet 26 and is discharged by an auxiliary pump connected to the outlet 26.
The drive control of the pump unit 1 is controlled by a control unit 30 connected to a pump connector 49 provided at an outer peripheral surface of the base 4. The control unit 30 is provided with a main control unit 31 and in addition a magnetic bearing drive control unit 32 that performs drive control of a magnetic bearing and a motor drive control unit 33 that performs drive controls of the motor 6. As described later, a disassembly detection unit 45 is provided with a data storage unit that stores back-tip data including data necessary for pump operation such as control parameters and data on serial numbers for identifying pumps and so on. Based on the back-up data stored in the data storage unit, the main control unit 31 controls the magnetic bearing drive control unit 32 and the motor drive control unit 33 and so on to perform pump operations. An alarm unit 34 of the control unit 30 outputs an alarm when it is impossible to start up the pump. The alarm unit 34 is provided with a speaker that generates an alarm sound and a display device that displays an alarm and so on.
When overhauling the pump unit 1, bolts (not shown) that fix the back lid 43 is detached to detach the electromagnet 52 arranged on the side of the back lid for the control of thrust. Then, a nut member 42 that fixes the rotor disc 41 to the shaft 3 is detached and the rotor disc 41 is removed from the shaft 3. As a result, the rotating body including the rotor 2 and the shaft 3 can be removed from within the pump unit 1. For example, when a product that sticks to the rotor 2 is to be removed, the rotor 2 is detached from the shaft 3 before a removal operation can be performed. When reassembly is to be performed, the rotor 2 is attached to the shaft 3 and then balancing is performed, and the rotating body is attached within the pump unit 1 in the order contrary to the above-mentioned order. To perform such disassembly/assembly operations of the turbomolecular pump, specialized knowledge and skills are required, so that usually maintenance operations are performed by the manufacturer of the turbomolecular pump.
However, since no special instruments are needed for the operations for detaching the rotor 2 or the shaft 3 from within the pump unit 1, the user can readily perform the disassembly/assembly operations. When the user assembles the pump, it may occur that the balance of the rotating body will be lost or clearances between parts cannot be maintained. In such cases, the rotating body and the fixed portion may contact each other during the operation of the pump to cause malfunction of the pump, which raises a problem of safety. Thus, the turbomolecular pump according to an embodiment of the present invention is configured as follows. That is, as shown in
The data storage unit 452 stores back-up data that includes data necessary for pump operations, such as control parameters. As the data storage unit 452, for example, SRAM or the like is used. The power source 453 is used as a power source for storing the back-up data. The main control unit 31 provided in the control unit 30 (see
Examples of a structure that enables pump disassembly detection by the disassembly detection switch 451 include, for example, those structures shown in
On the other hand, when the back lid 43 is detached as shown in
When the rotor 2 is detached at the time of maintenance of the turbomolecular pump, the pump casing 13 is also detached from the base 4 (see
As shown in
In step S102, the main control unit 31 determines whether or not the pump 31 has been assembled or whether or not there is a disassembly history, based on the read-in back-up data. In the above-mentioned example, predetermined data for the recognition of disassembly as one of the control parameters is stored in advance both in the data storage unit 452 and in the memory of the main control unit 31. As shown in
When the main control unit 31 determines that a disassembly history is present in step S102, it controls the process to proceed to step S103. That it is determined that a disassembly history is present means that it is determined that the disassembly detection switch 451 has detected the disassembled state of the turbomolecular pump. In this case, the main control unit 31 controls the pump so as not to perform a usual pump start-up action shown in step S104 but controls the alarm unit 34 to generate an alarm to notice that there has been pump disassembly as shown in step S103. The alarm unit 34 may generate the alarm to notice that there has been pump disassembly either by display or by sound. On the other hand, if the main control unit 31 determines that no disassembly history is present in step S102, it controls the process to proceed to step S104 to perform a normal pump start-up action. By performing such a control, when there has been non-normal pump disassembly by the user, the pump start-up action is prohibited, so that safety upon pump operation can be secured.
When there is a disassembly history and a start-up action is prohibited, the above-mentioned predetermined data for the recognition of disassembly is written into the data storage unit 452 after the assembled state of the pump was confirmed by the manufacturer of the pump. In this case, a dedicated data writing device and a personal computer (PC) having installed therein dedicated data writing software and so on are connected to the pump unit 1 through a dedicated cable to enable direct access to the data storage unit 452 to write in the predetermined data for the recognition of disassembly therein. The operation of writing the predetermined data for the recognition of disassembly in the storage unit 452 is an operation that can be done only by the manufacturer of the pump or a designated service company and how the writing in operation can be performed is not taught to the user. Therefore, the user cannot perform the writing in operation as he pleases.
