1. Field of the Invention
This invention relates to a food storage container which may be used for storing or marinating food under vacuum or pressure and, in particular, to a container having a motorized vacuum/pressure pump incorporated into the container lid and a method for making and using the container.
2. Description of Related Art
Vacuum food storage containers may be used for storage of foods such as coffee to preserve freshness, and to infuse marinade into foods. U.S. patent application Ser. No. 10/605,468 discloses a container having a vacuum/pressure pump in the container lid. The container is used for storing food or drinks, or for marinating foods. The present invention describes improvements to the container and lid of U.S. patent application Ser. No. 10/605,468, the disclosure of which is hereby incorporated by reference.
It is an object of the present invention to provide a vacuum or pressure food storage device that filters air entering or leaving the container.
It is another object of the present invention to provide a vacuum or pressure food storage device that protects the pump motor and power supply from excessive use in the case of an air leak in the container.
A further object of the invention is to provide a vacuum or pressure food storage container having a pressure or vacuum indicator that permits calibration of the pressure or vacuum sensor prior to or during assembly into the container.
It is yet another object of the present invention to provide a vacuum or pressure food storage device that incorporates the vacuum or pressure pump in the container lid and permits removal of the pump prior to cleaning the lid.
A further object of the invention is to provide a vacuum or pressure food storage container having a two stage seal that permits better hermetic sealing of the lid to the container.
It is another object of the present invention to provide a vacuum food marinating method and device that moves the food with respect to the marinade while evacuating air from the container.
It is another object of the present invention to provide a vacuum food marinating method and device that allows deeper saturation of marinade into the foods.
Still other objects and advantages of the invention will in part be obvious and will in part be apparent from the specification.
The above and other objects, which will be apparent to those skilled in the art, are achieved in the present invention which is directed to a method of marinating food. The method includes providing a container for the food, the container having a pump for pressurizing air into or evacuating air from the container and a controller. The controller is adapted to control the degree of pressure or vacuum to be achieved in the container, the time for which the pressure or vacuum is maintained, the admission of air into or evacuation of air out of the container, and the time for which the air admission or evacuation is maintained. The method additionally includes providing a marinade in the container and hermetically sealing the food in the container in contact with the marinade. Using the controller, air is repeatedly pressurized into or evacuated from the container to a desired degree of pressure or vacuum while maintaining the food in contact with the marinade under the pressure or vacuum for a desired time. The hermetic seal is then released to permit air to enter or leave the container. The food is maintained in contact with the marinade and the pressurized air or vacuum in the container for a desired time in accordance with a desired control program.
The controller may be used to repeatedly evacuate air from the container to a desired degree of vacuum, maintain the food in contact with the marinade under the vacuum for a desired time, release the hermetic seal to permit air to enter the container and maintain the food in contact with the marinade and the air in the container for a desired time, in accordance with a desired control program.
The food may be disposed on the base of the container when in contact with the marinade, whereby the base of the container is raised during evacuation of the container to move the food with respect to the marinade. The container is preferably provided with a flexible base. Evacuating air from the container causes the base to rise as a result of pressure differential between the vacuum in the container and atmospheric air pressure outside the container.
The controller may have a selection of control programs for different degrees of vacuum to be achieved in the container, times for which the vacuum is maintained, amount of air to be admitted into the container, and/or times for which the air admission is maintained, and the method may include selecting the desired control program prior to use the controller.
In another aspect the invention is directed to a method of marinating food which comprises providing a container for the food, providing a marinade in the container, hermetically sealing the food in the container on a base in contact with the marinade and evacuating air from the container to a desired degree of vacuum while simultaneously raising the base of the container to move the food with respect to the marinade. In this method food is maintained in contact with the marinade under the vacuum for a desired time. The hermetic seal is then released to permit air to enter the container while simultaneously lowering the base of the container when the food has been marinated to a desired degree.
The container may be provided with a flexible base, wherein evacuating air from the container causes the base to raise as a result of pressure differential between the vacuum in the container and atmospheric air pressure outside the container, and wherein releasing the hermetic seal to permit air to enter the container causes the base to lower.