Note that in the example of control shown in
(Variation Example)
In the configuration shown in
Specifically, when the data storage unit has an SPI (Serial Peripheral Interface) memory element, the SPI is constituted by a clock, data, and chip select. The chip select is always enabled and the data line is kept in a state where fixed data can be transmitted therethrough, so that when the power is supplied, clock operates to introduce the data. The data storage unit 452 may be a CPU having a memory function, a CPU to which a memory is connected, or the like. In this case, the CPU may be provided with a function that when the power is supplied, the CPU is started up and deletes the contents of the memory according to the program in the CPU or a function that when the power is supplied, the CPU transfers the contents of the memory to a different address.
In
(Another Example of Disassembly Confirmation Control)
On the other hand, when the determination in step S202 is negative, the main control unit 31 controls the process to proceed to step S203 and determines whether the format of the read in data conforms to the data format of the serial number. The serial number is expressed by using X representing an alphabetical character and Y representing numerical character in a data format of, for example, XXXXYYYY. When it is determined that the data format of the data read-in in step S201 conforms to the data format of the serial number, the main control unit 31 controls the process to proceed from step S203 to step S204 to perform a normal pump start-up action processing. In step S203, when it is determined that the data format of the data read-in in step S201 does not conform to the data format of the serial number, the main control unit 31 controls the process to proceed to step S205.
Also in several variation examples mentioned above, the contents of the memory of the data storage unit 452 is changed, so that after the pump is assembled, an operation of writing in predetermined data for the recognition of disassembly similar to that in the above-mentioned embodiment is performed. When the disassembly detection switch 451 having the configuration shown in
Note that it is necessary to adopt a configuration such that the user cannot read out the data stored in the data storage unit 452. For this purpose, it is preferred to adopt an authentication method in which authentication with a password is performed upon reading out the data. Further, the data stored in the data storage unit 452 by itself may be encrypted or an interlock may be used such that when for example, a calculated value obtained by a predetermined calculation using data stored at the address 0000 and data stored at the address 0001 coincides with a predetermined value, data is determined to be normal. By so doing, the data stored in the data storage unit 452 can be made more robust so that it cannot be read out by the user.
Note that two types of configurations for detecting pump disassembly that use the mechanical disassembly detection switch 451 are shown in
In the configuration shown in
In another configuration shown in
Instead of using the mechanical switch as mentioned above as the disassembly detection switch 451, the pump disassembly may be detected by using an optical switch, for example, a light sensor. For example, a light sensor such as a photo transistor or a photo diode is arranged in the inner space of the back lid 43 like the disassembly detection switch 451 shown in
Another configuration shown in
With this structure, the space in the concave portion 430 of the back lid 43 and the inner space of the pump are shielded by the partition plate 46. For this reason, when corrosive gases are exhausted by the turbomolecular pump, the components that constitute the disassembly detection unit 45 can be prevented from being affected by the corrosive gases, so that detection of pump disassembly becomes more reliable.
—Second Embodiment—
In the case of the turbomolecular pump according to the first embodiment described above, after reassembly of the pump, predetermined data for the recognition of disassembly is written-in in the data storage unit 452 by using a dedicated device. In the case of the turbomolecular pump according to the second embodiment, it is configured such that the data storage unit 452 can be readily reset to its original state by the control unit after the pump is disassembled in order to reduce operations for bringing the pump into a state where it is ready for operation again.
That is, when the pump is in an already assembled state, the switch 454 is always in a closed state and the input signal a takes a value of “0”. When the pump is disassembled, the switch 454 is opened and voltage is pulled up by the pull-up resistor R, so that “1” is input as a value of the input signal a. When “1” is input as the value of the input signal a, the detection/holding circuit 455 retains this information and outputs “1” as the output signal d as described later. The state in which the output signal d has a value of “1” is not canceled but is retained even when the pump is assembled and the value of the input signal a returns to “0”. That is, the disassembly history is held by the detection/holding circuit 455.
In the detection/holding circuit 455 shown in
As a result, as shown in
The state transition table shown in
When the turbomolecular pump is assembled by the manufacturer, after the pump is assembled, a signal with a signal value of “1010” is input as the input signal c from the main control unit 31 to the reset circuit 456, and the reset circuit 456 outputs “1” as a value of the output signal b. The output signal b is input to the detection/holding circuit 455 as the input signal b. On this occasion, the input signal a that is input to the detection/holding circuit 455 is “0” as mentioned above since the pump is in the assembled state. Therefore, as shown in
On the other hand, when the pump is disassembled by the user, the switch 454 is opened and the voltage is pulled up by the pull-up resistor R, so that the value of the input signal a becomes “1”. In this case, as shown in
That is, even when the value of the input signal a is changed from “1” to “0” by the reassembly of the pump after the disassembly thereof, the value of the output signal d of “1” is held as it is. In this manner, by providing the detection/holding circuit 455, once the pump is disassembled, the value of the output signal d is changed to “1”. If the pump is assembled again, the output signal d=1 is retained. Accordingly, the output signal d indicates that the pump has been disassembled. That is, the detection/holding circuit 455 can hold the state that corresponds to the pump disassembly history as s value of the output signal d. Therefore, the main control unit 31 can determine that the detection/holding circuit 455 has detected the disassembled state of the pump by referring to the output signal d held by the detection/holding circuit 455.
Then, the action of the main control unit 31 of the control unit 30 when the pump unit 1 is connected to the control unit 30 is described referring to the flowchart shown in
On the other hand, when the determination in step S301 is affirmative, that is, when the main control unit 31 determines that the output signal d satisfies d=1, it controls the normal pump start-up action processing shown in step S303 to be not performed and controls the process to proceed to S302. In step S302, the main control unit 31 controls the alarm unit 34 to generate an alarm indicating that the start-up of the pump is impossible and the turbomolecular pump is brought into a state where its start-up is prohibited. In step S304, the main control unit 31 determines whether or not a cancel signal is input to the main control unit 31. The cancel signal is input from outside, for example, by an operator of the manufacturer of pump. Then, when the cancel signal is input, the main control unit 31 controls the process to proceed from step S304 to step S305, where the reset signal described above is input to the reset circuit 456 in the pump unit 1 as the input signal c. The cancel signal may be the above-mentioned reset signal itself. In case that the cancel signal or the reset signal that is equivalent to the cancel signal is not input from outside the main control unit 31, the reset signal is not input to the reset circuit 456. When the processing in step S305 is completed, the process is returned to step S301.
Since usually, the cancel signal is unknown to the user, the user cannot cancel the state in which operation of the pump is prohibited. As a result, the operation of the pump in an unreliable state where the pump has been disassembled by the user can be prevented, so that safety in the operation of the pump is secured. When such a state is established where operation of the pump is prohibited, an operator of the manufacturer or an operator licensed by the manufacturer confirms the state of the pump before he can perform an operation of cancelling the pump operation prohibited state. The cancel operation is to simply input a cancel signal to the main control unit 31 of the control unit 30 by the operator and no special device or jig is necessary for cancelling, so that the workability of cancel operation can be improved. The cancel signal is input by operation of an input device such as a push button provided in the control unit 30 by the operator.
Note that if both the cancel signal and the reset signal mentioned above are grasped and managed only by the operator who is licensed by the manufacturer of the turbomolecular pump, it is avoided that the pump that has been disassembled and reassembled by an operator other than a person who is licensed by the manufacturer of the pump is operated, so that safety of the pump being operated is secured.
—Third Embodiment—
The above mentioned embodiment is an, embodiment in which the pump unit 1 and the control unit 30 are provided separately. In contrast, a turbomolecular pump according to a third embodiment in which the pump unit and the control unit are integrally configured is explained below.
The pump unit 110 has the same configuration as that of the pump unit 1 shown in
In performing the maintenance of the pump unit 110, upon separation of the pump unit 110 from the control unit 120, the bolts 140 are detached as shown in
In the example shown in
The circuit of the disassembly detection unit 45 is configured so that it passes through the connectors 131 and 132. A portion of the circuit is connected to a pair of pins included in the connector 132. The pair of pins is fitted into a pair of pins included in the connector 131. The pair of pins included in the connector 131 is connected to each other by a wire 131a. As a result, if the connectors 131 and 132 are connected to each other, the circuit is closed whereas the circuit is opened when the connector 131 and the connector 132 are separated from each other. That is, the connectors 131 and 132 function as a disassembly detection switch 45. In this case, it is unnecessary to add a new switch as the disassembly detection switch 451, so that an increase in cost can be suppressed.