Another aspect of the invention provides a method of storing food under a vacuum comprising providing a container for the food, the container having a filter for entry and exit of air into and out of the container, and hermetically sealing the food in the container. The method then includes evacuating air from the container to a desired degree of vacuum while simultaneously filtering air evacuated Out of the container through the filter, maintaining the food under the vacuum for a desired time, and releasing the hermetic seal to permit air to enter the container while simultaneously filtering air entering into the container through the filter.
There may be food particles may be trapped in the filter during evacuation of the air from the container, so that at least a portion of the food particles trapped in the filter may be expelled from the filter during entry of the air into the container.
In a related aspect the invention provides a vacuum food storage device having a container for storing food that is hermetically sealable and has a filter for entry and exit of air into and out of the container. The filter may be adapted to filter air evacuated out of the container and air entering into the container.
The filter of the vacuum food storage device may trap food particles in the filter during evacuation of the air from the container, and expel at least a portion of the food particles trapped in the filter during entry of the air into the container.
A further aspect of the invention is directed to a method of storing food under a vacuum which includes providing a container for the food with a lid to hermetically seal food in the container, a pump to evacuate air from the container and a switch engageable by contact of the pump to the lid, or by contact of the lid to the container, to permit operation of the pump to evacuate air from the container to a desire degree of vacuum. The method also includes providing a sensor to disengage operation of the pump when a desired degree of vacuum is achieved in the container and a timer to disengage operation of the pump after a predetermined time. The food is then placed in the container and the pump placed on the lid or the lid on the container, which engages the switch. The pump is operated to evacuate air from the container and the operation of the pump is disengaged after a desired degree of vacuum in the container is achieved or a predetermined time expires by the timer, whichever is earlier.
In a related aspect the invention provides a vacuum food storage device having a container for the food, a lid to hermetically seal food in the container, a pump to evacuate air from the container, a switch engageable by contact of the pump to the lid, or by contact of the lid to the container, to permit operation of the pump to evacuate air from the container to a desire degree of vacuum, a sensor to disengage operation of the pump when a desired degree of vacuum is achieved in the container, and a timer to disengage operation of the pump after a predetermined time. Upon placing the pump on the lid, or the lid on the container, engaging the switch, and operating the pump to evacuate air from the container operation of the pump is disengaged at the earlier of: i) achieving a desired degree of vacuum in the container, or ii) expiration of the predetermined time by the tinter.
The pump may be disposed in the lid and the switch may be adapted to commence operation of the pump upon contact of the lid with the container. Alternatively, the pump may be separate from the lid and the switch may be adapted to commence operation of the pump upon contact of the pump with the lid.
Yet another aspect of the invention provides a method of making a vacuum or pressure food storage device by providing a container for the food, a lid to hermetically seal food in the container, and a pump to evacuate air from the container. Separately from the container a sensor is provided to disengage operation of the pump when a desired degree of vacuum or pressure is achieved in the container. The sensor may be calibrated and set, separately from the container, with a predetermined degree of vacuum or pressure required to disengage operation of the pump The sensor in the container may be installed during manufacture to establish the predetermined degree of vacuum or pressure at which operation of the pump is disengaged. The pump may be disposed in the lid and the sensor may be installed during manufacture of the container.
In a related aspect, the invention is directed to a vacuum or pressure food storage device comprising a container for the food, a lid to hermetically seal food in the container, a pump to evacuate air from the container, and a sensor to disengage operation of the pump when a desired degree of vacuum or pressure is achieved in the container. The sensor is separable from the container to calibrate and set the degree of vacuum or pressure required to disengage operation of the pump. The sensor may be calibrated to a predetermined degree of vacuum or pressure apart from the container, and installed in the container during manufacture thereof to establish the predetermined degree of vacuum or pressure at which operation of the pump is disengaged. The pump may be disposed in the lid and the sensor may be installed during manufacture of the container.
The sensor may comprise a flexible membrane with an electrically conductive first contact secured thereto, and an electrically conductive second contact adjustably spaced from the first contact.