Note that also in the third embodiment, the configurations described in the first and the second embodiments may be made use of as the configuration for holding the disassembly history or the configuration for performing cancelling. When the configuration described in the first embodiment is applied to the third embodiment, for example, when the power supply to the control unit 120 is turned on, the main control unit of the control unit 120 reads in the back-up data stored in the data storage unit 452. The main control unit determines whether or not the pump has been disassembled, that is, whether or not a disassembly history is present based on the read-in back-up data. It is configured such that the power supply from the power source 453 to the data storage unit 452 is stopped due the pump disassembly so that the back-up data stored by data storage unit is deleted. That is, when a disassembly history is present, no back-up data is present in the data storage unit 452, so that the main control unit reads in indefinite data held in the data storage unit 452. The indefinite data is data that indicates that the state in which a disassembly history is present is held by the data storage unit 452 and usually does not coincide with the predetermined data for the recognition of disassembly stored in the memory of the main control unit. The main control unit determines whether or not the pump has been disassembled based on whether or not the data for the recognition of disassembly that is read in from the data storage unit 452 coincides with the data for the recognition of disassembly stored by the main control unit. When the main control unit determines that there is a disassembly history, the main control unit controls the alarm unit to generate an alarm to notice that there has been disassembly of the pump, with prohibiting the normal pump start-up action processing to be performed. The main control unit performs a normal pump start-up action processing when it determines that no disassembly history is present.
Note that the disassembly detection unit 45 according to the third embodiment may have a circuit configuration of the disassembly detection unit 45 according to the second embodiment shown in
As in the present embodiment, in the case of all-in-one turbomolecular pump, upon pump disassembly, separation of the pump unit 110 and the control unit 120 from each other is performed without fail. Therefore, detection of such separation makes it possible to detect whether or not the pump has been disassembled. When non-normal pump disassembly has been performed, the state of the pump is confirmed by an operator from the manufacturer of the pump and subsequently the disassembly history is canceled, so that operation of the pump after its reassembly becomes possible.
As mentioned above, according to the present invention, a vacuum pump that performs evacuation by rotating a rotor that is formed of an evacuation function unit, for example, a turbomolecular pump in which a rotor 2 formed of rotary blades 8 is rotated at high speeds or a drag pump in which a rotor formed of threaded groove type exhaustion passage is rotated at high speeds, has the following configuration. That is, the vacuum pump has the disassembly detection unit 45 as a pump disassembly detection circuit that detects, upon pump disassembly, a change from an assembled state in which components of the vacuum pump such as the back lid 43, the pump casing 13, and connectors 131 and 132 in the case of all-in-one pump and the like have been assembled to a non-assembled state in which, the vacuum pump has been disassembled into the components thereof. The vacuum pump has the main control unit 31 of the control unit 30 as a pump operation prohibition circuit that prohibits the rotary drive of the rotor 2 when a non-assembled state is detected by the disassembly detection unit 45. With such a configuration of the vacuum pump, the operation of the pump is prohibited when there has been an improper pump disassembly, so that the safety of the vacuum pump can be secured.
The above-mentioned embodiments may be used singly or in combinations. When each of the embodiments is used alone, the embodiments can exhibit their respective advantageous effects and when the embodiments are used in combinations, they can exhibit a synergistic effect by the combined use. As far as the features of the present invention are not damaged, the present invention is not limited to the above-mentioned embodiments. For example, in the above-mentioned embodiments, magnetic bearing-supported type turbomolecular pumps are explained as the vacuum pumps. However, the vacuum pump that can be used in the embodiments of the present invention is not limited to the magnetic bearing-supported type vacuum pump. For example, a vacuum pump such as a drag pump may be used.
Although various embodiments and variation examples have been explained as above, the present invention is not limited to the contents of the above description.
The disclosure of the following basic application to which priority is claimed in this application is incorporated herein by reference.
Number | Date | Country | Kind |
---|---|---|---|
2010-281909 | Dec 2010 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2011/079391 | 12/19/2011 | WO | 00 | 4/29/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/081726 | 6/21/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20030021673 | Maejima et al. | Jan 2003 | A1 |
20080131288 | Kozaki | Jun 2008 | A1 |
20100300325 | Iden | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
10 2008 019 451 | Oct 2009 | DE |
2 422 233 | Jul 2006 | GB |
2422233 | Jul 2006 | GB |
11-338355 | Dec 1999 | JP |
2000-99404 | Apr 2000 | JP |
2002-229682 | Aug 2002 | JP |
2003-21093 | Jan 2003 | JP |
2003-148384 | May 2003 | JP |
2005-273657 | Oct 2005 | JP |
2007-128199 | May 2007 | JP |
2008-38844 | Feb 2008 | JP |
2009127483 | Oct 2009 | WO |
Entry |
---|
Extended European Search Report dated Mar. 13, 2014, issued in corresponding European Patent Application No. 11849180.2 (5 pages). |
International Search Report for PCT/JP2011/079391, dated Mar. 19, 2012. |
Chinese Office Action dated Mar. 31, 2015, issued in corresponding CN Patent Application No. 201180060880.6 with English translation (13 pages). |
Number | Date | Country | |
---|---|---|---|
20130224042 A1 | Aug 2013 | US |