A further aspect of the invention is directed to a method of hermetically sealing a vacuum food storage device comprising providing a container for the food, wherein the container has a lip around an opening therein. The lip has a first portion extending outwardly with respect to the container opening and a second portion extending upwardly and inwardly with respect to the container opening. The method also includes providing a lid securable to the container opening to hermetically seal food in the container. The lid includes a seal having a first portion tightly engageable with the lip first portion when the lid is secured to the container opening to create an initial, partially airtight seal, and a second portion engageable with the lip second portion to create a hermetic seal as air is evacuated from the container. The method includes securing the lid to the container lip and tightly engaging the first portion of the lid seal with the container lip first portion to create an initial seal, and evacuating air from the container to cause the second portion of the lid seal to engage with the container lip second portion to create a hermetic seal between the lid and the container.
Upon securing the lid to the container lip and prior to evacuating air from the container, the second portion of the lid may not be hermetically sealed to the container lip second portion.
A related aspect of the invention provides a vacuum food storage device comprising a container for the food having a lip around an opening therein, wherein the lip has a first portion extending outwardly with respect to the container opening and a second portion extending upwardly and inwardly with respect to the container opening. The device includes a lid securable to the container opening to hermetically seal food in the container, wherein the lid includes a seal having a first portion tightly engageable with the lip first portion when the lid is secured to the container opening to create an initial seal, and a second portion engageable with the with the lip second portion to create a hermetic seal as air is evacuated from the container.
In another aspect the present invention is directed to a method of cleaning a vacuum or pressure food storage device comprising providing a container for the food, a lid to hermetically seal food in the container, an opening in an exterior surface of the lid for receiving a pump, and a vacuum or pressure pump to evacuate air from or inject air into the container. The pump is releasably mounted in the pump opening in the lid by a latch. The method includes operating the latch and removing the pump from the lid, cleaning the lid, and thereafter reattaching the pump to the lid opening using the latch.
A related aspect provides a vacuum or pressure food storage device comprising a container for the food, a lid to hermetically seal food in the container, an opening in an exterior surface of the lid for receiving a pump, and a vacuum or pressure pump to evacuate air from or inject air into the container. The pump is releasably mounted in the pump opening in the lid by a latch, whereby the pump may be removed by hand by a user from the pump opening prior to cleaning the lid.
The features of the invention believed to be novel and the elements characteristic of the invention are set forth with particularity in the appended claims. The figures are for illustration purposes only and are not drawn to scale. The invention itself, however, both as to organization and method of operation, may best be understood by reference to the detailed description which follows taken in conjunction with the accompanying drawings in which:
a is a cross-sectional elevational view of an alternate base configuration for the container shown in
In describing the preferred embodiment of the present invention, reference will be made herein to
In
When the lid is snapped onto a container at normal atmospheric pressure, switch 125 is closed and, because the switch contacts of indicator 110 are also closed, the circuit is closed, motor 40 is energized by battery 18, and pump 10 commences removing the air from the interior of container 130. When the predetermined degree of vacuum is achieved, membrane 122′ moves to open the contacts of indicator 110, and open the circuit, shutting off the vacuum pump. An indicator light 112, operatively energized by the opening of the contacts of indicator 110, may signal to the user that the predetermined degree of vacuum is achieved. Since the atmospheric pressure outside the container is higher than the pressure inside the container., one way valves 62a,62b are sealed closed, and air cannot enter the container through the lid. Should the seal between lid 120 and container 130 leak while the lid is in place, or if the container otherwise permits air to enter, the contacts of vacuum indicator 110 will again close and return the contents of the container to the predetermined vacuum level. When lid 120 is removed from the container, switch 125 returns to its normally open position, and the pump cannot operate.
If one-way valves 62a, 62b are reversed, so that the pump operates in the pressure mode, and indicator 110 is calibrated to open at a predetermined level of pressure above atmospheric, the combination lid 120 and pump 10 may be used to maintain the interior of container 130 in a pressurized state above outside atmospheric pressure. In their reversed position, one way valves 62a, 62b are sealed closed because the atmospheric pressure outside the container is lower than the pressure inside the container, and air cannot escape the container through the lid. If air does escape, indicator 110 will close its contacts, and the pump will add more air pressure. Alternatively, in the embodiment of
A controller 128, such as a microprocessor, may also be incorporated in the circuit of the lid pump 10 to cycle the pump on and off as desired. This is useful when the container is used for marinating foods.
In
The structure of the piston drive mechanism is shown in more detail in
Received in sliding and/or rolling relationship within track 54 is a wheel 60, which is mounted on an axle 58 extending transversely from the axis of rotating member 52. When rotating member 52 rotates as shown in direction of arrow 53, it is prevented from reciprocal movement in the direction of arrow 51 by its fixed attachment to output shaft 42 of motor 40. As wheel 60 travels within track 54, due to the non-linear, sinusoidal configuration of the track, a reciprocating movement is imparted to piston drive reciprocating member 50 in direction of arrow 51. A pin 36 extending outward from reciprocating member 50 through a vertical slot 37 in the side of housing 12 prevents reciprocating member 50 from rotational movement in direction 53 while permitting reciprocating movement in directions 51. Spacer ring 55 is connected to and extends around the outer periphery of the upper portion of reciprocating member 50 to permit proper alignment during reciprocating movement. This reciprocating movement is imparted to the operatively connected piston 44 to move piston 44 alternately through vacuum and pressure strokes as motor 40 operates to turn output shaft 42 and rotating member 52. Other non-linear configurations of track 54 may be utilized for example, a saw tooth shape, to impart any type of desired reciprocating movement to piston 44. Instead of the groove shown, the track may be a continuous protrusion extending circumferentially around the inside of reciprocating member 50, and the shaft/wheel slidingly captures the protruding track. Moreover, the position of the track and shaft/wheel may be reversed, so that the track is disposed in the outer side wall of rotational member 52 and the shaft and wheel are disposed extending in from reciprocating member 50. Also, a pair of wheels may be employed, for example, in the embodiment of
The pumping motion of piston 44 may be utilized to operate pump 10 in either pressure or vacuum mode, depending on the direction of one-way valves 62a, 62b (
While any known one-way valves 62a, 62b may be utilized, for example the flap valve shown in
The preferred embodiment of the storage container lid also employs a vacuum/pressure indicator 110 to signal when the container has reached the proper level of pressure or vacuum. As shown in more detail in
Another embodiment of the vacuum/pressure food storage container and lid of the present invention is shown in
Container 130 preferably has a flexible base 131, which is movable by pressure differential between normal position 131 when the interior 166 of the container is at the same pressure as the outside 168 atmospheric pressure, and a flexed position 131′ when the pressure inside the container is lower than the outside pressure. Upon hermetically sealing lid 120 over the open top of container 130, the pump 10 may be operated to draw air out of the container until a desired degree of vacuum is achieved, thereby flexing container base 131 upward. In so flexing, food 109 immersed in a marinade 111 provided within container 130 may be moved and stretched by the base 131′, which is drawn inward and upward, so as to expand the area of the food surface exposed to the marinade, or at least move it with respect to the marinade. Upon releasing the hermetic seal or otherwise permitting air to re-enter the container, the base returns to its original position 131 and again moves the food with respect to the surrounding marinade.
While base 131 is substantially flat in
Controller 128, which controls the operation of pump 10, may also be made to cause and control the reentry of air into the container. This is done by employing an actuator operable by the controller, such as a solenoid, to open a valve in a passageway between the container interior and the external atmospheric pressure, to permit re-entry of air into the container. An electrically operated actuator 150 or 200 (
A preferred embodiment of the vacuum indicator switch is shown in
To calibrate the indicator switch to electrically signal the desired degree of vacuum, indicator switch 110a includes an adjustable positioning mechanism for spring contact 118c. Threaded screw 124 is received into comparably threaded opening 136 in housing 102, and includes a non-threaded barrel portion around which is slidingly mounted elevator 132 to which spring contact 118c is fixed at one end. As screw 124 is rotated by engaging screw head 134 with a screwdriver, elevator 132 slides without rotation to move spring contact 118c up or down as indicated by the arrows in
Indicator 110a may also be used for indicating above-atmospheric pressure by locating spring contact 118c on the other side of the arm of contact 114c, below, so that when membrane 122a moves downward due to overpressure in chamber 104, the contacts 114c and 118c make electrical contact at the desired pressure above atmospheric.
A filter to clean air entering and leaving the container interior 166 is shown in
Mechanism 140 also includes a release actuator 150 mounted in lid upper surface 154 to permit the vacuum to be released from the container. Release actuator 150 is urged by coiled spring 152, mounted in lid opening 155 around the button body, upward away from valve 158. Valve 158 is urged by coiled spring 162, mounted on interior housing shoulder 174 in the lower end of chamber 148, upward against shoulder 172 in the upper end of chamber 148. A flexible seal 160 around valve 158 ensures that no air enters the upper end of the chamber when the valve is closed. To release the vacuum inside the container, the user may manually push actuator 150 down with a finger against spring 152, and the lower end of body portion 156 then pushes valve 158 downward against spring 162. Atmospheric air from region 168 outside the lid or from vented air 126 in the upper lid interior then passes around the opened valve 158, into chamber 148 and through filter 144 and mesh screen 146 into container interior 166. In doing so, the atmospheric air is filtered, and any trapped particles at the lower end of the filter and screen tend to be cleaned off and expelled back into the container.
Instead of being manually operable, release actuator 150 may comprise an electrically actuated solenoid that is actuated either by the user directly or by the controller. In the embodiment where the container is used to marinate foods using automatic cycling, upon user actuation to release the vacuum the controller will preferably be reset to discontinue the cycling and return to its initial state.
Both manual and electrically-operated pressure release actuators may be incorporated into the container or lid by configuring release actuator 150 as a manual push button, and by adding an electrically operated actuator 200 connected by tube segment 108a to tube 108. A solenoid 202 within the actuator is operable by the controller 128 (
A preferred seal between lid 120 and container 130 is shown in
Lid seal 190 also includes an opening in a single location around the lid periphery between seal outer portion 194 and seal upper and inner portions 192. This opening permits an end 186 of lever 176 to contact the upper portion of container lip 188. Contact lever 176 is part of switch 125 which signals when the lid is in proper closed position over container 130. Lever 176 rotates around pivot 184 and is biases by coil spring 182 in a counterclockwise rotation, as shown in
To remove and protect pump 10 when the lid 120 needs to be washed or otherwise cleaned, the pump may be made to be easily removable from the container lid.
In normal operation, where pump-containing lid portion 120 is mated to lid 120, the user grasps finger grips 199 with one hand and handles 197 on container 130 with the other to secure or remove the lid with respect to the container. The user separately removes lid portion 120a containing pump 10 when lid 120 is to be cleaned by unlatching it from lid 120, and subsequently re-latching it back onto the lid after the lid cleaning is completed.
Thus, the present invention provides an improved vacuum or pressure food storage device that filters air entering or leaving the container; protects the pump motor and power supply from excessive use in the case of an air leak in the container; permits calibration of the pressure or vacuum sensor prior to assembly into the container; permits removal of the pump prior to cleaning the lid; permits better hermetic sealing of the lid to the container; and moves the food with respect to the marinade while evacuating air from the container. It is particularly useful for storing foods such as coffee under a vacuum, and for marinating foods using a cyclic vacuum and/or pressure environment resulting in faster and better infusion and saturation of the marinade into the food.
While the present invention has been particularly described, in conjunction with a specific preferred embodiment, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art in light of the foregoing description. It is therefore contemplated that the appended claims will embrace any such alternatives, modifications and variations as falling within the true scope and spirit of the present invention.
The subject matter of this application is related to that disclosed and claimed in U.S. application Ser. No. [ATTY DOCKET NO. EIC 120001000] entitled “Motorized Vacuum/Pressure Marinating Food and Storage Container” by the same inventor filed on even date herewith, which is a continuation-in-part of pending U.S. application Ser. No. 10/605,468 filed on Oct. 1, 2003.
Number | Date | Country | |
---|---|---|---|
Parent | 10605468 | Oct 2003 | US |
Child | 11684206 | US |